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Starting by King’s method, we propose a modified families of fourth- and eighth-order of convergence
iterative methods for nonlinear equations. The fourth-order method requires at each iteration three func-
tion evaluations, while the eighth-order methods both need four function evaluations. The proposed
methods are derivative-free. Based on the conjecture of Kung and Traub, the new methods attain the opti-
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1. Introduction

Searching out a solution of the equation f(x) = 0, where f(x) is
nonlinear is highly significant in mathematics. The second-order
well-known Newton’s iterative technique for solving nonlinear
equations defined as Traub (1964)

f(xn)
fxn)
Many researchers have improved Newton’s method in order to get
more accurate results and higher order of convergence, see for
example Behl et al. (2017), Chun (2008), Cordero et al. (2016),
Pandey and Jaiswal (2017), Said Solaiman and Hashim (2019),

Xny1 = Xp —

(1)
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Sharma and Goyal (2007), Waseem et al. (2018) and the references
therein.

Recently, Kogan et al. (2017) proved that methods of order
p = 3 are the most efficient methods among all one-point iterative
methods without memory of order p. Besides, the efficiency index
is a common method to compare the performance of different iter-
ative methods. This index is defined as p'/™, where p represents the
convergence order and m is the number of functional evaluations
needed at each iteration. Based on the conjecture of Kung and
Traub (1974), the iterative scheme with m functional evaluations

is optimal if its order of convergence equals 2™'. Many authors
have constructed the optimal iterative methods of different con-
vergence orders. The standard way for constructing optimal
method is the composition technique together with the usage of
some interpolations and approximations to minimize the needed
functional evaluations at each iteration. Different optimal fourth-
order iterative methods were constructed, see for example
Argyros and Magrefian (2015), Behl et al. (2015a), Chun et al.
(2012), Cordero et al. (2010), Sharma and Bahl (2015), Soleymani
et al. (2012). Optimal eighth-order of convergence was also
reached by many authors also, for instance Behl et al. (2016),
Behl et al. (2018), Cordero et al. (2015), Geum et al. (2018),
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Sharma and Arora (2016), Singh and Jaiswal (2016). Neta and Chun
(2014) and Chun and Neta (2016) presented a comparison of sev-
eral families of optimal iterative methods which are of fourth-
and eighth-order of convergence based on their basins of attrac-
tion. Chun and Neta (2017) presented a quantitative comparison
of many optimal iterative techniques of order eight beside the
visual comparison of the methods by graphing their dynamics.

Since, to find the derivative value is not always an easy task, as
well as requires more computation time, many authors have pro-
posed and implemented various derivative-free optimal methods,
see Cordero et al. (2013), Lee and Kim (2012), Sharma and Goyal
(2007), Yasmin et al. (2016), Zafar et al. (2015). One of the most
famous optimal fourth-order iterative techniques is the method
proposed by King (1973). But the main weakness is that finding
the first derivative is needed at each iteration. Many authors have
modified King’s method. For example, Chun (2007) implemented
some King’s like methods of order four, but computing the first
derivative within the iteration is needed also. Behl et al. (2015b)
proposed a fourth-order derivative-free modification of King's
method. Sharifi et al. (2014) implemented an optimal derivative-
free fourth- and eighth-order modifications of King’s method.

In this work, by modifying King’s method, we propose a family
of optimal fourth-order derivative-free iterative method for non-
linear equations. With the use of some approximations and the
composition technique, we extend the new method to two new
optimal schemes of order eight. The convergence analysis of all
three methods are derived. The proposed optimal methods were
tested on six different examples to show the efficiency of the meth-
ods with numerical comparison to other established methods of
the same order.

The work of this paper is divided as follows. The new schemes
are described below in Section 2. To show the order of convergence
of the new schemes, thee convergence analysis is implemented in
Section 3. The numerical examples with the comparisons with
other techniques of identical orders are summarized in Section 4.
Eventually, in Section 5 the conclusion is given.

2. The new methods
2.1. Derivative-free optimal fourth-order iterative method

We propose a modified family of optimal fourth-order
derivative-free schemes. We start by Newton’s two steps method
of order four:

N )
X _ _ fom) ( )
ni1 = Yn fom”

This two steps method is not optimal as it needs the evaluation of
two functions and two first derivatives. In order to reduce the num-

ber of functional evaluations, King (1973) replaced f'(y,) by the fol-
lowing approximation:

f&n) + (B = 2)f(¥Vn)
f@a) + B )

Substituting (3) into (2) produces the famous optimal King's
method of order four:

F' ) =f ()

3)

fxn)

Yn =0 = ) (4)
Xppy =y, — 00 S 0y)
1= Y0 ) Fon)+(B-2)f 0) *

King’s method needs the computation of two functions and one first
derivative. Based on the conjecture of Kung and Traub (1974), King’s
method reached the optimality with efficiency index equals

(4)F ~ 1.587.

However, the computation of the first derivative is not always
easy, in addition to that it costs extra time. To implement a
derivative-free technique from King’s method (4), the next approx-
imations for f'(x,) in both steps will be considered

/(%) = f[Wn, %], (©)
F' (%) ~ g(%a) = F[Wa, Xn] + 2 (Wn = X0 )f Wi, X0, Y] = F Ve, Wa] + X0, Y] (6)
Here W =xu +f (Xn).f[%n, Y] = "0, and f[W, Xn,y,] =e5n Lol
The first approximation (5) was firstly used by Steffensen (1933),
and the second one (6) is obtained with the help of divided differ-
ences approximation. After substituting (5) and (6) into (4) one
can obtain the first essential finding of this work:

Algorithm 1. Given xo, the approximate solution x,,1 of f(x) =0
can be found by the following iterative scheme

— f(xn)
yn = Xn INIZEDN

(7)

—y _fn) fn)+Bf ()
Xni1 = Yn = glan) Fom)+(-20 )

We call this family, modified King’s method MK,. The order of con-

vergence of this family is four. In each iteration, MK, requires only

three evaluations of functions and no derivative evaluation is

needed. Based on the conjecture of Kung and Traub (1974), MK,

reached the optimality with efficiency index equals (4)% ~ 1.587.

2.2. Derivative-free optimal eighth-order iterative method

In order to extend MK, method given by Algorithm 1 to the
eighth-order of convergence, we will use the composition tech-
nique. The additional step of Algorithm 1 is produced using the
idea of Zafar et al. (2015) based on rational interpolation. Consider
the following Algorithm, which is the second main finding of this
work:

Algorithm 2. Given xo, the approximate solution x,,1 of f(x) =0
can be found by the following iterative scheme

f(*n)

yn = xn _f[WnAXn] )
oy 0w fen) o)
Zn = Yn = gl) T+ -2/ 0) (8)
X —x, — f(xn)(my +my+ms)
1= A0 i Flwn X+ maf [V Xal + s zn Xa)
where

my; = f(yn)f(zﬂ)(zn _yn)7

m; = f( n)f(zn)(wn *Zn)v

ms = f(Wn)f (V)Y — W)

We call this family, modified King’s method MKg, The conver-
gence order of this family is eight. In each iteration MKg,
requires only four evaluations of functions and no derivative
evaluation is needed. Based on the conjecture of Kung and
Traub (1974), MKg, reached the optimality with efficiency index

equals (8)% ~ 1.68.

w,
W,

2.3. Another derivative-free optimal eighth-order iterative method

Another extension of MK, method can be achieved by adding
Newton’s technique as a third step of MK, method, and then
using the derivative of the second degree Padé approximation
for f'(z,). This approximation was firstly proposed by Cordero
et al. (2013). The following algorithm is the third essential finding
of this work:
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Algorithm 3. Given xq, the approximate solution x;,,; of f(x) =0
can be found by the following iterative scheme
— f(xn)
Yo = Xn = fw
—y _fn) fn)+Bf(yn)
Zn = Yn = glan) Flon)+(B-2f07) 9)
f(zn)

C—C1Cq°

Xni1 =2Zn —
where

&= f(z),
G2 f[yn7zﬂ]7c3(ynfzn)+c4f( n)7
€3 = f[VnsZn, W + Caf [V, Wi,

_ fynzn Xn]—fVn.Zn,Wn)
N TR AR

We call this family, modified King’s method MKg,. The order of con-
vergence of this family is eight. Each iteration of MKy, requires only
four evaluations of functions and there is no derivative evaluation
needed. Based on the conjecture of Kung and Traub (1974), MKg,

reached the optimality with efficiency index equals (8)‘1’1 ~ 1.68.

3. Convergence analysis

The convergence analysis of the proposed methods will be dis-
cussed in the following theorems.

Theorem 4. Consider that o is a root of a sufficiently differentiable
function f : IC R — R in an open interval I, and let xy be sufficiently
close to o. Also let e, = x, — o, be the error at the n' iteration. The
method defined in Algorithm 1 is of fourth-order of convergence.

Proof. By the Taylor series expansion of f(x) about x = o one
obtains

(%) = [c1€n + C2€% + 383 + ca€l + -, (10)

(k)
where ¢, =@ | k=1,2,3,.... Furthermore,

k!

Wy = Xn+f(Xn),

11

= o tentCrey + el c3ed caet - (1
Expanding f(w,) about «, one obtains

fwy) = (c1 +c2)en + (2 + 3162 +C3cr)e2 + - (12)

Hence, from Eqgs. (10)—(12) we obtain
f[Wn xn] — fWn)—f(xn) __ f(Wn)—f(xn)

Wn—Xn flxn) 7 (]3)
= 1+ (202 +C1C2)en+ (63 +3c3+3c103 +C3c3)@2 + -

Now, substituting Egs. (10) and (13) into the first step of scheme
(7), we have

— f(*n)
o= Xn = fwnx]
- a4 (5152:252)6‘% _ (26%+2c1c%+c%c%—i§1 3323 —cicz)ed . (14)
1
Expanding f(y,) about «, with the use of Eq. (14) one obtains
—2¢2 —2¢1¢2 —c3c2 +2c103+ 3¢%¢c3)e3
[ = (et iy + 22720424 ek
1
(15)

Also, we have

g(Xn) :f[Wn,Xn] +2(Wﬂ —Xn)f[Wn,men] _f[ymwn] +f[xﬂ7yn}7

2 2 2 (16)
=C1+2(c2+ci162)en+(2¢5+3c3+5C1c3 + 2¢1C3)e; + -+

After substituting Egs. (10), (15) and (16) into the second step of
scheme (7), we obtain

(1+c1)?c2((1 428+ 2(~1 + B)c1)2 — cic3)e? .

Xny1 = o+
+ C:]J,
(17)
This implies that
1 20,(1+ 28+ 2(~1 2_ 4
ens1 :( +C1) CZ(( + ﬁ+ ( +[)')C1)C2 C1C3)en+o(eﬁ)_

3
q

Hence, MK, method proposed in Algorithm 1 has fourth-order of
convergence. [

Theorem 5. Consider the same assumptions in Theorem 4, then the
method defined by Algorithm 2 is of eighth-order of convergence.

Proof. From Theorem 4, we have

(1+c1)?c((1 428+ 2(=1 + B)c1)2 — cic3)e?

Zn =0+ 3 (18)
Gq

Expanding f(z,) about o, with the use of Eq. (18), we have

f(zn) = (63 + 28¢5 + 6pc1c; + (65 — 3)cic; +2(F — 1)cic;

—C16€3 — 2C2Ca¢3 — Ceacslede? + - (19)

From Eqs. (11), (12), (14), (15), (18), and (19) we have

— (14 ¢1)*S3(c2 + 2Bc% — 2¢1¢% + 2Bc1 2 — ¢yc3)ed L 20)
c3 ’

my —(LF )t (3 +2pc3 - 2(;1C% +2fc163 — c15C3)€8 e

1
mz=—(1+c1)c1+cA) e +ac)ed +---. (22)
Using Egs. (10), (15), and (19), one obtains
34 c163 4 ci03)€?

fLyn7Xn]:C]+C2€n+(2+ 1?:+ 13)n+.__7 (23)
1

Flzn, Xn] =C1 + C2€q 4 C3€2 + - -. (24)

Substituting Egs. (10), (13), and (20)-(24) in the third step of
scheme (8), we get

(1+¢)* S +2+2(=1+ 1) —€163)(E —2¢1 0203 + Cea)ed

Xny1 =0+ 7 L.
G

which implies that

(14¢1)*E((1+28+2(=1+ B)c1)cE — €163)(c3 — 2¢1CaC3 + c2c4)ed
o

Cny1 =

+0(e)).

This shows that MKg, method proposed in Algorithm 2 has eighth-
order of convergence. O

Theorem 6. Consider the same assumptions of Theorem 4, then the
method defined by Algorithm 3 is of eighth-order of convergence.
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Table 1
Comparisons between different methods.
Method n Xn [Xn — Xp_1] f(xn) coc
f1(x),x0 =0
MKy 4 0.73908513321516064 1.63E-52 —1.75E-209 4
Ks 4 0.73908513321516064 5.30E-18 —9.03E-71 4
YZA, 4 0.73908513321516064 1.71E-32 1.60E—-128 4
CHMT, 4 0.73908513321516064 4.82E-52 —1.49E-207 4
ZYA]4 4 0.73908513321516064 2.69E-56 —1.02E-224 4
MKsgq 3 0.73908513321516064 3.12E-55 —4.94E—441 8
MKsp 3 0.73908513321516064 2.75E-58 5.03E—466 8
YZAg 3 0.73908513321516064 3.15E-28 9.51E-223 8
CHMTg 3 0.73908513321516064 4.13E-58 5.73E—465 8
ZYAJs 3 0.73908513321516064 5.79E-57 —5.41E-455 8
f2(%),%0 =1
MK, 4 1.4044916482153412 1.76E—-44 2.69E-176 4
Ky 5 1.4044916482153412 7.84E-18 —2.19E-68 4
YZA4 4 1.4044916482153412 2.18E-23 1.90E-90 4
CHMT,4 4 1.4044916482153412 1.76E-27 —4.63E-107 4
ZYA]4 4 1.4044916482153412 2.45E-35 —8.16E-139 4
MKs, 3 1.4044916482153412 3.29E-42 1.44E-333 8
MKsp 3 1.4044916482153412 2.01E-45 —2.42E-359 8
YZAg 3 1.4044916482153412 8.99E-31 4.00E—240 8
CHMTg 3 1.4044916482153412 4.21E-30 —6.26E—-235 8
ZYAJs 3 1.4044916482153412 5.62E-39 —8.38E-307 8
f3(%),% =15
MKy 3 1 9.64E—16 —4.80E-62 4
Ks 4 1 9.53E-41 5.73E-162 4
YZA4 4 3.5302670187568383 1.53E-37 —2.30E-147 4
CHMT,4 4 1 1.44E-49 4.75E-197 4
ZYA]4 4 1 1.55E-53 3.22E-213 4
MKsgq 3 1 4.29E-54 —3.75E-430 8
MKsp 3 1 7.57E-57 —3.14E-452 8
YZAg 3 1 8.02E-53 —1.75E-419 8
CHMTg 3 1 6.44E—-49 2.04E-388 8
ZYAJs 3 1 1.28E—49 2.39E-394 8
fa(®), %0 =1
MK, 3 0.97416230520054071 2.71E-32 8.46E—128 4
|\ 3 0.97416230520054071 7.45E-31 —-1.34E-121 4
YZA4 3 0.97416230520054071 3.46E-26 4.16E-102 4
CHMT, 3 0.97416230520054071 8.90E-28 —9.65E-109 4
ZYA]4 3 0.97416230520054071 1.78E-28 -1.11E-111 4
MKgq 3 0.97416230520054071 3.81E-118 1.93E-941 8
MKgp 2 0.97416230520054071 3.81E-16 2.58E-126 8
YZAg 3 0.97416230520054071 5.03E-107 2.18E-851 8
CHMTg 3 0.97416230520054071 3.78E-112 —1.06E-892 8
ZYAJs 3 0.97416230520054071 2.32E-111 —2.54E-886 8
f5(x),x0 =1.5
MKy 3 1.3961536566409308 6.61E-23 —2.18E-90 4
Ky 3 1.3961536566409308 2.01E-18 —2.16E-71 4
YZA4 4 1.3961536566409308 1.31E-58 8.75E-232 4
CHMT,4 3 1.3961536566409308 1.18E-17 —2.25E-68 4
ZYA]4 3 1.3961536566409308 449E-19 —2.48E-74 4
MKsgq 3 1.3961536566409308 3.50E-82 —3.52E-654 8
MKsp 3 1.3961536566409308 9.22E-89 —1.65E-707 8
YZAg 3 1.3961536566409308 2.76E—64 3.19E-509 8
CHMTg 3 1.3961536566409308 1.28E-70 —1.89E-560 8
ZYAJs 3 1.3961536566409308 3.01E-75 —5.71E-598 8
fe(x),x0 = 0.6
MK, 4 1 3.53E-36 —3.09E-142 4
Ka 9 1 3.10E-27 —-9.19E-106 4
YZA4 4 1 5.01E-30 3.79E-117 4
CHMT, 4 1 2.36E-34 —1.25E-134 4
ZYA]4 4 1 1.69E—42 —1.64E-167 4
MKs, 3 1 2.13E-39 —8.52E-310 8
MKsp 3 1 2.90E-36 —1.01E-284 8
YZAg 3 1 1.62E-24 6.67E—190 8
CHMTg 3 1 2.41E-35 —-9.18E-277 8
ZYAJs 3 1 1.56E—42 —7.19E-335 8
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Table 2
Comparisons of number of iterations needed for different methods with [x, — x,_;| < 1072%.
fi(x) fa(x) f3(x) fa(x) f5(x) fe(x)
Xo=0 Xo=0 Xo=1.5 X0 =1 Xo=1.5 X0 =0.6
MK, 5 6 5 5 5 6
Kq 6 7 6 5 5 11
YZA4 6 6 6 5 5 6
CHMT, 5 6 6 5 5 6
ZYA]4 5 6 5 5 5 6
MKgq 4 4 4 4 4 4
MKgy, 4 4 4 4 4 4
YZAs 4 4 4 4 4 5
CHMTg 4 4 4 4 4 4
ZYAJg 4 4 4 4 4 4

Proof. Based on the definitions of c;,c,,c3, and ¢4 given in the
scheme (9), and as the series expansion is too large and can’t be
expressed in a few lines, we used Mathematica 9 to do the required
computations. After some simplification we obtain

out using Mathematica version 9 with 10,000 significant
digits.

Table 1 shows the number of iterations n needed so that the
stopping criterion is satisfied, the approximate zero x,, the distance

Xni1 =0+ 7
G

This leads to

(T +c) (1428 +2(=1 4 B)c1)c2 — c163) (1 + 2B+ 2(=1 4 B)c1)ci — €163¢3 — €23 + C2caCy

(1 +c) (14284 2(=14 B)c1)2 — c163)((1 + 28+ 2(=1 + B)cy )t — cickes — c2c2 + c3cycq)ed N

€h1 =
n+ Cz

which proves that MKg, method proposed in Algorithm 3 is of
eighth-order of convergence O

4. Numerical examples

To show the efficiency of the new optimal schemes MKy, MKg,
and MKg,, several examples will be tested. We compare the new
schemes with the optimal fourth-order technique K, presented
by King (1973), and with the derivative-free fourth- and eighth-
order methods presented by Yasmin et al. (2016), Cordero et al.
(2013); and Zafar et al. (2015) denoted respectively as: YZA4,
YZAg, CHMT,4, CHMTg, and ZYAJ4, ZYAJs. In all examples, we con-
sider that o = 1 whenever w, = x, + af (x,), and that g = 2 in King’s
method and our proposed methods.

Six test examples are considered below:

fi(x)= cos(x) —x, f,(x)=sin’(x)—x2+1,
f3(0 = In(x? —x+1)—4sin(x—1), fy(x) =e™ +cos(x) —x?,
fs(x) = arctan(x) —x* +1,
_ [x(x+1),ifx <0
o= {—ZX(X— 1),ifx > 0°

We take |x, —x,1| <10 as a stopping criterion of the
computer programs. The computations here have been carried

8
e, o),

between two successive approximations with |x, — x,_1| < 107",
the value of f(x) at the approximate zero, and the computational
order of convergence (COC) defined by Weerakoon and Fernando
(2000), which can be estimated as follows

In|(Xn1 —Xn)/(Xn — Xn_1)]
COoC ~ .
In |(Xn - Xn—l)/(xn—l - anz)\

The second column in Table 1 shows the number of iterations n
needed to reach the stopping criterion. It is clear that the new
methods need less iterations than the other methods to reach the
stopping criterion, or the same number of iterations in some cases.
Therefore, the approximate solutions obtained by the proposed
techniques are as good as of those obtained by other existing
methods of the same order.

Note that, even though the new proposed methods need the
same number of iterations to satisfy the stopping criterion as with
the other methods, but still they are superior to the other methods
as |x; — xp_1| and f(x,) are less for the new schemes than the other
schemes of the same order.

Table 2 illustrates the number of iterations needed to achieve
approximate  solution using the  stopping  criterion
[Xn — Xn_1| < 1072%, Setting the same convergence criterion for all
methods, the required number of iterations for the new methods
is either less than or equal the needed iterations by the other tech-
niques with identical order.
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5. Conclusion

In this work we proposed new optimal three derivative-free
root finding schemes for nonlinear equations. These methods are
implemented via efficient algorithms. The first method has order
four, and derived using King’s method with finite difference
approximations. The second and the third optimal methods were
of order eight. We implement the methods by using the composi-
tion technique combined with rational interpolation, and the idea
of Padé approximation. The convergence analysis of the proposed
optimal methods has been proved, with the convergence order
has been established to be of the optimal fourth- and eighth-
order, respectively. Six examples were tested, showing the capabil-
ity of the new techniques. Overall, the new methods are compara-
ble to other well-known schemes with same order of convergence.
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