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Continuous dynamical systems are attempted to solve via proposed third order convergent numerical
solver. The solver is shown to possess third order convergence on the basis of containing O h4

� �
term

in the leading coefficient of the local truncation error which has further been employed for the local
and global error bounds whereas its increment function is found to be Lipchitz continuous.
Consistency of the solver has extensively been discussed using Taylor’s series expansion. The necessary
and sufficient conditions for the solver to be stable have been proved accompanying the linear stability
function obtained via Dahlquist test problem. In order to illustrate the performance of the solver, few sca-
lar and vector-valued dynamical systems of both linear and nonlinear nature have numerically been
solved in comparison to two well-known numerical solvers having same order of convergence as that
of the proposed solver. Whereupon, the proposed solver is found to contain the smallest errors. The anal-
ysis of comparison is based upon three kinds of errors; namely, maximum absolute global relative error,
absolute relative error determined at the final nodal point along the integration interval and the ‘2-error
norm. MATLAB software having version 9.3.0.713579 (R2017b), using Intel(R) Core(TM) i3-4500U proces-
sor running on 1.70 GHz has been used.
� 2019 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Mathematical models containing ordinary differential equa-
tions (ODEs) play a vital role in various fields of study. Areas
including engineering, applied mathematics, bio-medical, statisti-
cal mechanics, quantum mechanics, economics, image processing,
control theory, and many others are not considered to be complete
without inclusion of subjects on differential equations and their
applications in respective fields (Amann, 2011; Butcher, 2016;
Hirsch et al., 2012; Jordan and Peter, 1999; Mermoud and
Lausanne, 2015; Shampine, 2018; Stickler and Ewald, 2014;
Teschl, 2000). Unfortunately, large quantity of such physical and
natural models have no closed form solutions due to one or other
type of non-linearity associated with the models.

Due to the universal acceptance of the importance of such
mathematical models, many researchers have devised new solvers
to get the desired solutions of the models under their study
whereas others have substantially improved the performance of
many existing solvers with regard to the convergence order, com-
putational complexity, stability, consistency and error bounds.

In order to solve the scalar and continuous dynamical systems,
the authors in (Ma and Simos, 2017; Rabiei and Fudziah, 2012;
Rabiei et al., 2012a; Rabiei et al., 2012b) have improved the effi-
ciency for the well-known family of explicit linear Runge-Kutta
numerical solvers by decreasing the number of slope evaluations
in its each application while maintaining the convergence order
whereas others in (Qureshi and Ramos, 2018; Ramos et al., 2010;
Ramos and Jesús, 2008) have devised new nonlinear numerical sol-
vers to deal with the autonomous and non-autonomous continu-
ous dynamical systems having singular or singularly perturbed
solutions at some point of the time interval 0; T½ �. Rational block
and trigonometrically fitted solvers have recently been proposed
for the efficient solutions of initial value problems having oscilla-
tory solutions, in particular (Ehigie et al., 2017; Jesús et al., 2017;
Jesús et al., 2008; Kalogiratou, 2016; Tsitouras and Simos, 2018).
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Apart from this, the most recent work is discussed in (Bakodah,
2018; Liu, 2018; Moutsinga et al., 2018; Neštický et al., 2017;
Nuruddeen and Nass, 2017; Qureshi and Emmanuel, 2018;
Qureshi et al., 2018; Raza and Khan, 2019).

There are many reasons for one numerical solver to become
superior over the other. One of the major reasons is the conver-
gence order (a numerical solver is of order r if the error is proved
to have O hr� �

as h ! 0 for a constant time step length h > 0) which
shows the rate at which the numerical error in an application of a
constant time step length solver along 0; T½ � decreases as a conse-
quence of decreasing the time step length h. It is therefore a
numerical solver having first order convergence would experience
halving of the numerical error when the time step length h is
halved. Likewise, second order convergent numerical solver would
yield the error being multiplied by a factor of 1=22 when h is
halved.

Nevertheless, the numerical errors observed in practice could
be different (worse or better) from those predicted and it is
because the convergence orders are asymptotic results and apply
only when h ! 0. There is always an asymptotic error constant
that depends on the solver and the equation which decides the size
of the true error. This is the reason for two numerical solvers of
same convergence order to have entirely different behavior in
errors when they are used for solving the same initial value
problem.

The present study aims to propose a new numerical solver hav-
ing third order convergence. The proposed solver is of explicit lin-
ear single-step structure but the inclusion of partial derivative with
respect to the second variable y tð Þ of the slope umakes it well com-
parable with existing third order convergent solvers of similar
characteristics. Thus, it can be included in the family of explicit
single-step numerical solvers which are considered to be cost
effective and easy to be implemented within a computer code.
2. Derivation of the proposed numerical solver

Suppose that a well-defined initial value problem is given as

dy tð Þ
dt

¼ u t; y tð Þð Þ; y t0ð Þ ¼ y0; y; u t; y tð Þð Þ 2 R; t 2 0; T½ � � R; T > 0:

ð1Þ
Further, it is assumed that the problem (1) possesses a unique

continuously differentiable solution y tð Þ where y tið Þ � yifor yiis
taken to be the approximation to the analytical (exact) solution
y tð Þ at t ¼ tiover the associated interval of integration 0; T½ � with
h ¼ T=n; i ¼ 0;1; . . .nð Þas a fixed time step length used at each step
of the integration.
c1 þ c2 þ c3 ¼ 1 p2c3q32 ¼ 1
6 p2c2 þ p3c3 ¼ 1

2
1
2 p2

2c2 þ p2
3c3

� � ¼ 1
6 c2q21 þ c3q31 þ c3q32 ¼ 1

2 p2c2q21 þ p3c3q31 þ p3c3q32 ¼ 1
3

c2r21 þ c3r31 þ c3q21q32 ¼ 1
6

1
2 c2q2

21 þ c3q2
31 þ c3q2

32

� �þ c3q31q32 ¼ 1
6 :
A numerical solver having explicit nature for single-step struc-
ture is generally formulated as:

yiþ1 ¼ yi þ hUu ti; yi;hð Þ; ð2Þ
where Uu ti; yi;hð Þ can be expressed in terms of Taylor series expan-
sion of an arbitrary function u t; yð Þ. Moreover, the Taylor series
expansion of y ti þ hð Þ is represented as:

y ti þ hð Þ ¼ y tið Þ þ huþ 1
2!

h2 ut þ uuy
� �

þ 1
3!

h3 utt þ 2uuty þ u2uyy þ uu2
y þ utuy

� �
þ 1
4!

h4 uttt þ 3uutty þ 3u2utyy þ 5uuyuty þ 3ututy
�

þu3uyyyþ4u2uyuyy þ 3uutuyy þ uu3
y þ utu2

y þ uttuy

�
þ O h5

� �
: ð3Þ

Taking into consideration the general structure for the single-step
numerical solver, we formulated the required solver as follows:

yiþ1 ¼ yi þ h c1m1 þ c2m2 þ c3m3ð Þ: ð4Þ
The slopes in (4) are structured as follows:

m1 ¼ u ti; yið Þ;
m2 ¼ u ti þ p2h; yi þ hm1 q21 þ hr21uy

� �� �
;

m3 ¼ u ti þ p3h; yi þ h q31m1 þ q32m2ð Þ þ h2r31m1uy

� �
:

ð5Þ

Expanding m2 and m3 in Taylor’s series, we obtain

m2 ¼ uþ uuyq21 þ utp2

� �
hþ

1
2uyyu2q2

21 þ utyup2q21 þ uu2
yr21 þ 1

2uttp2
2

� �
h2

þ 1
6uyyyu3q3

21 þ 1
2utyyu2p2q

2
21 þ uyyu2uyq21r21

�
þ1

2uttyup2
2q21 þ utyuuyp2r21 þ 1

6utttp3
2

�
h3 þ O h4

� �
:

m3¼uþ uyuq32þuyuq31þutp3

� �
hþ 1

2uyyu2q2
32þuyyu2q31q32

�
þ1

2uyyu2q2
31þ

utyup3q32þutyup3q31þu2
yur31þ1

2uttp2
3þu2

yuq21q32þutuyp2q32

�
h2

þ 1
2uyyyu3q31q

2
32þ1

2uyyyu3q2
31q32þ1

2utyyu2p3q
2
32þ1

2utyyu2p3q
2
31

�
þ1

2uttyup2
3q32þ1

2uttyup2
3q31þ1

2uyu2uyyq2
21q32þu3

yuq32r21

þuyuutyp2q21q32þ1
2uyuttp2

2q32þ1
6uyyyu3q3

32þ1
6uyyyu3q3

31

þutyyu2p3q31q32þuyyu2uyq31r31þutyuuyp3r31þuyu2uyyq21q31q32

þutuuyyp2q31q32þ1
6utttp3

3þuyu2uyyq21q
2
32þutuuyyp2q

2
32

þuyuutyp3q21q32þututyp2p3q32þuyyu2uyq32r31
�
h3þO h4

� �
:

Substituting the result of m1;m2 and m3 into 4ð Þ and equating the

coefficients of powers of h up to h3 with that of (3), one obtains:
This non-linear system contains eight equations and ten variables
which has been solved using MATLAB to obtain one of its optimal
solutions and finally we obtained the following numerical solver
with third order accuracy:
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m1 ¼ u ti; yið Þ;
m2 ¼ u ti þ 2

3h; yi þ hm1
2
3 þ h 1

2uy
� �� �

;

m3 ¼ u ti þ 2
3 h; yi þ h � 5

6m1 þ 3
2m2

� �� h2 7
4m1uy

� �
;

yiþ1 ¼ yi þ h
12 3m1 þ 7m2 þ 2m3ð Þ:

ð6Þ
3. Analysis for the proposed solver

For the required analysis, some definitions and the related the-
orems have been stated.

3.1. Consistency

Definition 1. A numerical solver used for finding the solution of an
initial value problem in ODEs is said to be consistent if

lim
h!0

Uu t; y;hð Þ ¼ u t; y tð Þð Þ; ð7Þ

where Uu is the increment function for the numerical solver.

The increment function of the proposed solver is as follows:

Uu t; y;hð Þ ¼ 1
4

3m1 þ 7m2 þ 2m3ð Þ; ð8Þ

which clearly satisfies the condition (7) of the above definition for
the consistency. Thus, the proposed solver is found to be consistent
with the given initial value problem (1).

3.2. Stability

Theorem 1. Suppose that k0; k1; . . . ; kn be real numbers satisfying

jkjþ1j 6 1þ að Þjkjj þ b; a > 0; b P 0; j ¼ 0;1;2; . . .n� 1: ð9Þ
Thus,

jknj 6 exp nað Þjk0j þ exp nað Þ � 1
a

b: ð10Þ
Proof. Using the assumption presented in the above Theorem 1,
we can write the following:

jk1j 6 1þ að Þjk0j þ b;

jk2j 6 1þ að Þ2jk0j þ 1þ að Þbþ b;

jk3j 6 1þ að Þ3jk0j þ 1þ að Þ2bþ 1þ að Þbþ b;

..

.

jknj 6 1þ að Þnjk0j þ 1það Þn�1
a b;

6 exp nað Þjk0j þ exp nað Þ�1
a b; for a > �1; 0 < 1þ a 6 exp að Þ:

ð11Þ
Theorem 2. Suppose that yiþ1 and ŷiþ1 be two numerical solutions to
the ODE y0 tð Þ ¼ u t; y tð Þð Þ produced by a numerical solver with pre-
scribed initial conditions y t0ð Þ ¼ y0 and ŷ t0ð Þ ¼ ŷ0 respectively such
that jy0 � ŷ0j < �; � > 0. The following condition

jyiþ1 � ŷiþ1j 6 Mjy0 � ŷ0j; M > 0; ð12Þ
is considered to be the necessary and sufficient condition for the
numerical solver to be stable.
Proof. Using the above Theorem 2, the proposed solver would give
us the following:
yiþ1 � yi ¼ hUu ti; yi;hð Þ;
ŷiþ1 � ŷi ¼ hUu ti; ŷi;hð Þ: ð13Þ

Using the triangle inequality, we have

jyiþ1 � ŷiþ1j 6 jyi � ŷij þ hjUu ti; yi;hð Þ �Uu ti; ŷi;hð Þj;
6 jyi � ŷij þ hjyi � ŷij;
¼ 1þ bLh� �

jyi � ŷij;

¼ 1þ bLh� �i
jy0 � ŷ0j:

ð14Þ

Employing the Theorem 1 while taking a ¼ bLh and b ¼ 0, we obtain
the following

jyiþ1 � ŷiþ1j 6 Mjy0 � ŷ0j; M ¼ exp bLhi� �
: ð15Þ

This confirms the proof for the proposed solver to be stable.

Further, the Dahlquist (Dahlquist, 1956) test problem
y0 tð Þ ¼ ly tð Þ; y 0ð Þ ¼ 1; Re lð Þ < 0 gives the following stability func-
tion for the proposed solver.

W zð Þ ¼ 1þ 11
12

zþ 1
2
z2 þ 1

6
z3 þ 1

8
z4; z ¼ lh: ð16Þ
3.3. Error analysis

Theorem 3. Suppose that ti; yið Þ and ti; ŷið Þ be any two points in the
region S defined by S ¼ t; yð Þ 2 R2j t0 6 t 6 tn;�1 < y < 1� �

, and
that u is a Lipschitz continuous function on S such that
ju ti; yið Þ � u ti; ŷið Þj 6 Ljyi � ŷij, then the increment function U is

Lipschitz continuous, and jU ti; yi;hð Þ �U ti; ŷi;hð Þj 6 bLjyi � ŷij where

L and bL are, respectively, the Lipschitz constants for u and U.
Proof. Employing the assumptions above, we get the following

jm1 � m̂1j 6 Ljyi � ŷij: ð17Þ

jm2 � m̂2j 6 1þ 2
3
hLþ 1

2
h2L2

� 	
jyi � ŷij;*juyj 6 L: ð18Þ

jm3 � m̂3j 6 1þ 2
3
hL� 3

4
h2L2 þ 3

4
h3L3

� 	
jyi � ŷij: ð19Þ

Thus, the increment function U for the proposed solver becomes

jUu t; y; hð Þ �Uu t; ŷ; hð Þj 6 bLjyi � ŷij; ð20Þ

where bL ¼ 3
4 þ 1

4 Lþ 1
2hLþ 1

6h
2L2 þ 1

8h
3L3.

This completes the proof for the increment function Uu for the
proposed solver to be Lipchitz continuous.
3.3.1. Error bounds
.

Definition 2. Suppose that y tið Þ be the analytical (exact) solution of
the underlying initial value problem at t ¼ t0 and yi be its corre-
sponding numerical (approximate) solution obtained via a numerical
solver. The global error Xi at t ¼ ti is defined as:

Xi ¼ y tið Þ � yi: ð21Þ
Definition 3. The local error Niþ1 at t ¼ tiþ1 for a numerical solver
like the one being studied in the present study is defined as:

Niþ1 ¼ y tiþ1ð Þ � yiþ1; ð22Þ
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where it should be assumed that the history of the solver is free
from any error, that is, y tið Þ ¼ yi.
Definition 4. The local error Niþ1 of a numerical solver with order
of accuracy r is also defined as

Niþ1 ¼ W ti; yið Þhrþ1 þ O hrþ2
� �

; ð23Þ

where the first term in Niþ1 is known as the leading local truncation
error.

In order to obtain the local truncation error of the proposed
integrator, a usual functional associated to the integrator has been
considered, that is given below:

N v tð Þ; hð Þ ¼ v t þ hð Þ � yiþ1; ð24Þ
where v tð Þ is an arbitrary function defined along the integration
interval 0; T½ � and differentiable as many times as required. Having
expanded it into Taylor series about t and collecting the terms in h,
the local truncation error under local assumption of the following
form has been obtained that ensures at least third order accuracy
of the proposed solver:

Niþ1 ¼ h4

216
3uutty þ 3ututy þ u2utyy þ uutuyy� uuyuty � uttuy
�

�18uu3
y þ 9utu2

y þ u3uyyy þ uttt

�
þ O h5

� �
: ð25Þ

Lotkin in (Lotkin, 1951) introduced the concept of determining the
local bounds for the function u and its partial derivatives for
t 2 0; T½ � and y 2 �1;1ð Þ as follows:

ju t; yð Þj < P; j @
lþmu

@tl@um
j < Qlþm

Pm�1 ; lþmð Þ 6 r; ð26Þ

where P and Q are some positive real numbers and r is the order of
accuracy of the numerical solver. Using this idea of the Lotkin’s
bounds, a bound for the leading local error of the proposed solver
is determined to be as follows:

jW ti; yið Þj < 47
216

h4PQ3: ð27Þ

A bound for the leading local error of a single step explicit linear
numerical solver is also considered to be a bound for its local trun-
cation error. Using the fact, the local error bound for the proposed
solver is finalized as follows:

jNiþ1j < Ah4
; A ¼ 47

216
PQ3: ð28Þ
3.4. Convergence

Theorem 4. The convergence for a numerical solver is guaranteed if
for every initial value problem y0 tð Þ ¼ u t; y tð Þð Þ; y t0ð Þ ¼ y0 with u
being a Lipchitz continuous function, one obtains

lim
h!0

sup
06i6N

jjy tið Þ � yijj ! 0;8 t > 0: ð29Þ
Proof. Let us consider the proposed solver to be

yiþ1 � yi � hUu ti; yi;hð Þ ¼ 0: ð30Þ
Using the definition of the local error in conjunction with the above
theorem (4), one obtains

jXiþ1j 6 jXij þ hjUu ti; y tið Þ; hð Þ �Uu ti; yi;hð Þj þ jNij; ð31Þ
where Xi is the global error at t ¼ ti.

Employing the Theorems 1 and 3, we obtain
jXiþ1j 6 1þ hbL� �
jXij þ jNij: ð32Þ

Suppose that R ¼ sup06i6NjNij, then from Theorem 1 one can obtain

jXij 6 exp ibLh� �
jX0j þ RbLh exp ibLh� �

� 1
� �

: ð33Þ

This finally yielded the global error bound for the proposed solver
on the basis of having X0 ¼ 0 and h ¼ ti=i.

jXij 6 RbLh exp bLti� �
� 1

� �
; ð34Þ

where R is the local error bound as found in (28).
Thus, the convergence of the proposed solver is verified for

lim
h!0

jXij ¼ 0 ) lim
h!0

jy tið Þ � yij ¼ 0: ð35Þ
4. Numerical experiments

Example 1. As shown in the Table 1 where the proposed solver
shows the three-order decreasing behavior in the maximum abso-
lute global relative errors Emax ¼ max06i6Tjy tiþ1ð Þ � yiþ1j

� �
and in

the errors computed at final nodal point E t ¼ Tð Þ ¼ jy Tð Þ � yNjð Þ
over 0; T½ � for every one-order decrease in the time step length h.

The ‘2-error norm ‘2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

k¼0jy tiþ1ð Þ � yiþ1j2
q� 	

is shown in the

last row. In addition, the computed errors are smallest in every
case upon comparison with Heun and RK3HM (Wazwaz, 1990).

y0 tð Þ ¼ ty tð Þ3 � y tð Þ; y 0ð Þ ¼ 1; t 2 0;2½ �
y tð Þ ¼ 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2þ4tþ2exp 2tð Þ
p ð36Þ

Example 2. The observation for the linear problem with expo-
nentially increasing solution based upon the Table 2 is more or less
same as was in the former example.

y0 tð Þ ¼ t2y tð Þ; y 0ð Þ ¼ 1; t 2 0;1½ �
y tð Þ ¼ exp t3=3

� � ð37Þ

Example 3. The third initial value problem is structured in the
form of a well-known nonlinear first order Riccati ODE. The pro-
posed solver as shown in the Table 3 provides smallest magnitude
of errors when compared with Heun and RK3HM methods. With
one-order decrease in the time step length h, there are three-
order decrease in the maximum absolute global relative errors
and in the absolute relative errors determined at the final nodal
point over 0;0:5½ �.

y0 tð Þ ¼ 2cos2 tð Þ�sin2 tð Þþy2 tð Þ
2 cos tð Þ ; y 0ð Þ ¼ �1; t 2 0;0:5½ �

y tð Þ ¼ sin tð Þ � 1
0:5 sin tð Þþcos tð Þ :

ð38Þ

Example 4. Here, the errors are computed for each unknown
function x tð Þ and y tð Þ of the system as shown in the Tables 4–6
where decreasing behavior is clearly seen for all the solvers with
the proposed solver having the smallest errors almost for every
time step length h.

x0 tð Þ ¼ x tð Þ � 10y tð Þ; x 0ð Þ ¼ 0;
y0 tð Þ ¼ 15x tð Þ þ y tð Þ; y 0ð Þ ¼ 1

x tð Þ ¼ �
ffiffi
2
3

q
exp tð Þ sin 5

ffiffiffi
6

p
t

� �
y tð Þ ¼ exp tð Þ cos 5

ffiffiffi
6

p
t

� �
:

ð39Þ

Example 5. The angular displacement x tð Þ for an undamped
pendulum with a driving force f tð Þ ¼ cos 4tð Þ can be modeled in
terms of a second order ODE as shown below. (See Fig 1)



Table 1
Maximum absolute global relative errors on 0;2½ � (first row), absolute relative errors at t ¼ 2 (second row), and ‘2-error norm (third row) for the Example-1.

h 10�1 10�2 10�3 10�4

Heun 1.3048e�04 1.3048e�04
4.2260e�04

1.2425e�07 1.2425e�07
1.2441e�06

1.2352e�10 1.2352e�10
3.9015e�09

1.5984e�13 1.5970e�13
1.5036e�11

RK3HM 6.6502e�04 6.6502e�04
2.2030e�03

5.9464e�06 5.9464e�06
6.0417e�05

5.9024e�08 5.9024e�08
1.8898e�06

5.8979e�10 5.8979e�10
5.9693e�08

Proposed 2.3861e�05 8.2608e�06
8.1340e�05

2.6075e�08 1.3196e�08
2.8703e�07

2.6284e�11 1.3664e�11
9.1636e�10

5.8001e�14 4.9848e�14
5.6582e�12

Table 2
Maximum absolute global relative errors on 0;1½ � (first row), absolute relative errors at t ¼ 1 (second row), and ‘2-error norm (third row) for the Example-2.

h 10�1 10�2 10�3 10�4

Heun 6.4697e�05 6.4697e�05
8.3000e�05

6.8998e�08 6.8998e�08
2.2883e�07

6.9400e�11 6.9400e�11
7.1171e�10

1.3111e�13 1.3110e�13
4.4807e�12

RK3HM 2.2335e�03 2.2335e�03
4.1400e�03

2.4716e�05 2.4716e�05
1.3587e�04

2.4971e�07 2.4971e�07
4.3116e�06

2.4998e�09 2.4998e�09
1.3639e�07

Proposed 2.0183e�05 2.0183e�05
2.8573e�05

1.8702e�08 1.8702e�08
7.7040e�08

1.8535e�11 1.8535e�11
2.3974e�10

7.3701e�14 7.3664e�14
2.6931e�12

Table 3
Maximum absolute global relative errors on 0; 0:5½ � (first row), absolute relative errors at t ¼ 0:5 (second row), and ‘2-error norm (third row) for the Example-3.

h 10�1 10�2 10�3 10�4

Heun 5.4644e�05 5.4644e�05
7.9834e�05

5.1896e�08 5.1896e�08
2.0943e�07

5.1603e�11 5.1603e�11
6.4899e�10

5.9233e�14 5.9172e�14
2.1293e�12

RK3HM 3.1635e�04 3.1635e�04
3.5014e�04

3.5178e�06 3.5178e�06
9.1739e�06

3.5477e�08 3.5477e�08
2.8310e�07

3.5505e�10 3.5505e�10
8.9296e�09

Proposed 6.4731e�06 3.2754e�06
1.0836e�05

8.3861e�09 1.9656e�09
4.2872e�08

8.3674e�12 2.1622e�12
1.3480e�10

1.2274e�14 1.2155e�14
4.2406e�13

Table 4
Maximum absolute global relative errors on 0;10½ � for each unknown in the Example-4.

h 10�1 10�2 10�3 10�4

Heun 9.3411e+01 2.0974e+01 8.1516e�01 3.9783e+00 1.8376e�03 4.0405e�02 1.9256e�04 6.1855e�05

RK3HM 2.5717e+07 4.1029e+07 1.5990e+01 9.2617e+01 1.3092e+00 2.4304e+01 1.3639e+00 4.2652e�01

Proposed 2.6958e+01 1.7027e+01 3.6696e�01 1.7810e+00 5.1390e�04 1.1450e�02 5.3860e�05 1.7773e�05
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Table 5
Absolute relative errors at t ¼ 10 for each unknown in the Example-4.

h 10�1 10�2 10�3 10�4

Heun 3.5681e+00 1.0769e+00 8.9169e�02 8.3767e�03 7.4569e�05 8.8139e�06 7.5540e�08 8.8355e�09

RK3HM 2.5571e+07 1.8402e+07 2.7526e+00 1.8522e�01 4.8144e�02 1.6401e�03 4.9232e�04 2.1372e�05

Proposed 1.3021e+00 1.0083e+00 4.5361e�02 9.2884e�03 2.8136e�05 9.5089e�06 2.8907e�08 9.5067e�09

Table 6
‘2-error norms on 0;10½ � for each unknown in the Example-4 where NaN stands for Not a Number.

h 10�1 10�2 10�3 10�4

Heun NaN 2.9205e+01 NaN 4.1695e+00 NaN 4.3136e�02 NaN 9.9840e�05

RK3HM NaN 4.9949e+07 NaN 9.6513e+01 NaN 2.6034e+01 NaN 6.9477e�01

Proposed NaN 2.1094e+01 NaN 1.8718e+00 NaN 1.2236e�02 NaN 2.7782e�05



Fig. 1. Stability region (shaded) for the proposed solver with jW zð Þj 6 1.

Fig. 2. Comparison of solvers with N ¼ 100 for the

Fig. 3. Comparison of solvers with N ¼ 100 for th
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x00 tð Þ þ sin xð Þ ¼ cos 4tð Þ; x 0ð Þ ¼ 1; x0 0ð Þ ¼ 0: ð40Þ
or

x01 tð Þ ¼ x2 tð Þ; x1 0ð Þ ¼ 1;
x02 tð Þ ¼ � sin x1ð Þ þ cos 4tð Þ; x2 0ð Þ ¼ 0;
t 2 0;20½ �:

ð41Þ

Due to the nonavailability of the exact solution for the above non-
linear dynamical system, we have made some graphical compar-
isons of the results obtained through the numerical solvers with
that of the numerical solution obtained through ode45 solver while
taking the integration steps N ¼ 100 and N ¼ 200. However, for
N ¼ 200 it is difficult to observe the discrepancy among the curves
for which a zooming plot at the bottom right corner for the Figs. 4
and 5 help to see the performance of the solvers over a small
domain. Upon closer examination of the Figs. 2–5, it can be seen
that the proposed and Heun solvers agree well with each other.

5. Conclusion

A numerical solver (6) having third order convergence has been
proposed in the present study. Its error analysis led us to compute

both local and global error bounds wherein the leading term O h4
� �

in the local truncation error ensures the third order convergence of
the solver. The increment function of the solver is shown to be
angular displacement x1 tð Þ in the Example – 5.

e angular velocity x2 tð Þ in the Example – 5.



Fig. 4. Comparison of solvers with N ¼ 200 for the angular displacement x1 tð Þ in the Example – 5.

Fig. 5. Comparison of solvers with N ¼ 200 for the angular velocity x2 tð Þ in the Example – 5.
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Lipchitz continuous and the linear stability analysis has been car-
ried out to get the stability region of the solver satisfying the con-
dition jW zð Þj 6 1.

Upon comparison with two well-known solvers (Heun and
RK3HM) having similar characteristics as that of the proposed sol-
ver, it has been observed that the latter yielded smallest errors in
both scalar and continuous dynamical systems of first and higher
order as shown in the Tables 1–6. Thus, the proposed solver can
be considered a member for the family of explicit linear single-
step numerical solvers used to solve various continuous dynamical
systems in the scientific fields.
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