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In this paper, a one phase Stefan problem with time and temperature dependent thermal conductivity is
investigated. With the help of similarity transformation and tau method based on shifted Chebyshev
operational matrix of differentiation, an approximate solution of the problem is discussed. For a partic-
ular case, an exact solution of the proposed problem is also discussed and it is used to check the accuracy
of the obtained approximate results. The effect of some parameters involved in the model on temperature
distribution and movement of phase front is also analysed.
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1. Introduction

It is known that many processes like melting, freezing, sediment
mass transport, tumour growth, etc. in the field of science and
industry involve moving boundary/boundaries, and these
problems are referred as moving boundary problems (or Stefan
problems). Initially, the Stefan problems are restricted to heat-
transfer problems and the formulations of these problems are
developed for constant thermal properties (Crank, 1984). But, the
Stefan problems are not only limited to heat-transfer problems
with constant thermal properties. Some Stefan problems with dif-
ferent thermal properties and other diffusion controlled transport
systems are discussed in Carslaw and Jaeger (1959), Hill (1986),
Voller et al. (2004), Zhou and Li-jiang (2015).

From the literature (Cho and Sunderland, 1974; Oliver and
Sunderland, 1987; Briozzo et al., 2007; Briozzo and Natale, 2015),
it can be seen that moving boundary problems with temperature
dependent thermal conductivity have been a fruitful research in

* Corresponding author.
E-mail addresses: ajaykumar.rs.apm12@iitbhu.ac.in (A. Kumar), aksingh.rs.
apm12@iitbhu.ac.in (A.K. Singh), rajeev@iitbhu.ac.in ( Rajeev).
Peer review under responsibility of King Saud University.

ELSEVIER Production and hosting by Elsevier

https://doi.org/10.1016/j.jksus.2018.03.005

the field of heat transfer. In 2017, Briozzo and Natale (2017)
considered the temperature-dependent thermal conductivity in
study of the supercooled one-phase Stefan problem for a
semi-infinite material. Recently, Ceretani et al. (2018) discussed
the similarity solutions for a one-phase Stefan problem with
temperature-dependent thermal conductivity and a Robin
condition at a fixed face. Voller and Falcini (2013) presented a
one phase Stefan problem with diffusivity as a function of space
and discussed an exact solution for it. In context of time dependent
thermal conductivity, Hussein and Lesnic (2014) discussed the
identification of time dependent thermal conductivity of an ortho-
tropic rectangular conductor. Recently, Huntul and Lesnic (2017)
also discussed an inverse problem of determining the time-
dependent thermal conductivity and the transient temperature
satisfying the heat equation with initial data. Motivated by these
works, we consider a one phase Stefan problem with time and
temperature dependent thermal conductivity of the form

k(T) = ko (1 +/3(T ;TT'") t) (1)

where T is the temperature distribution, t is the time, AT is the ref-
erence temperature, f and o are the positive constants.

Due to presence of moving boundary/boundaries or unknown
domain, the moving boundary problems are nonlinear in nature
even in its simplest form. If thermal conductivity is time and tem-
perature dependent then the problem becomes more complicated
to get its exact solution. In general, scaling invariance analysis and
similarity variables (Briozzo et al., 2007; Ceretani et al., 2018;
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Fazio, 2013) play an important role for getting the exact solutions
of these problems. In our study, we have also used the appropriate
similarity variables to convert the governing system of partial dif-
ferential equations into another system that includes ordinary dif-
ferential equations with its conditions. After that, a shifted
Chebyshev tau method based on Chebyshev operational matrix of
differentiation is used to solve the transformed system. In Doha
et al. (2011a, 2011b), the authors have discussed the shifted Che-
byshev tau and collocation methods based on Chebyshev opera-
tional matrix of fractional derivatives for solving the linear multi-
order fractional differential equations. Some other work related
to shifted Chebyshev tau and collocation methods are reported in
Ghoreishi and Yazdani (2011) and Vanani and Aminataei (2011).

2. The shifted Chebyshev polynomials and its operational
matrix of differentiation

As we know that the Chebyshev polynomials {Ti(t);i=0,1,...}
are defined on the interval (-1, 1). In order to use these polynomi-
als on the interval x € (0, L), we introduce a new variable t = 2 — 1
in T;(t) which is called as shifted Chebyshev polynomials (Doha
et al.,, 2011b; Ghoreishi and Yazdani, 2011).

Let the shifted Chebyshev polynomials T;(2 — 1) be denoted by
T.i(x), satisfying the following recurrence formula:

2x

T[_7,‘+1(X) = 2<T— 1>T)_7,‘(X) —T]_7,‘,1(X), i= ],2..., (2)

where Tio(x) =1 and Tp1(x) = %f 1. In this paper, the following
properties of first kind shifted Chebyshev polynomials (given in
Doha et al. (2011b) and Ghoreishi and Yazdani (2011)) are used:
(a) A square integrable function u(x) in (0, L) can be expressed in
terms of the shifted Chebyshev polynomials as:

u@) = > ¢Ti(x), 3)
j=0
where the coefficients ¢; are given by
1t .
Gj :F/ u(x) Tpj(x) wi(x)dx, j=0,1,2,... (4)
j J0

For practice purpose, only the first (N + 1)-terms shifted Cheby-
shev polynomials can be considered for the approximation of the
function u(x). Hence, we can write

uy(X) ~ D _GTLi(X) = C'p(x), ()
=0

where CT is the transpose of shifted Chebyshev coefficient vector
and ¢(x) is the shifted Chebyshev vector which are given by

C" =co,cy,...,cn] and ¢(x) = [Tro(x), To1(x), ..., Ton(X)]" (6)

(b) The derivative of the vector ¢(x) is given by

d
P _ g, )

where DV is the (N + 1) x (N + 1) operational matrix of derivative
given by

D = (d)
k=1,3,5,....N,
k=1,3,5....N—1,

' if N is odd,
:_IL’ j:O,17...7i:j+k’

0, otherwise.

If N is even then we have

if N is even.

0 0 0 0 0 0 0

1 0 0 0 0 0 0

0 4 0 0 0 0 0

3 0 6 0 0 0 0

szg 0 8 0 8 0 0 0
L 5 0 10 0 10 0 0
N-1 0 2N-2 0 2N-2 --- 0 0

0 2N 0 2N O .« 2N 0

(c) The nth order derivative of the vector ¢(x) is given by

LX) _ oy gv), ®)

dx"

where n € N and (D'V)" denotes nth powers of D ie.,

D™ =DM  n=1,2,... 9)

3. Mathematical model

In this section, we consider the temperature and time depen-
dent thermal conductivity as given in Eq. (1) and a mathematical
model of one phase Stefan problem with nonlinear heat conduc-
tion is presented for melting process which is as follow:

pc%f:a%(k(r)%z), 0 <x<s(t), (10)
T(0,t) = To(t), (11)
T(s(0),t) = T, (12)
k(TG0 0) 2 - (o) % (13)
s(0) =0, (14)

where T(x, t) is the temperature at the position x and time t, Ty (t) is
the time dependent temperature at x = 0, T,, is the constant phase
change temperature To(t) > T, S(t) is the moving interface; c, p
and h are the specific heat, the density and the latent heat,
respectively.

By considering the following transformation:

T(X, t) - Tm

0(x,t) = AT , (15)
the Eqs. (10)-(14) become:

pc%:%(ko(l +/f(9t*‘“/2)%), 0<x<s(t), (16)
0(0,t) = % ~ B, (17)
0(s(t),t) =0, (18)

00 2 ds

ko AT& . =—ph(s(t)) a (19)
s(0) = 0. (20)

4. Solution for the problem

Now, we consider the following similarity variables:
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0(x,t) = f() ** with n = - 21
(x,t) =f(n) =575 (21)
and assuming that the melt front moves as

s(t) = 24V5t (22)

where 6 = % > 0 (thermal diffusivity for ko) and 4 is an unknown
positive constant.

Substituting Eqs. (21) and (22) into Egs. (1
vide the following equations:

6)-(19) which pro-

d

d

d(aromgofon ) +2n gon 20 =0, 0<n<
23)

O =1, 24

£) =0, 25)

d o 1 o+1) <%

a () =~ 2 )5, (26)

where Ste = 4T > 0 (Stefan number).

For the solution of Eqgs. (23)-(26), finite numbers of terms i.e.,
the first N + 1 terms of the series given in Eq. (3) are considered.
Hence, the unknown function f(#) is expressed in terms of the
shifted Chebyshev polynomials as:

N
~ Y i) = CTg(n), (27)
i=0

where C" = [cy, €1,C - N

and ¢(1) = [Tr0(m), Tsa(n), -, Tin(m)]".
As given in Eq. (8), the derivatives are approximated as:

d2
DV, gz = (0" 60 (28)
Using Egs. (2
defined as:

7) and (28), the residual Ry(x) for Eq. (23) is

(DY () + BCDVp(m)” + BC ()
< ("D o) + 27DV () — 20CT (). (29)

According to Tau method (Doha et al., 2011a, 2011b), we gener-
ate (N — 1) non-linear algebraic equations by using the condition

Ru(X) =

(Rn(x) /RN T;i( =0, i=0,1,...,N-2.
(30)
Also, by using Egs. (27) and (28) in the Eqgs. (24)-(26), we get
C'p0)=1,  C'¢(1)=0. 31
and
C'DVp() = —%(2 2)eE (32)

respectively.

Eq. (30) generates (N — 1) equations and two more equations
are generated by Eq. (31). Hence, we have (N + 1) equations in
(N +1) unknowns that can be easily solved and it gives the
unknown coefficients of the vector C. Consequently, f(#) given in
Eq. (27) can be calculated in terms of 1 which is still to be deter-
mined. In order to get the value of Z, we use the calculated value
of f(n) in the interface condition given in Eq. (32).

5. Result and discussion

In this section, we discuss the accurateness of our obtained
results as well as dependence of heat distribution and phase front
on various parameters. By using the similarity transformation
(given in Egs. (21) and (22)), the analytical solution of Egs. (23)-
(26) is calculated for the constant thermal conductivity i.e., 8 =
which is given as:

where H_p(x) is the Hermite function and ;F; is the hypergeomet-
ric function.
The location of phase front is given by

s(t) = 22V4t, (34)

where 1 is a constant which can be determined by following tran-
scendental equation:

2e 7 (1+a)2T (2+”)H(1

ST CRH 1 () RF (P17
_zef;vz(—l—o‘)r(zzﬁ)w 20 (A)1F1 (5%
2T ()~ VI (52

h(z) =

(35)

From Eq. (35), it is clear that for all 4 > 0, dh/d4 > 0 for positive
values of «, 5 and Ste. Moreover, h(1) — —cc if 2 — 0 and h(1) — o
as 4 — oo when «, 6 and Ste are positive. Therefore, there exists one
and only one positive value of / as the solution of Eq. (35). With the
help of Eq. (34) and the obtained value of 4 from Eq. (35), the
location of phase front s(t) can be determined.

In order to show the accuracy, the comparisons between
obtained results, exact results (given in Egs. (33)-(35)) of temper-
ature distribution and interface location at g = 0 are depicted in
Tables 1 and 2, respectively. Table 1 shows the obtained approxi-
mate values of temperature distribution 0, for N=3, 4, 5 and its
exact value 0 at Ste =0.2,5 =1,t = 1.5 and 8 = 0. Table 2 depicts
the values of approximate position of phase front s4(t) for N = 3, 4,
5 on different time and its exact values sg(t) at Ste = 0.2,6 = 1 and
B = 0. From these tables, it is clear that our approximate results are
near to exact value and accuracy increases as the order of opera-
tional matrix of differentiation increases.

When B #0, the obtained results are presented through
Figs. 1-5 for the study of dependence of temperature distribution
and location of phase front on various parameters. Fig. 1 demon-
strates the variations of temperature distribution for different
value of o (¢ =2.0,1.0,0.2) at fixed values of g =0.5, Ste=0.2
and 6 = 1.0. Fig. 2 depicts the variations of temperature distribu-
tion for different value of g (f=1.5,1.0,0.3) at fixed values of
o= 0.5, Ste =0.2 and § = 1.0. From these figures, it is clear that
temperature at x = 0 is highest and decreases continuously to zero.
It is also seen that the rate of change of temperature deceases as
the parameters o and/or $ decrease.

In Fig. 3, the dependence of phase front on time for different o
(i.e., exponent power of time) is presented at fixed value of g = 0.5,
Ste =0.2 and 6 = 1.0. From this figure, it can be seen that the
movement of phase front increases with the increment in the value
of o (x =0.2,1.0,2.0). Consequently, the melting process becomes
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Table 1
Comparison of the exact temperature 0 with approximate values of temperature [0,], for N=3,4,5 at §=0.
o X Ok [0aln_3 (Oaln—4 [0aln—s5
a=0.2 0.0 1.041380 1.041380 1.041400 1.041380
0.1 0.902061 0.901730 0.902037 0.902058
0.2 0.763806 0.764121 0.763788 0.763800
0.3 0.626976 0.628553 0.626980 0.626972
0.4 0.491923 0.495025 0.491940 0.491924
0.5 0.358984 0.363539 0.358993 0.358990
a=1.0 0.0 1.224740 1.224740 1.224740 1.224740
0.1 1.067990 1.068140 1.068010 1.067990
0.2 0.915301 0.915460 0.915387 0.915302
0.3 0.766670 0.766697 0.766810 0.766672
0.4 0.622060 0.621854 0.622227 0.622061
0.5 0.481424 0.480930 0.481581 0.481423
a=2.0 0.0 1.500000 1.500000 1.500000 1.500000
0.1 1.306340 1.308470 1.306320 1.306340
0.2 1.122010 1.123950 1.121940 1.122020
0.3 0.946368 0.946428 0.946245 0.946378
0.4 0.778749 0.775913 0.778586 0.778753
0.5 0.618506 0.612402 0.618333 0.618503
Table 2
Comparison of the exact values of moving boundary sg(t) and approximate values of moving boundary [s4(t)]y for N=3,4, 5 at =0.
o Time (t) Sg(t) (Sa(8)In=3 [sa(6)In—4 [sa()ln=s
o=02 0.0 0.000000 0.000000 0.000000 0.000000
0.2 0.285007 0.286641 0.285005 0.285007
0.4 0.403061 0.405372 0.403057 0.403061
0.6 0.493646 0.496477 0.493642 0.493646
0.8 0.570014 0.573282 0.570009 0.570014
1.0 0.637295 0.640949 0.637290 0.637295
a=1.0 0.0 0.000000 0.000000 0.000000 0.000000
0.2 0.316075 0.315801 0.316072 0.316075
0.4 0.446998 0.446610 0.446993 0.446998
0.6 0.547458 0.546984 0.547453 0.547458
0.8 0.632150 0.631602 0.632144 0.632150
1.0 0.706765 0.706153 0.706758 0.706765
=20 0.0 0.000000 0.000000 0.000000 0.000000
0.2 0.339161 0.336535 0.339164 0.339161
0.4 0.479646 0.475933 0.479650 0.479646
0.6 0.587444 0.582896 0.587449 0.587444
0.8 0.678321 0.673071 0.678328 0.678322
1.0 0.758386 0.752516 0.758394 0.758387

i, t) —>

L L s

00 02 04 06 08

x —>

Fig. 1. Plot of temperature profile for different values of o at g = 0.5, Ste = 0.2 and
s=1.0.

fast as we increase the value of «. Fig. 4 shows the trajectory of
phase front for different g (8=0.3,1.0,1.5) at fixed value of
o =0.5, Ste=0.2 and 6 = 1.0. Fig. 5 demonstrates the trajectory
of phase front for different Stefan numbers (Ste = 0.2,1.0,2.0) at

fx, ) —>

Fig. 2. Plot of temperature profile for different values of  at o« = 0.5, Ste = 0.2 and
§=1.0.

fixed value of o = 0.5, $=0.5 and 6 = 1.0. From Figs. 4 and 5, it
is clear that the movement of phase front increases as the value
of g and/or Ste increases. Hence, the melting process becomes fast
if we increase the parameter f and/or Stefan number (Ste).
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Fig. 3. Plot of moving interface for different values of o at g = 0.5, Ste = 0.2 and
§=1.0.

s(t) —>

02 04 06 08 10
I —>

Fig. 4. Plot of moving interface for different values of g at « = 0.5, Ste = 0.2 and
§=1.0.

15 Ste.=2.0
Ste.=1.0

1.0
T - ste=02
= 05 ///////////
3 //////

/
02 04 06 08 10

Fig. 5. Plot of moving interface for different values of Ste. at o = 0.5, § = 0.5 and
§=1.0.

6. Conclusions

In this work, a special type of one phase Stefan problem with
time and temperature dependent thermal conductivity is explored
and its approximate solution is discussed by using similarity

transformation method and shifted Chebyshev tau method based
on Chebyshev operational matrix of differentiation. In order to
check accuracy of our obtained results, an exact solution of the
problem is also discussed for a particular case i.e., § = 0. From this
study, it is seen that the proposed algorithm for the solution of Ste-
fan problems is simple and accurate. Moreover, it is found that the
rate of change of temperature increases as the power of time (i.e.,
o) and/or p increases and movement of moving interface increases
if we increase the value of power of time (i.e., &) or g or Ste. Conse-
quently, the increment in the value of parameters o or 8 or Ste
increases the rate of melting process. It is also observed that the
variation of Stefan number is more pronounced than the parame-
ters o and g in the movement of interface.
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