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Cisplatin (CP) is a top-notch anti-cancerous agent that is used during the treatments of various types of
tumors. Tamarixetin (TM) is a naturally occurring polyphenolic compound with versatile therapeutic and
pharmacological abilities. The current investigation was purposed to elucidate the antagonistic effects of
TM against CP-prompted renal intoxication. Sprague Dawley rats (n = 48) were separated into 4 equal
groups i.e., Group 1st was designated as control group while the 2nd group was treated with CP (10
mg/kg) only, group 3rd received CP (10 mg/kg) + TM (50 mg/kg) and designated as a co-treated group
while group 4th was administered with TM (50 mg/kg) only. Our results revealed that treatment of CP
reduced the activity of catalase (CAT), glutathione peroxidase (GPx), superoxide dismutase (SOD),
glutathione-disulfide reductase (GSR), glutathione S-transferase (GST) as well as glutathione (GSH) while
elevate ROS and MDA levels. CP administration raised the level of urea, creatinine, KIM1 along with NGAL
while significant reduction in creatinine clearance. Whereas, CP treatment substantially elevated the
level of caspase-3, caspase- 9 and Bcl-2 associated X protein (Bax) while reducing the level of B cell lym-
phoma protein 2 (Bcl-2). CP administration significantly elevated the concentration of nuclear factor
kappa-B (NF-kB), interleukin 6 (IL-6), interleukin 1 beta (IL-1b) as well as tumor necrosis factor a
(TNF-a), and instigated histopathological damages in renal tissues. However, Co-treatment of CP + TM
showed palliative effects against CP-induced impairments. The current study manifested that TM is a
potential flavonoid that could be used as a therapeutic drug to ameliorate renal damages instigated by CP.
� 2023 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction hair fall, diarrhea, anxiety, inflammatory disorders, neurodegener-
Cancer is one of the most prevalent cause of deaths across the
globe while cisplatin (CP) is a potent chemotherapeutic agent used
to treat various kinds of malignancies (Ijaz et al., 2020). Its thera-
peutic and pharmaceutical applications are restricted, due to the
significant adverse effects during treatment of cancer, that include
ation, ototoxicity, gastric toxicity, liver toxicity, and renal toxicity
(Li et al., 2018). Cisplatin is reported to cause mitochondrial dys-
function in male Sprague Dawley rats (Ijaz et al., 2021). Oxidative
stress induced lipid peroxidation which disrupts the integrity of
intracellular as well as cellular membranes (Talas et al., 2009).

Among aforementioned toxicities, renal toxicity is the most
prevalent form of toxicity following the treatment with cisplatin
(Marcato et al., 2014). Triggering of vascular renal constriction,
reduction in glomerular filtration rate (GFR), decline in the blood
flow towards renal tissues, elevation in creatinine level, and drop
in blood magnesium and potassium concentrations are all patho-
physiological manifestations of cisplatin-induced renal damage
(Pabla and Dong, 2008). Occurrence of renal toxicity is still signif-
icant despite the fact that diuretics and sufficient hydration of indi-
viduals can prevent (Oh et al., 2014).
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Natural products are reported to decrease oxidative stress as
well as hypertensive effects (Selamoğlu et al., 2015). Plants are
considered as a prime source of medicines (Regginato et al.,
2020), however flavonoids (plants derivatives) are the potential
therapeutic compounds that exerts significant curative role against
several xenobiotics (Omar et al., 2020). Tamarixetin is a flavonoid,
known as methylated quercetin with tetra-hydroxy structural con-
figuration (Parajuli et al., 2018). It has been documented that
tamarixetin showed anti-tumorous (Nicolini et al., 2014), anti-
inflammatory (Park et al., 2018) as well as cardioprotective activi-
ties (Hayamizu et al., 2018). However, evidences regarding tamar-
ixetin’s curative effects against xenobiotics instigated renal
damages are not much reported. Therefore, this study was pro-
posed to investigate the mitigative action of tamarixetin to antag-
onize CP prompted kidney damages.
2. Materials and methods

2.1. Chemicals

Cisplatin & Tamarixetin were bought from Sigma-Aldrich
(Germany).
2.2. Animals

Albino rats with 200 ± 20 g body weight were accommodated in
animal research station at University of Agriculture Faisalabad.
Both the temperatures as well as moisture were kept at 22 ± 1 �C
and 40–60% respectively as well as 12 h dark/light period were sus-
tained. Rats were also facilitated with standard food and tap water
and study was approved by institutional ethical committee.
2.3. Experimental design

A dose of CP (10 mg/kg) was administrated being mixed in nor-
mal saline solution. Tamarixetin was administered orally to the
rats for thirty days. Rats (n = 48) were apportioned into 4 groups
of 12 each by following the sequence as 1st group (untreated)
was nominated as control group. Group 2nd was intoxicated with
only CP (10 mg/kg) on 1st day of the experiment (Bishr et al.,
2019). Group 3rd was given the combine dose of CP (10 mg/kg)
and tamarixetin (50 mg/kg) during the experiment. Group 4th
was given only tamarixetin (50 mg/kg bw) by mixing in normal
saline. The whole dose regimen was followed for seven days and
on the eighth day rats were decapitated to collect blood sample
by utilizing (retro-orbital venous plexus) after completion of exper-
iment. One of the kidneys was preserved in solution of 10% forma-
lin and other was collected in plastic bag for biochemical assays
while stored at �80 �C.
2.4. Biochemical analysis of antioxidant enzymes

The method demonstrated by Aebi (1984) was employed to
evaluate the activity of CAT. SOD activity was evaluated by the pro-
tocol illustrated by Kakkar et al. (1984). Lawrence & Burk method
was used to determine the activity of GPx (Lawrence and Burk,
1976). Moron et al. (1979) methodology was used to assess the
level of GSH. The procedure outlined by Younis et al. (2016) was
compiled in order to determine activity of GST. The protocol
explained by Carlberg and Mannervik (1975) employed to evaluate
GSR activity.
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2.5. Analysis of ROS and MDA

Level of MDA was assessed via the protocols outlined by
Ohkawa et al., 1979. The approach proposed by Hayashi et al.
2007 was used to determine the level of ROS.

2.6. Evaluation of kidney markers

Levels of urea, creatinine as well as creatinine clearance were
evaluated by employing Standard Randox laboratory kits (County
Antrim, UK).

2.7. Determination of KIM1 and NGAL

KIM1 and NGAL levels were evaluated by employing Quantikine
ELISA kits manufactured by R & D system, Co-Ltd. Changning,
China.

2.8. Analysis of apoptotic markers

Concentrations Apoptotic markers (Caspase-3, Caspase-9, Bax
as well as Bcl-2) were analysed by standard ELISA lab kits from
Cusabio technology LLC in Houston, TX, in compliance to the
instructions of manufacturers.

2.9. Evaluation of inflammatory markers

Inflammatory markers (TNF-a, IL-6, NF-kB, IL-1b levels and
COX-2) were assessed by standard ELISA lab kits from Shanghai-
YL-Biotech Co. Ltd. as per the instructions of manufacturer.

2.10. Histopathological assessment

A solution of 20% formaldehyde was used to fix the samples.
Following the fixation, samples were fixed in blocks after being
paraffin-embedded. Slides were prepared by fixing thin pieces
(3–4 mm) of sample, Haemotoxylin was used to stained the sample
and analyse at 40x under the light microscope.

2.11. Statistical analysis

Values (results) were displayed as Mean + SEM. ANOVA (one
way), to compare the groups Tukey’s test were employed by Mini-
tab software while P < 0.05 was set as the level of significance.
3. Results

3.1. Protective effects of tamarixetin on the activity of antioxidant
enzymes

Results depicted (Table 1) that administration of only CP
remarkably (P < 0.05) lowered the activity of anti-oxidant enzymes
(CAT, GSR, SOD, GPx, GST) as well as level of GSH, in contrary to the
untreated group. Combined administration of CP + TM substan-
tially increased the level of antioxidants as compare to only CP
administrated group. Administration of TM only demonstrated
antioxidant enzymes activity as in the untreated group.

3.2. Protective effects of tamarixetin on ROS and MDA levels

Kidneys of CP intoxicated group exhibited significant upsurge
(P < 0.05) in the levels of ROS and MDA in contrary to untreated
group. Administration of CP + TM lowered the level of ROS and
MDA. However, treatment of only tamarixetin, maintained the



Table 1
Effects of Cisplatin and Tamarixetin on antioxidant enzymes (CAT, GPx, SOD, GSR, GST, GSH).

Groups CAT (U/mg protein) GPx (U/mg protein) SOD (U/mg protein) GSR (U/mg protein) GST (U/mg protein) GSH (mg/dl)

Control 8.86 ± 0.64a 19.70 ± 0.59a 7.22 ± 0.22a 5.39 ± 0.32a 25.92 ± 1.23a 16.25 ± 1.55a

CP 4.72 ± 0.33b 7.70 ± 0.82c 3.43 ± 0.22c 1.93 ± 0.18c 9.64 ± 0.85c 6.06 ± 0.54b

CP + TM 7.87 ± 0.29a 14.37 ± 1.07b 5.17 ± 0.32b 3.61 ± 0.27b 21.61 ± 0.87b 13.36 ± 0.88a

TM 8.89 ± 0.69a 19.76 ± 0.94a 7.24 ± 0.24a 5.43 ± 0.33a 26.51 ± 1.90a 16.49 ± 2.11a

Values exhibiting dissimilar superscripts vary substantially from other groups.
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ROS as well as MDA levels close to the values of control group
(Table 2).
Table 2
Effects of CP and TM on ROS and MDA levels.

Groups ROS (lmol/g tissue) MDA (nmol/g tissue)

Control 1.37 ± 0.16c 0.78 ± 0.10c

CP 7.98 ± 0.61a 2.99 ± 0.12a

CP + TM 2.47 ± 0.42b 1.14 ± 0.11b

TM 1.35 ± 0.16c 0.73 ± 0.11c

Values exhibiting dissimilar superscripts vary substantially from other groups.

Table 3
Effects of CP and TM on Urea, Creatinine and Creatinine clearance.

Groups Urea (mg/dl) Creatinine (mg/
dl)

Creatinine Clearance (ml/
min)

Control 14.27 ± 1.49c 1.29 ± 0.06c 1.75 ± 0.12a

CP 39.96 ± 3.90a 3.93 ± 0.21a 0.37 ± 0.08c

CP + TM 22.78 ± 1.33b 2.19 ± 0.170b 1.02 ± 0.11b

TM 14.11 ± 1.11c 1.28 ± 0.05c 1.77 ± 0.14a

Values exhibiting dissimilar superscripts vary substantially from other groups.

Table 4
Effects of CP and TM on KIM-1 and NGAL.

Groups KIM-1 (mg/ml) NGAL (ng/day)

Control 0.26 ± 0.05c 0.55 ± 0.07c

CP 1.81 ± 0.10a 2.40 ± 0.16a

CP + TM 1.10 ± 0.07b 1.01 ± 0.12b

TM 0.24 ± 0.06c 0.53 ± 0.07c

Values exhibiting dissimilar superscripts vary substantially from other groups.

Table 5
Effects of CP and TM on Caspase-3, Bax, Bcl-2 and Caspase-9.

Groups Caspase-3 (pg/g tissue) Bax (pg/g tissue

Control 1.33 ± 0.09c 2.47 ± 0.11c

CP 13.94 ± 0.82a 7.85 ± 0.73a

CP + TM 3.29 ± 0.23b 4.06 ± 0.09b

TM 1.28 ± 0.13c 2.43 ± 0.10c

Values exhibiting dissimilar superscripts vary substantially from other groups.

Table 6
Effects of CP and TM on NFkB, IL-1 b, IL-16, TNF-a, COX-2.

Groups NFkB (ng/g tissue) IL-1b (ng/g tissue) TN

Control 15.83 ± 1.95c 29.68 ± 2.54c 6.5
CP 73.41 ± 2.15a 88.80 ± 3.51a 23
CP + TM 29.74 ± 3.18b 41.20 ± 4.00b 13
TM 15.63 ± 1.75c 29.41 ± 2.33c 6.5

Values exhibiting dissimilar superscripts vary substantially from other groups.
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3.3. Palliative effects of tamarixetin on kidney function markers

CP administrated group showed noticeable (P < 0.05) increased
in the levels of urea, creatinine, on the other hand the level of cre-
atinine clearance was decreased. Co-treatment of CP + TM lowered
the levels of urea and creatinine while raised the serum creatinine
clearance as compare to CP treated rats. Administration of TM only
showed serum values remained similar as in untreated group
(Table 3).

3.4. Palliative effects of tamarixetin on renal function markers

Only CP administrated group showed considerable (P < 0.05)
increase in the levels of KIM1 as well as NGAL in contrast with con-
trol group. The group administrated with CP + TM showed reduc-
tion in aforementioned markers. However, administration of TM
only maintained the levels of both above mentioned cytokines as
compare to untreated group (Table 4).

3.5. Palliative effects of tamarixetin on Caspase-3, Caspase-9, Bax and
Bcl-2

Results presented (Table 5) elaborates that only CP treated
group manifested remarkable (P < 0.05) elevation in caspase-3,
Bax as well as caspase-9, whereas reduced Bcl-2 level in contrary
to control group. Combined administration of CP + TM decreased
the concentration of aforementioned pro-apoptotic markers while
enhanced level of Bcl-2. Treatment of TM only kept the same levels
of all these markers as in the untreated group (Table 5).

3.6. Palliative effects of tamarixetin on inflammatory markers

Administration of CP notably (p < 0.05) increased the activity of
inflammatory cytokines (TNF-a, IL-6, NF-kB, IL-1b levels and COX-
2). Combined treatment of CP + TM noticeably (P < 0.05) lowered
the levels of above-mentioned inflammatory cytokines. TM admin-
) Bcl-2 (ng/g tissue) Caspase-9 (pg/g tissue)

18.05 ± 1.32a 3.34 ± 0.20c

4.50 ± 0.50c 19.91 ± 1.71a

11.69 ± 1.45b 9.84 ± 1.25b

17.36 ± 1.60a 3.30 ± 0.20c

F-a (ng/g tissue) COX-2 (ng/g tissue) IL-16 (ng/g tissue)

9 ± 0.38c 23.91 ± 2.67c 7.76 ± 0.77c

.83 ± 2.82a 78.04 ± 4.18a 25.31 ± 2.19a

.44 ± 2.03b 33.84 ± 2.71b 11.48 ± 0.84b

3 ± 0.36c 23.51 ± 3.10c 7.71 ± 0.75c
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istrated group showed no significant difference from the values of
untreated group (Table 6).

3.7. Palliative effect of tamarixetin on renal tissues histology

Histopathological evaluations revealed that control group and
TM treated group exhibited normal histology of renal tissues.
Structure of glomeruli, distal as well as convoluted tubules and
Bowman’s capsule was normal in these groups. However, CP trea-
ted group exhibited histopathological irregularities in parenchyma
cells, reduction in glomerular filtration rate, appearance of cortical
segments on Malpighian tubules, reduction in reabsorption from
proximal/distal convoluted tubules and collecting duct and accu-
mulation of necrotic cells. Co-treated group showed significant
protection of renal tissues against CP induced renal damages
(Fig. 1).
4. Discussion

In animals, kidneys are vital organs for the removal of metabolic
waste from the body (Jensen-Jarolim et al., 2013). Reactive oxygen
species (ROS) and oxidative stress (OS) are regarded to be the main
causes of several lethal disease in living system including acute
kidney injury (Dennis and Witting, 2017). The antioxidant
enzymes (CAT, GPx, SOD, GSR, & GST) activity and level of GSH
(A)
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Fig. 1. Histopathological examination of renal tissues. H&E stain; 40X (A) Group I; No
tubular dilation and vacuolization of tubular epithelial cells (C) Cisplatin + Tamarixet
Tamarixetin supplemented group; Glomeruli and tubules seem normal. BS, Bowman Sp
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was decreased while level of ROS and MDA increased after CP
treatment. It is revealed that generation of ROS induces oxidative
stress which ultimately elevates the level of MDA (Talas et al.,
2014). An investigation designed by Widowati et al. (2022) elabo-
rated that oxidative stress is the core factor behind nephrotoxicity.
In our study, Co-treatment of CP + TM enhanced the antioxidant
enzymes activity as well as diminished the ROS & MDA concentra-
tions in kidney due to its polyphenolic structural configuration.
Our results are in accordance with the investigation executed by
Fan et al. 2019, who documented that administration of TM
showed palliative action against cardiac hypertrophy by decreas-
ing ROS production, thus showing its anti-oxidative ability.

Urea, creatine as well as creatinine clearance are designated
kidney function markers which are by-product of metabolism.
Levels of Urea and creatinine were noticeably elevated as a result
of intoxication caused by CP treatment, while creatinine clearance
was significantly decreased. Renal intoxication caused by CP is
characterized by considerably impaired renal activity, shown by
raised serum creatinine & concentration of urea in the blood
(Farooqui et al., 2017). In addition, elevated concentration of blood
urea & serum creatinine following decreased in the level of crea-
tinine clearance are indicators of severe oxidative renal damages
(Khan et al., 2010). Our investigation is in compliance with the
experimented intended by Ijaz et al. (2021) who demonstrated that
CP intoxication disrupts the urine & serum profile. However, our
(B)
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rmal glomeruli and tubules (B) Cisplatin intoxicated group; necrosis in glomeruli,
in Co-administrated group; normal glomeruli, rare atrophic tubules in cortex (D)
ace; PT, Proximal convoluted tubules; DT, Distil convoluted tubules.
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examination revealed the reno-protective role of tamarixetin by
regulating urine and serum profile.

NGAL & KIM1 concentration in (CP treated rats) were increased
substantially. These are most prominent indicators behind acute
kidney injury (Lei et al., 2018). After damage to kidney, NGAL is fre-
quently released into the blood stream and causes damages to
other parts of body and eliminates via urine (Yim, 2015). Levels
KIM1 and NGAL in kidney tissues were noticeably elevated when
exposed to cisplatin (platinum-based medicines) instigating sever
renal damages (Abdelsalam et al., 2018). Our investigations
revealed that co-treated group (CP + Tamarixetin) maintained the
concentration of KIM1 & NGAL in the renal tissues which previ-
ously endorsed by the study of shin et al. (2015) while the group
which was treated with only tamarixetin showed marvellous cura-
tive properties by diminishing the levels aforesaid markers.

Current study revealed that CP administration escalated pro-
apoptotic (Bax, caspase-9 & caspase-3) marker’s concentration
while lowered the concentration of Bcl-2 (anti-apoptotic protein).
Moreover, cytochrome C transfer from the mitochondrial mem-
brane to the cytoplasmic matrix is prompted by decreased level
of Bcl-2 & higher concentration of Bax which in turn stimulate
the activation of caspase-3 and caspase-9 which led towards acute
apoptotic response (Katiyar et al., 2005). Therefore, TM administra-
tion attenuated damages due to considerable regulations in afore-
said irregularities which is near to the findings of Lei et al. (2015).

In the existing investigation, administration of CP showed
increased concentration of the inflammatory cytokines activity in
renal tissues. CP administration significantly increased levels of
TNF-a, IL-6, NF-kB, IL-1b, and COX-2 which ultimately showed
acute inflammatory responses (Rehman et al., 2014). It is docu-
mented that natural compounds have ability to degrade I-jB
which is the inhibitor of NF-jB ultimately reduce oxidative stress
owing to its antioxidative activity (Salmas et al., 2017). Treatment
of CP + tamarixetin remarkably decrease the concentration of
above-mentioned markers. These results validated the anti-
inflammatory role of TM as previously investigated during in-
vitro and in-vivo analysis by Kaleemann et al. (2011).

According to histopathological evaluations, the control and TM
(only) treated group showed normal histology of renal tissues
while CP treated group showed, tubular dilatation, inflammation
of epithelial cells, peritubular infiltration, and tubular necrosis.
Acute kidney injury prompted by CP has remarkable inflammatory
influence on renal tissues, proximal tubular damages, oxidative
stress, and vascular injuries (Ozkok and Edelstein, 2014). However,
in the co-treated group, tamarixetin prevented all the aforemen-
tioned renal damages.
5. Conclusion

The current investigation demonstrated that tamarixetin have
ability to protect the kidneys against CP-induced damages. These
findings demonstrated that tamarixetin showed protective effect
against oxidative stress and apoptosis, which are the two pivotal
contributors in CP-induced kidney injury. The disruption in the
degree of antioxidants, renal damage biomarkers, apoptotic mark-
ers and inflammatory cytokines as well as histopathological
impairments was successfully prevented by tamarixetin adminis-
tration. Therefore, reno-protective capability of tamarixetin could
be attributed to its anti-oxidant as well as anti-apoptotic potential.
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