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ABSTRACT

Many viscoelastic fluid problems are solved using the notion of fractional derivative. However, most
researchers paid little attention to the effects of nonlinear convective in fluid flow models with time-
fractional derivatives and were mainly interested in solving linear problems. Furthermore, the nonlinear
fluid models with a fractional derivative for an unsteady state are rare, and these constraints must be
overcome. On the other hand, nanofluids are thought to be trustworthy coolants for enhancing the cool-
ing process in an electrical power system. Therefore, this research has been conducted to analyze the
unsteady upper-convected Maxwell (UCM) hybrid nanofluid model with a time-fractional derivative.
Incorporating the Cattaneo heat flux into the energy equation has increased the uniqueness of the
research. The numerical solutions for the coupled partial differential equations describing velocity and
temperature are presented using an efficient finite difference method assisted by the Caputo fractional
derivative. Significant changes in heat transfer and fluid flow properties due to governing parameters,
including the nanomaterial volume fraction, fractional derivative, relaxation time, and viscous dissipa-
tion, are graphically demonstrated. The nanomaterial concentration, the fractional derivative parameter,
and the relaxation time parameter must all be substantial to manifest a surface heat increase.
© 2022 The Authors. Published by Elsevier B.V. on behalf of King Saud University. This is an open access
article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

(Hanif, 2021). It uses the Oldyrold derivative as a Maxwell material
extension for massive deformations (Adegbie et al., 2015).

A crucial topic in fluid dynamics is the behavior of materials
with the qualities of elasticity and viscosity when they deform.
The term “Maxwell fluid” has been coined to describe these types
of materials, postulated by James Clerk Maxwell in 1867, and
James G. Oldroyd popularized it a few years later (Mackosko,
1994; Adegbie et al., 2015). The UCM model depends on relaxation
time, stress tensor, deformation rate tensor, velocity, and viscosity
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The history of fractional calculus is fairly similar to that of clas-
sical calculus. However, over the past few decades, it has grown in
popularity in the structural modeling of non-Newtonian fluids. The
primary reason for this advancement is that a fractional model can
explain the complicated features of viscoelastic material in a sim-
ple and elegant manner. For instance, the exponential relaxation
moduli of traditional ordinary models are unable to effectively
describe the algebraic decay during the relaxation process of many
materials (Hilfer, 2000). Experiments, however, show that frac-
tional models are capable of properly capturing and connecting
these phenomena (Meral et al., 2010; Yang et al., 2010). Dalir
and Bashour presented a real-world application of fractional calcu-
lus (Dalir and Bashour, 2010). Moreover, a comprehensive list of
fractional calculus applications in science and engineering is given
by Sun et al. (2018). Researchers demonstrated innovative use of
the fractional derivative in several fluid models (Sene, 2019,
2020; Hanif, 2022).

The heat transfer phenomena of nanofluid flow have recently
attracted the attention of many academics because of their
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immense and fundamental significance from both an applied and
theoretical perspective. A Nanofluid is a colloidal mixture of
nanometer-sized particles (metallic and non-metallic) in a typical
regular fluid. Because of their superior thermal and tribological
properties, nanofluids are considered potential heat transfer fluids.
Due to this critical importance, we would like to highlight the
abundance of various publications on this topic. Tawfik (2017)
has presented a brief overview of the evolution of nanofluids in
various applications. According to their research, nanotubes have
higher thermal conductivity than spherical particles. Gowda et al.
(2022) analyze the effect of a magnetic field on Casson-Maxwell
nanofluid flow confined between two uniformly stretchable disks
using the Buongiorno model. The outcomes showed that the Max-
well fluid is more strongly affected by the Lorentz force compared
to the Casson fluid. Said et al. (2018) presented a comparison of
traditional and nanofluid-based thermal photovoltaics in terms of
performance and environmental impact. They concluded that PV/
T systems that employed nanofluid in any form, either coolant or
filter, had higher overall exergy and energy efficiency than PV/T
systems that used conventional fluid. A steady Maxwell model
for nanofluid flow across a permeable stretched sheet containing
gyrotactic microorganisms is explored by Safdar et al. (2022).
Entropy production in a parabolic trough surface collector (PTSC)
mounted inside a solar-powered ship using Maxwell nanofluids
containing single-wall carbon nanotube (SWCNTs) and multi-
wall carbon nanotube (MWCNTs) is analyzed by Jamshed et al.
(2021). Their results revealed that the thermal efficiency has
boosted from 1.6 % to 14.9 % with SWCNTs compared to MWCNTSs.
Parvin et al. (2021) constructed a 2D-double diffusive fluid model
to analyze Brownian and thermophoretic diffusion on Maxwell
fluid flow over an inclined sheet under the effects of magnetic field
and suction. Some insightful discussions on the applications of
nanofluids are addressed in the references (Aziz et al., 2018;
Hanif et al., 2019a; Hanif, 2021; Jamshed, 2021).

It is worth mentioning thermal conductivity of a nanoparticle
plays a leading role in enhancing the efficacy of a thermal system.
Among the metallic nanoparticles, gold (Au), silver (Ag), and cop-
per (Cu) owned the highest thermal conductivity. However, these
particles are only available in restricted quantities because of their
exorbitant price. Additionally, toxicity problems may stem from
unmodified Au, Ag, and Cu (Parveen et al., 2016). Although oxide
nanoparticles are inexpensive, they have a lesser thermal conduc-
tivity than other nanomaterials. These limitations can be overcome
using a novel hybrid nanofluid, a combination of nanomaterials
and nanofluid. Turcu et al. (2006) may have been the first to
describe the synthesis of crossover nano-composite particles,
which included two distinct halves of PPY-CNT nano-composite
and MWCNT on attractive Fe;04 nanoparticles. Hybrid nanofluids
offer synergy and advantageous thermal effects in contrast to ordi-
nary fluids and nanofluids (Salman et al., 2020). Entropy produc-
tion in hybrid nanofluid flow over a stretchy surface in a Darcy-
Forchheimer medium with Marangoni convection was investigated
by Khan et al. (2021). A two-phase model with modified Fourier
heat flux law was used to investigate the impact of hybrid
nanoparticles on the dusty fluid flow through a stretched cylinder
(Varun Kumar et al., 2021; Punith Gowda et al., 2021). Li et al.
(2021) studied the consequences of viscous nonlinear convection
and radiation on thermal and solutal Marangoni convection flow
of Casson hybrid nanofluid flow over a spinning disk. Several
aspects affecting heat transfer increases in hybrid nanofluids have
been found, including nanoparticle synthesis, thermal conductiv-
ity, preparation process, particle level, nanoparticle compatibility,
shape, and optimal thermal network development within fluids
(Christopher et al., 2021; Hanif et al., 2019b, 2021; Madhukesh
et al,, 2021; Naveen Kumar et al., 2021; Xiong et al., 2021).
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The aforementioned literature reveals that the studies on the
UCM model using the notion of a fractional derivative are rare.
Therefore, this research aims to perform a numerical analysis
of the fractional UCM viscoelastic hybrid nanofluid flow model
with Cattaneo heat flux. The considered hybrid nanofluid is a
mixture of MWCNTs-Al,03 composite nanomaterials and mineral
oil. The oxide nanoparticle Al,O3 is chosen because of its avail-
ability at a low cost. But the thermal conductivity of Al,Os is
not enough to acquire the desired heat transfer rates. On the
other hand, many writers have suggested increasing the thermal
conductivity of nanofluids by selecting particles with higher
thermal conductivity (Tawfik, 2017). Therefore, MWCNTs have
been added into Al,0z-mineral oil nanofluid to get better results.
The appropriate quantities of Al,03 and MWCNTs have dispersed
in mineral oil with a 90:10 proportion. The study has become
more innovative by incorporating time-fractional derivatives into
the UCM fluid model. Moreover, the previous studies on Maxwell
fluid are solved using similarity transformation that transforms
partial differential equations into ordinary differential equations.
But this research solves partial differential equations using an
unconditionally stable numerical method based on the Crank-
Nicolson and L1 algorithm of the Caputo derivative. Investiga-
tions are conducted into how the relevant variables affect fluid
properties, and the results are presented graphically and
explored in depth.

2. Mathematical formulation

The intricate mathematical modeling of the fractional Maxwell
nanofluid is the focus of this section.

2.1. Governing equations

The following continuity and momentum equations govern the
flow of an incompressible anomalous Maxwell fluid (Hanif, 2022).

V.V=0, (1)
p<?)—‘t/+v.vv>:v.a. (2)

Here V is the velocity field, p is the density of the fluid, and & is
the well-known Cauchy stress tensor defined as

0=-pl+7, (3)

where p represents hydro-static pressure, I denotes an identity
matrix, and 7 refers to extra-stress tensor given as follows

T + M <aa‘i

+V.-VT — (V)T -7 (VV)! ) = [t 4)

Here 1 represents the transpose of a matrix, /; denotes relax-
ation time parameter, p is the dynamic viscosity, and .«#; is the first
Rivlin-Erickson tensor defined as

o1 =VV+ (V). (5)

A basic way of introducing fractional derivatives to linear vis-
coelasticity models is to replace the first derivative in the constitu-
tive equation with a fractional derivative of order o. The fractional
expression of constitutive Eq. (4) is

T+ (ag‘,/f +V.VT — (V)T — 7(VV)! ) = sty (6)
The internal (thermal) energy balance law is as follows

pCp<%+V-VT>=*V'Q+73VV= (7)
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here T is the temperature, q is the heat flux, and C, is the heat
capacity at constant pressure. The heat flux q is given by the Fourier
law of heat conduction as follows

q=—kVT, (8)

where k is the thermal conductivity of the fluid. Several variations
of Fourier’s law have been offered. The most well-known of them
is the Maxwell-Cattaneo law, defined as

(1+A23>q,_«vr 9)

here /, represents the thermal relaxation time parameter. In terms
of the time-fractional derivative of order 8, the Maxwell-Cattaneo
equation (9) can be modified as

(1+50")q = —kVT. (10)

2.2. Problem description

Consider a horizontal plate in the xz plane that is surrounded by
a Maxwell nanofluid. At first, the fluid is assumed to be at rest.
Afterward, the mainstream flow is initiated due to an applied pres-
sure gradient in the x direction
ap
— = —pCoH(t 11
= —PQA (D), (11)
where # indicates the Heaviside function, which has the following
definition:

1,t>0
H)=< " T 12
©={y 20 (12)
Henceforth, the velocity field is assumed to be
V= (u(y.2,1),0,0). (13)

Following that the momentum Eq. (2) reduced to

ou_ 0p 0Ty 0Tk

— 14
ot~ ox ay oz (14)
The constitution relation (6) gives us
20T 07y ou
TXy + l at;y #@7 and Txz + )7 8142 = & (15)
Eliminating t,, and 7, from Eqgs. (14) and (15) results in
1z Mo 1y A7) o o D n ru O (16)
PUT4%) e = 1 o oz

Now implementing the fractional Maxwell-Cattaneo Equation
(10) together with Eq. (13) to energy Eq. (7) leads us to

PCy(1+ 7500) 5 = k(5 +5F) + Ty B+ T . (17)

2.3. Mathematical modeling for Maxwell hybrid nanofluid

To evaluate the effect of hybrid nanoparticles on fluid flow
and heat transfer characteristics, it is obvious to introduce the
Maxwell hybrid nanofluid model. It is straightforward to
replace the thermal and physical parameters of ordinary fluid
with the equivalent attributes of hybrid nanofluid in Eqs. (16)
and (17).

oy QU ap u du
Prnp (1 4+ 2707) = = -1+ ;‘a“) x T iy <8y2 + 822> (18)
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oT *T T
(PCo )iy (1+2500) 5 = Komg <6y2 * 822)

ou c‘?u)

+ (1+250) (rxy@Jr Tes, ) (19)

2.4. Thermal-physical attributes of hybrid nanofluid

Let ¢, and ¢, are the volume fraction of two different types of

nanomaterials, and the subscripts f,nf, and hnf denote the base
fluid, nanofluid, and hybrid nanofluid, respectively. The mathemat-
ical expressions for thermal-physical attributes of nanofluid and
hybrid nanofluid are given below (Jamshed, 2021; Khan et al,,
2021).

2.4.1. Density
The density of nanofluid p,, in terms of p; and ¢, can be
defined as

Prs = (1

The density of hybrid nanofluid may then be generated by alter-
ing the aforementioned density of nanofluid

Phng = (1

— @y, )Pyt Py Py, (20)

— 0y, ) Pur + P,y 1)

2.4.2. Dynamic viscosity
Below is an expression for nanofluid viscosity u, in terms of
base fluid viscosity g and nanoparticles volume concentration ¢,

= (1-0,) " (22)

Modifying the above expression of viscosity (22) for hybrid
nanofluid yield us to.

pug =15 (1= 00) (1= 0,)) " @)

2.4.3. Thermal conductivity
A relation between the thermal conductivities of nanofluid ks
and regular base fluid kf is
Ky _ (kp, +2ks) + 2, (kp, — k)
ke (kp, +2kr) — @, (kp, — ky)
The above relation (24) helps us in obtaining the thermal con-
ductivity of hybrid nanofluid ks
R = (sz + Zk”f) + 2(pp2 (kpz - knf)
of =
(kpz + Zk”f) — P, (sz - k”f)

However, the thermal conductivity of CNT-hybrid nanofluid is
provided as

(24)

% k. (25)

kpy g ke iy
— Pp, 20y, Koy —Kng ’knf In e, 2y

x k
kp2+k,,f nf-
= Pp, T20p, kp, —knf In Zkng

khnf = (26)

2.4.4. Heat capacitance
If the heat capacitance of a nanofluid (pC,)

(0Co) = (1= 03, ) (0Co); + 3, (PC) .- (27)

Then the heat capacitance of hybrid nanofluid (pCp),,,
written as

is provided as

can be
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(PCo) oy = (1 - q’pz) (PCo) g + @, (PCo),,- (28)

Note: The thermal and physical properties of nanomaterials and
base fluid are presented in Table 1.

2.5. Non-dimensional problem

This section is designed to introduce nano-dimensional param-
eters which will help us in obtaining the non-dimensional form of
considering the Maxwell model. Below is a list of non-dimensional
parameters

Y vz w vt * uzmX * T-Tw
y Zmax 4 Zmax t lenax , u T T quwZmax/kf (29)
/‘L* 7’1‘f "* _ AV - 7zﬁlaxry * 7M

Zrznax7 2_ max7 Xy Ky 2 2 Kvy

Invoking the aforementioned parameters (29) in governing Eqgs.
(18) and (19) and removing *yields us to.

a (14200 5 =po(H(0+ 2 i)

o“u
+a (8__)/2 + ﬁ) (30)
aT T 9T
aaPr(1 +)up8ﬂ)§7 ay (8}12 822>
ou
1+ 50) (rxy o + Tyy z) (31)
Given that
3 G
Po = o f?ax E— q/W‘fZ ;me7 r— ltfkfl’f ,
Pny P
= <1_q)l-"z> J{—l_q)Pz sz7 (32)

(=) (1-00)) "

( Cp) hny
as = ( <sz> ((pc,,))f + Py, (iT) s = kkff-

The initial and boundary conditions are

u(y,z,t) =0="2020, 0,t<0,(y,2) €0, L] x[0,1],
L= max/zmax

T(y,z,t) =

u(0,z,t) =0, a, 320 = 1, t>0,z€[0,1],
u(y,0,t) = O—u(y717t)7 T(y,0,t)=0=T(y,1,¢t),t >0,y € [0,L],
u(L,z,t)=0, T(L,z,t)=0,t>0,z€[0,1].

(33)

2.6. Heat transfer coefficient

The Nusselt number commonly referred to as the heat transfer
coefficient, is a measure of heat transport in a thermal system. The
definition of it in mathematics is (Hanif et al., 2020).

Table 1

Thermal and physical attributes of base fluid and nanomaterials.
Properties Mineral oil Al,03 MWCNT
pkg/m?) 861 3970 2100
k(W/mK) 0.157 40 3000
Cp(J/kgK) 1860 765 710
u(Pa-s) 0.01335 - -
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_ 2w
Nu; = R (Tw—To)" (34)

here q,, = —kny (g{) . refers to wall heat flux, the fractional form is
y—i
appended below (Hanif, 2021).

aT
1+ 24ahq, = —k <_) . (35
( 2 r) hnf dy o )

Operating (1 + 258¢) on both sides of Eq. (34) and using the
non-dimensional parameters (29) and the fractional form of g,
(35), we arrived at

)T
—za, (fdy)

(1+ 2500 )Nu, = T(0)

(36)

3. Numerical approximation

This section presents the numerical approximation for the non-
dimensional Eqgs. (30) and (31). An implicit finite difference
method, namely the Crank-Nicolson method will be used to
approximate the integer-order derivatives, whereas fractional-
order time derivatives will be approximated using Caputo frac-
tional derivative.

Define y,=iAy,i=1,2,---,l, zj=jAz,j=1,2,.---,m, where
Ay =L/I, and Az=1/m are the mesh size in (y,z) direction. Let
ty = kAt,k =0,1,---,n with the time step At = t;/n. We will use
the following approximations for derivatives from now on:

o Integer-order derivatives

_ k k-

ou _uy-ug' oo Ty-Ty 37
ot |tk - At ) |tk - At . ( )

K K K k-1

ou I = Uiy — Ui + “1;1; - U (38)

Oy 2Ay '

ou u:{ﬁl Ufj,] + ug(.j:rl ufj ]1 39

Pzl = 4Az (39)

azu 1 1 Zuk + ul+1] + uf 11,/ - zuk 1 u:(+1_] 40

a_yz |tk ZAyz . ( )

82” ulc_) 1 zuk + u£{1+1 + u{i; 11 - zuk ! + uu+1 41

27l = 242 ' @1

azT T:( 1 2Tk + T1+1,; Tf 1j ZT:CJ T:(H] 42

ayz ‘tk - 2Ay2 . ( )

aZT Tﬁ/ 1 2Tk + Tfﬁl + Tu 1 2Tk ! + Tl,/+1 43

o2 ‘tk B 2Az2 ' (43)
o Fractional-order derivatives

Dbl = 857 (uk — gt = b (s - ul)). (44)

ol = 855 (Th - T = d (T - T5)). (45)
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o At k (qk k k=1 (1;k=1 k=1
ot (TXY ay) |tk 2AyT°(2—p) {Tx <u1+1j — U ) + Tx (u1+1,} - u )
k=1 k—r (4 k—r k—r k-2 k—r—1(1,k-r-1 k—r-1
=y de Tk (u —uf )— 14T (uH” —uf )]

i+1,

(46)

b

d __AS k k k—1( 4,k k
W( Xz(a_z)‘t,( T 4AzI(2-p) [T <u1J+1 ulJ 1) + Ty <u1J+1 uu 1)

k=14 k—r (k=1 k—r k=2 g4 Lk—r—1(;k-r-1 k—r—1
_ZrzldrTu (uz,)+1 _uu 1> _Zr dT (u1)+1 _uu 1 )]

(47)
Note that bs = (a;_1 — a;) and d; = (¢,_1 — ¢;). Let us introduce
=20 :2—;‘, G =g, =5, B :”;TA‘, E;, = cic3,
By =, Ea =0, B =5, Fp —SHL F, gl
R A

(48)
Using Eqgs. (3
(1+ 51)(u’.‘. - u’frl) E, ( (0) + (B + 255 ff@ )
+Ep(uf —2uf ) + Es(uf, - 2uf
) + 0141,
(49)

7)-(48) in Egs. (30) and (31), we arrived at

k k-1
_zu +u1+1‘}+u1 1j

k 1 k— 1 k—
+uu+1 + ul] 1 2u u1J+1

Tkl Tk] Tk]

(1+52)(Tk Tk 1) E (T:{ 1j ZTk +Tl+]J ij+1

l,/+

)
+Es (T,J = 2T TE L + T, — 2T 4 TE 1)
+Es (r§y+r’;;‘) (uf‘mfuk +uf —ufy 1)

)
)-
0

+E7 (Tl;z + T’;;]) (u{(ﬁl T ul]+l uﬁ) 1
+b2 (Az EGA3 E7A4
(30)
Provided that
k-1 k-1
_ s k— k—r—
- §b5<uf.‘f—uﬁ.‘_js N, A= rzzld,(ruf—ny Bt
Ay =(1+6) [z dytly” (ulct; - ul™)
(51)
+ Z di Tl 1(u{‘+{dl uf‘d‘”)} A= (1+0)"
(o k 2 ket (et k—r—1
Z d Tx r<u1i1+r1 - ur,) rl) + 2 drf):;r7 (uli}Jrrl - uu rl ) .
The discrete initial and boundary conditions are:
ud=0=T{,
uléj -0, Tli] Tk 1 4Ay+T TI]CJ , (52)

k _ gk gk 00— _ _ 1k
ulj_ui,o_ui.m_O_le_Ti‘O_Ti,m'

4. Results and discussion

The purpose of this part is to help to understand the explana-
tion of the graphical illustrations. This part will go over the theo-
retical components of the problem, such as nanomaterials
volume fraction, fractional-order derivative, relaxation time, and
viscous dissipation. To attain this goal, MATLAB software is used
to solve the discrete Egs. (49) and (50). Figs. 1-10 are intended
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to determine the effect of all governing parameters on fluid flow
and heat transfer characteristics. The parameters are considered
to have the following fixed numerical values:
Q=@ + @, = 0.01,6 =05,0=07=p, and 1; =0.1=41,
unless otherwise stated.

To begin, the numerical computations illustrated in Fig. 1 are
performed to determine the impact of the nanomaterial volume
fraction on the velocity field. This figure evidenced a decrement
in fluid flow velocity upon adding nanomaterials. The fluid
becomes more dense as the concentration of particles inside the
fluid increases, which causes a drop in velocity flow.

Fig. 2 shows features of the fractional derivative parameter « on
the velocity field. The fractional derivative « not only quantifies the
frequency-dependent complex modulus but also anticipates the
relaxation and creep-responses of viscoelastic fluid (Zhao, 2020).
The velocity field declines when o increases. One may anticipate,
that as o increases, the resistance of the material particles
increases which decreases the flow speed. Fig. 3 depicts the conse-
quences of the relaxation time parameter A, on the velocity profile
of the fluid. According to Fig. 3, the higher the relaxation time
parameter, the higher the fluid velocity. The length of time needed
to return to normal condition grows as A; increases, which
increases the velocity field.

The fluctuation in the non-dimensional temperature with dif-
ferent values of the fractional derivative parameter f can be
observed in Fig. 4. The fractional derivative parameter  might be
a new indicator of heat conduction in a conducting material. An
appropriate value of § can increase the effectiveness of a thermo-
electric material figure-of-merit (Ezzat, 2011). The temperature
profile diminishes as 8 increases. Increasing the magnitude of g
can obstruct the temperature distribution. Drawing Fig. 5 is an
effort to conjure up the relation between temperature and relax-
ation time parameter Z,. This resolves the paradox of unbounded
heat propagation speed in thermo-electric fluid (Ezzat, 2010).
The temperature profile diminishes as the value of /, rises. Fig. 6
shows the relationship between the viscous dissipation ¢ and the
temperature of Maxwell hybrid nanofluid. As & rises, the fluid’s
capacity to retain heat energy increases due to friction forces,
improving the temperature profile.

Next, the effects of various embedded elements on the surface
temperature are sketched out in Figs. 7 and 8. The fluid tempera-
ture on the surface of the plate decreases for high volume concen-
tration, see Fig. 7. Generally, the increased volume of
nanomaterials improves the thermal conductivity of a fluid. How-
ever, several factors affect a fluid’s thermal conductivity, including
the nanomaterials concentration, compatibility, preparation pro-
cess, type, shape, and composition of the nanoparticles. On the
other hand, the wall temperature increases due to the viscous dis-
sipation effect. Fig. 8 shows that the surface temperature is a
decreasing function of fractional derivative and relaxation time
parameters.

Finally, we arrived at column graphs illustrated in Figs. 9 and 10
at this point, which depict the variation of the Nusselt number in
response to various pertinent parameters. It can be seen in Fig. 9
that the maximum Nusselt number is owned by increasing nano-
material volume concentration. It is close to physical expectations
as the thermal conductivity of the fluid increases on interacting
with nanomaterials. Moreover, the Nusselt number decreases
abruptly for increasing values of the viscous dissipation parameter.
Drawing Fig. 10 is an effort to conjure up the influences of frac-
tional derivative 8 and relaxation time parameter 2, on the Nusselt
number. It is observed that the Nusselt number is an increasing
function of fractional derivative and relaxation time parameters.
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Fig. 1. Velocity profile for different values of nanoparticle volume fraction ¢.
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Fig. 3. Velocity profile for different values of relaxation time %;.
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5. Conclusions

This research is conducted to evaluate the MWCNTs-Al,03
nanomaterials, viscous dissipation, fractional derivatives, and their
impact on the flow and heat transfer characteristics of Maxwell
nanofluid. The fractional UCM model is solved using the Caputo
derivative and the Crank-Nicolson method. Below is a list of the
main affirmative aspects:
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Fig. 10. Impact of fractional parameter f and relaxation time 2, on Nu,.

e The less the nanomaterial volume concentration and fractional
derivative parameter, the more the velocity of Maxwell hybrid
nanofluid.

e To manifest a surface heat increase, the nanomaterial concen-
tration, the fractional derivative parameter, and the relaxation
time parameter must all be modest.

o At high levels of the relaxation time, fractional derivative, and
nanomaterial concentration parameters, Nusselt number aug-
mentation may be projected.

e In general, when ¢ = 0 = /4, it is possible to predict the Newto-
nian fluid flow.
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