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Preisach model is widely used to characterize ferromagnetic material’s hysteresis. Thus, it is necessary to
identify its parameters in order to complete magnetic hysteresis modeling successfully. In this paper, a
stochastic identification method, Genetic algorithm, is implemented. The procedure consists of the min-
imization of the error between measurements and program results. Obtained results are compared with
the classical nonlinear least square identification method and experimental hysteresis of a fully-process
non oriented Fe-3 wt%Si steel sheet.
� 2017 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Magnetic materials are widely used in many engineering
applications like shape memory alloy, piezoelectric, piezoceramic,
magnetostrictive, and electromechanical actuators. Magnetic field
H (A/m), magnetization M (A/m), magnetic induction B (T), the
susceptibility v (dimensionless) and permeability m (H/m) are
some of the primary magnetic parameters. The magnetic behavior
and properties of a material can be learned by studying its
hysteresis loop. A hysteresis loop shows the relationship between
induced magnetic flux (B) and magnetic field (H).

In the past, several efforts have been made to develop different
types of static hysteresismodel. The classical Rayleighmodel of sca-
lar ferromagnetism (Lord, 1887) represents the H-M relation by a
Prandtl-Ishlinksil model of play-type. This model is valid for small
fields and it is fully determined by four experimental parameters
(saturation magnetic field Hs, saturation flux density Bs, remanence
flux Br and frequency f). The Fröhlich model (Frolich, 1881) is more
adapted for the lowhysteresis lossmaterials and is fully determined
by four experimental parameters (Hs, coercitivity Hc, Bs and Br).
Despite their simplicity, these models have limited applicability as
they are specific to a particular variety of magnetic materials. The
Langevin’smodels aremore accurate as they describe ferromagnetic
material’s magnetization more accurately. The best known is
the model of Jiles and Atherton (1986). It is a physical model of
magnetic hysteresis and represents the magnetization M as a
combination of a reversible component Mrev which results from
the bending of the domain wall (Bloch walls) in the magnetization
process and an irreversible one Mirr which corresponds to the
domain wall displacement. The implementation of Jiles-Atherton
uses five parameters (4 numericals and one experimental). The
identification of these parameters is based on an iterative procedure
(Jiles et al., 1992) which may introduce convergence problems.
Moreover, it is very sensitive to initial values of parameters chosen
as starting point for the optimization (Marion, 2008).

One of the most famous phenomenological hysteresis models is
the Preisach model (Preisach, 1935). The popularity of this model is
linked to the inventive technique of handling the contribution of
infinite number of hysteresis operators with the Preisach triangle,
the staircase line and the Everett function (Mayergoyz, 1991). It is
much appropriate for numerical implementation. Currently, Prei-
sach model includes similar scalar and vector hysteresis models,
like the product model (Kádár, 1987), the moving model (Della
Torre et al., 1994) or the Prandtl–Ishlinskii model (Hassani et al.,
2014). Depending on the used distribution function, the classical
Preisach model is completely determined by 5 parameters: two
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of them are experimentally deduced (Hs,Ms) and the remaining are
numerically identified.

In order to generate the magnetization process for a given mag-
netic material, it is necessary to identify the Preisach parameters
and evaluate its performances with regard to experimental data.
There are many solving algorithms, which are mainly classified
into two groups: Deterministic methods and stochastic ones.
Deterministic methods are rarely used as they are based on the res-
olution of the gradient of the objective function. While, stochastic
methods can be adapted to different forms of problems. They are
based on a random evolution and require a lot of evaluation of
the objective function to constantly end up guessing the optimum.
Among these stochastic methods, the most widely used for mag-
netic domain are neural network (Zakerzadeh et al., 2011), genetic
algorithm GA (Anh and Kha, 2008; Belkebir et al., 2009), particle
swarm optimization (PSO) and nonlinear least squares method
(Levenberg, 1944; Marquardt, 1963).

This paper describes an approach of Preisach parameter identi-
fication using GA. The proposed modeling method has achieved
significant improvements in both accuracy and computation time,
compared to the nonlinear least square identification method. The
proposed approach can be applied to identify any type of hysteresis
models. To demonstrate the efficiency of the proposed model,
experimental results on hysteresis of a fully-process non oriented
Fe-3 wt%Si steel sheet were provided and compared.

2. Classical Preisach model

The Preisach analysis (Preisach, 1935; Mayergoyz, 1991),
mainly used for describing static magnetic behavior for ferroelec-
tric and ferromagnetic materials, has been used to model iron-
silicon films, piezoelectrical materials, super elastic response of
Shape Memory Alloys for seismic dampers and arterial stents and
also thermal effects on magnetic behavior (Quondam et al., 2016).

The magnetic state of the material is represented by magnetic
entities (hysterons) having two possible saturation states M = 1
and M = �1, as shown in Fig. 1.

where, a and b are the up and down switching values, respec-
tively, and the arrows mark the authorized paths equivalent to
changes in input.

The distribution of the elementary cycles defines the Preisach
distribution function is expressed by (1).

MðtÞ ¼
ZZ p

ða; bÞ/ab ½HðtÞ� da db ð1Þ

where, pða;bÞ is the Preisach density and /ab ½HðtÞ� is the operator
associated with the elementary hysteron. The operator Uab[H(t)]
Fig. 1. Preisach elemental operator.
switches the magnetic dipole of elementary hysteron into positive
or negative direction. The sign of hysteron magnetic momentum
does not depend only on the actual magnetic field strength, but also
on its previous history.

The Preisach density is defined in the domain
S ¼ ða; bÞ=� HS 6 b 6 a 6 HSf g as shown in Fig. 2.

Indeed, for each t time of magnetization, the Preisach plane {S}
is divided into two subdomains S+ and S� separated by a line L(t).
This boundary line, with its stairway shape, generates the magnetic
hysteresis. Actually, the vertical portions result from increasing
excitation field values and the horizontal portions result from
decreasing values of this field. It is generally described by two par-
ticular points; the starting point (a = Hs, b = �Hs) and the ending
point (a = b = H(t)) which is located on the line a = b.

Different methods for identifying the distribution function have
been developed. They can be identified using numerical
approaches (Mayergoyz, 1991; Rousseau et al., 1997; Everett,
1955; Ben Abou et al., 2003) or using analytical approaches
(Preisach, 1935).

The Lorentz Modified Function LMF is set by the coercitivity Hc,
a regulator coefficient k and two parameters a and b. The distribu-
tion function by LMF is then given by (2):

p a;bð Þ ¼ ka2

aþ a
Hc
� b

� �2
� �

aþ b
Hc
þ b

� �2
� � ð2Þ

Then, the total magnetization M(t) is expressed by (3)

Mðtnþ1Þ ¼ MðtnÞ � 2
ZZ

s

ka2

aþ a
Hc
� b

� �2
� �

aþ b
Hc
þ b

� �2
� � da db

ð3Þ
3. Genetic algorithms

Genetic algorithms are stochastic algorithms. They consist on
evolutionary optimization based on genetic mechanism and evolu-
tion of species of Darwin in 1960 with concepts like ‘mutation’,
‘crossing over’, ‘survival of the best individual’, ‘natural selec-
tion’. . . (Holland, 1975; Goldberg, 1989). Generally, the GA
attempts to converge to the optimal solution by creating new indi-
viduals from an initial population according to a random process
and the population progresses by successive generations recom-
Fig. 2. Preisach triangle.



Fig. 3. Flow diagram of the GA.
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bining the best solutions together. Particularly, the GA works with
‘parameters coding’. Once genes codified, the identification process
begins and follows the schematic presented in Fig. 3; first, an initial
set of individuals that represents a solution of the considered prob-
lem is generated. Each individual is evaluated on its performance
with respect to the fitness function imposed. The individual fol-
lows a selection process where the best (fittest) survives and
selected to carry on the regeneration and others disappear. Parents
exchange their genetic information randomly to produce innova-
tive child population by crossover and mutation selected opera-
tors. The parents are then replaced in the population by the
children to keep the population size stable.

This reproduction (Selection, crossover and mutation) is
repeated and takes place with a probability of crossover (Pc) and
probability of mutation (Pm), and it is again subjected to an evalu-
ation of the relevance of the solution until the solution tends to the
global optimum in a fixed iteration number.
Fig. 4. Block diagram of the magnet
In order to test the success of the model, several statistical cri-
teria can be used. We can note ME (mean error), RMSE (root mean
square error), R2 (coefficient of determination) and MAPE (mean
absolute percentage error) which are based on comparing the esti-
mated variables with the original one. They are expressed as fol-
lows (Hosseini et al., 2016):

ME ¼
Pn

i¼1ðPi �MiÞ
n

ð4Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1ðPi �MiÞ2
n

s
ð5Þ

R2 ¼ 1�
Pn

i¼1ðPi �MiÞ2Pn
i¼1ðPi � AiÞ2

ð6Þ

MAPE ¼
Pn

i¼1
Ai�Pij j
Pi

n
ð7Þ

where Pi, Mi and Ai are amounts of predicted, measured and average
values and n is sampling point number, respectively.

The major ending criteria is the satisfaction of the imposed fit-
ness value (error between experimental data and pretended ones).
Then, the best fit time evolution is the second condition. If the
parameter remains considerably unchanged after five consecutive
iterations, then it should be a stop criterion (Consolo et al.,
2006). Finally, the third criterion characterizes the number of pop-
ulation or generations initially fixed.

The benefit of GA is that they are suitable for complex problems.
They are applied to functions with great number of parameters. In
addition, GA is one of the most practical methods as it does not
depend on the choice of the initial population. However, it requires
many evaluations of the objective function to achieve the global
minimum as it does not converge quickly. Several researchers have
used the GA in their optimization studies and identification of
parameters of magnetic models (Belkebir et al., 2009; Quondam
et al., 2016; Wilson et al., 2001; Salvini and Fulginei, 2002; Che-
Hang and Guangjun, 2007). All these studies have shown a consid-
erable reliability of this algorithm.

4. Magnetic measurements test apparatus

Various magnetic measurement systems have been developed
for different applications, such as magnetic behavior under
mechanical stress and/or thermal modeling of magnetic compo-
nents. The used magnetic experimental measurements test appa-
ratus (Fig. 4) was validated by several experimental studies
(Matsubara et al., 1989; Iordache et al., 2003). It consists of two
ic measurement test apparatus.



Fig. 5. Experimental hysteresis of a Fe-3 wt%Si steel.
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U ferrite cores (Philips U100/57/25-3C90, MnZn material) main-
tained in contact with the sample close the magnetic circuit. Pri-
mary windings are wound on the central limbs of the yokes and
secondary winding surround the specimen. This double-yoke
arrangement leads to better homogeneous distribution of the mag-
netic field in the measurement zone, moreover it minimizes the
negative effects of the overhang and of the eddy currents on the
measurements accuracy.
Fig. 6. Flow diagram of the us
The magnetizing current waveform is controlled by a function
generator and an operational amplifier. The voltage V(t) represents
the direct output of the secondary coil and i(t) the input magnetiz-
ing current.

The magnetic field is estimated according to the IEC method
(IEC, 1992) by:

HðtÞ ¼ NPiðtÞ
L

ð8Þ

where NP is the number of turns of the primary winding (NP = 195)
and L is the effective magnetic path length, conventionally equal to
the internal length of the yokes (L = 50.8 mm).

The magnetic flux US detected by the secondary winding is the
sum of the flux experienced by the ferromagnetic specimenUSample

and the magnetic flux in the air between the secondary winding
and the specimen Uair:

US ¼ USample þUair ð9Þ

Uair ¼ l0HðSS � SSpecimenÞ ð10Þ

USample ¼ BSSpecimen ð11Þ
where B is the magnetic induction, SSpecimen is the cross section of
the specimen, SS is the section of the secondary winding and m0 is
the vacuum permeability (4p 10�7 Hm�1).

The Faraday’s law requires that the secondary voltage V(t) on
the secondary coil is proportional to the variation of the magnetic
flux as:
ed GA method (using e1).
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VðtÞ ¼ �NS
duS

dt
ð12Þ
where NS is the number of turns of the secondary winding
(NS = 120 turns).

The magnetic induction B(t) is calculated by integrating the
secondary voltage V(t) with respect to Faraday’s law (13):
BðtÞ ¼ 1
SSpecimen

1
NS

Z
VðtÞdt

� �
� l0HðtÞ SS � SSpecimen

� �	 

ð13Þ

The used sample is a fully-process non oriented Fe-3 wt%Si
steel sheet of 0.35 mm thick. The specimen is strips 20 mm
wide and 250 mm long cut out in the rolling direction and vac-
uum annealed at 720 �C for 2 h in order to eliminate the resid-
ual stresses which originate from the manufacturing process
(Hubert, 1998). Fig. 5 Shows the experimental obtained
hysteresis.
Fig. 7. Flow diagram of the

Table 1
Identification results.

Method Error Execution time (min)

e1 (T) e2 (%)

GA 0.026 0.53 40
LSQ 0.039 5.05 5
5. Results and discussion

In this section, we investigate the ability of GA to identify the
static Preisach model’s parameters that ensure reproducing the
measured hysteresis curve of the Fe-3 wt%Si material. A compara-
tive study is developed between GA and non-linear least square
method (LSQ) in order to spot the more accurate. The identification
procedures are established according to the following diagrams
(Figs. 6 and 7) and are based on the minimization of two kinds of
errors: the mean squared error and the percentage error described
by Eqs. (14) and (15) respectively.

e1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 BsimðiÞ � BexpðiÞ
� �2q

n
ð14Þ

e2 ¼

Xn
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BsimðiÞ�BexpðiÞ
maxðBexpÞ

� �2
r

n
� 100 ð15Þ
LSQ method (using e1).

Parameters

a b k Hs Hc

0.2 0.7 1057 4044 444
0.2 0.6 1000 3500 435



Fig. 8. Comparison of simulated cycles by GA and LSQ methods and experimental
major cycle.

Fig. 9. Error evolution.

Fig. 10. Comparison of optimization results by GA and the experimental branch.

K. Hergli et al. / Journal of King Saud University – Science 31 (2019) 746–752 751
where, Bsim is the simulated magnetic induction (Preisach model),
Bexp is the experimental magnetic induction and N is the number
of samples.

Concerning the GA approach, the GA Matlab toolbox is used.
The evaluation is carried out for an initial population of 20 individ-
uals and 200 iterations. The crossover probability Pc and the muta-
tion probability Pm are taken respectively equal to 0.8 and 0.2.
Minimum and maximum expected values for the five Preisach
parameters {a, b, k, Hs, Hc} are respectively {0, 0.3, 1000, 3500,
380} and {0.5, 1, 1500, 4500, 500}. Once the initial population is
Table 2
Results of optimization by GA for 5 consecutive tests.

Test Error Parameters

e1 (T) e2 (%) a

1 0.020 0.35 0.3
2 0.021 0.51 0.3
3 0.025 0.99 0.2
4 0.023 0.49 0.2
5 0.024 0.640 0.2

Average 0.0225 ± 0.0025 0.67 ± 0.32 0.25 ± 0.05
created, the Preisach model calculates the magnetic induction,
which is then evaluated using the objective function (e1 or e2).
The fitting results between measured and simulated values are
provided at each run and compared to the major stop criterion emin

(=0.05). If convergence is not succeeded, the algorithm creates a
new population by applying genetic operators (crossover and
mutation). This new population is also evaluated and the process
is repeated until convergence is reached.

Concerning the LSQ method, it consists on an iterative improve-
ment of parameter values in order to reduce the sum of the squares
of the errors between the function to be calculated and the mea-
sured data points. For this purpose, it requires an initial guess for
the parameters to be estimated. So, we chose randomly the values
a = 0.1, b = 0.75, k = 1200, Hs = 4400 and Hc = 420 for the initial
guess. If the LSQ error is ‘acceptable’, the program ends and returns
the optimal parameters. Otherwise, the algorithm resumes calcula-
tion for another initial parameters vector until 200 iterations.

According to the symmetry of the hysteresis, we just use the
experimental half upstroke of the major loop for the identification
process. The results of the optimization for the two methods for
the conditions already mentioned are summarized in the following
Table 1. The obtained curves using these identified parameters are
shown in Fig. 8.

GA error e1 evolution is shown in Fig. 9. The random choice of
the initial population leads to a high value of the error. The cre-
ation of a new population by selecting individuals that have the
better fitness value from the previous population improves drasti-
cally the error. For GA implementation, even if the fitness value
emin is not reached, and in case of the best individual of the popu-
lation remains unchanged for a given number of generations (30),
b k Hs Hc

0.4 1038 3854 401
0.55 1000 3786 398
0.7 1224 3815 412
0.4 1323 3913 426
0.7 1205.5 3886 425

0.55 ± 0.15 1161.5 ± 161.5 3850 ± 64 412 ± 14
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the algorithm converges. The obtained final solution is the optimal
one. Fig. 9. Shows that GA converges at the 78th generation with a
final error e1 equal to 0.024 T.

GA is based on a random choice of the initial population. Thus,
we have different optimal points for the same upper and lower
boundaries of designed parameters. Table 2 shows the results of
five consecutives identifications. Identified half upstroke of the
major loop are plotted on Fig. 10.

According to the sensitivity tests, we note that all the tests give
errors less than 0.03 for e1 and less than 1% for e2. The parameter
values are closely identical and gives superimposed curves. We
note also that a strong dependency of the five model parameters
a, b, k, Hm and Hc is existing.

6. Conclusion

In this paper we have proven how the static Preisach model’s
parameters have been efficiently determined from limited set of
experimental data (major loop) by the genetic algorithm approach
and the non-linear least square method based on the Levenberg
Marquardt algorithm. The results reached from the GA method
are in a good agreement with the measures within an error of
one percent and it produces the nearest cycle to the experimental
reference one. So, it is more efficacious than the LSQ approach.
Nevertheless, to prevent premature convergence and guarantee
solution accuracy, the GA requires a large population size. Thus,
a large population size usually demands more generations and
consequently more computation time, which is a major weakness
of this method.
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