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Abstract Boundary characteristic orthogonal polynomials in xy-coordinates have been built up

over an elliptical domain occupied by a thin elastic plate. Half of the plate boundary is taken

clamped while the other half is kept free. Coefficients of these polynomials have been computed

once and for all so that an orthogonal polynomial sequence is generated from a set of linearly inde-

pendent functions satisfying the essential boundary conditions of the problem. Use of this sequence

in Rayleigh–Ritz method for solving the free vibration problem of the plate makes it faster in con-

vergence and leads to a simplified system whose solution is comparatively easier. Three-dimensional

solution surfaces and the associated contour lines have been plotted in some selected cases. Com-

parison have been made with known results whenever available.
ª 2010 King Saud University. All rights reserved.
1. Introduction

Use of orthogonal polynomials in the Rayleigh–Ritz method
for solving most of the important differential equations has at-
tracted the researcher’s interest since 19th century. Many stud-

ies on the vibration of non-rectangular plates assuming various
deflection shape functions in the Rayleigh–Ritz method have
polynomials.
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been reported by Leissa (1969). Following the publications

of Szego’s well known treatise Szego (1967) and Singh and
Chakraverty (1991, 1992, 1993, 1994a,b) there has been tre-
mendous growth of literature covering various aspects of the
subject but, unfortunately, for plates of uniform boundary

conditions. Sato (1973) presented experimental as well as the-
oretical results for elliptic plates but again with uniform free
edge. An interesting contribution in this regard has been done

by Bhat et al. (1998) and Chakraverty et al. (1999). They pre-
sented a recurrence scheme that makes the generation of two-
dimensional boundary characteristic orthogonal polynomials

for a variety of geometries straight forward and quite efficient.
They also provide a survey of the application of BCOPs meth-
od in vibration problems. Some important books on orthogo-
nal polynomials and its applications are Beckmann (1973),

Chihara (1978), and Gautschi et al. (1999).
There is no analytical solution to the vibration problems of

plates with non-uniform boundary conditions even for plates of

simple geometrical shapes like rectangles (Wei et al., 2001).

mailto:salehmh@hotmail.com
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Notation

BCOPs boundary characteristic orthogonal polynomials

CC for a plate with uniform fully clamped boundary
CF for a plate with half of the boundary, y 6 0,

clamped and the rest free
FF for a plate with uniform completely free boundary

a; b semi major and minor axes of the elliptical domain
r aspect ratio b=a
x; y cartesian coordinates

X; Y non-dimensional coordinates X ¼ x=a; Y ¼ y=a
R0 domain occupied by the plate in xy-coordinate
R domain occupied by the plate in XY-coordinates

WðX;YÞ displacement
q density of the material of the plate
E Young’s modulus
x angular natural frequency

m Poisson ratio

k non-dimensional frequency parameter
r2 Laplacian operator
N the approximation order
cj the unknown coefficients used in the solution

expansion
/iðX;YÞ orthogonal functions over R
/̂iðX;YÞ orthonormal functions over R

bij coefficients of the orthogonal polynomials
/iðX;YÞ

f; g functions of x and y

hf; gi inner product of f and g
kfk norm of f
aij
� �

; bij
� �

N�N matrices
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Very little is available in literature on elliptical plates with non-
uniform boundary conditions and, whenever available, it is

mostly on circular plates. That is why this kind of problems
has become a challenging problem for scientists and engineers.
Some available references are Eastep and Hemmig (1982),

Hemmig (1975), Leissa et al. (1979), Laura and Ficcadenti
(1981) and Narita and Leissa (1981). Hassan (2007) has gener-
ated BCOPs to compute natural frequencies of an elliptical

plate with half of the boundary simply supported and the rest
free and gave numerical and graphical results for this case. In
Hassan (2004) he solved the vibration problem under consider-
ation by using traditional basis functions that satisfy the essen-

tial boundary conditions of the CF-elliptical plate in the
Rayleigh–Ritz method. Explicit numerical and graphical re-
sults have been given and reported for the first time. Other pub-

lications dealing with plates with mixed boundary conditions
have been recently appeared by Boborykin (2006), Czernous
(2006), and Zovatto and Nicolini (2006). They investigated

the bending problem of a rectangular plate with mixed bound-
ary conditions. No numerical results are available for vibra-
tions of elliptical plates with mixed boundary conditions.

The aim of the present work is to generate a sequence of

boundary characteristic orthogonal polynomials over an ellip-
tical domain occupied by a thin elastic plate with half of the
boundary, y 6 0, clamped and the rest free. These polynomials

should satisfy at least the essential boundary conditions of the
problem. The coefficients of these polynomials will be gener-
ated and tabulated in advance, once and for all, with the de-

sired precision. Use of these polynomials in Rayliegh–Ritz
method helped in presenting explicit numerical results for the
problem under consideration. This method reduces ill-condi-

tioning of the resulting system whose solution has become
comparatively easier and faster in convergence. Three-dimen-
sional solution surfaces, mode shapes, and the associated con-
tour lines of the problem have been plotted in some selected

cases. Comparison of results have been made with known re-
sults in literature whenever available.

2. Generation of boundary characteristic orthogonal polynomials

As has been done by Bhat (1985) for one-dimensional orthog-
onal polynomials and by Liew et al. (1990) for rectangular
plates one will follow the same procedures to generate a set
of orthogonal polynomials in two variables over an elliptical

domain R0 occupied by a thin elastic plate in the xy-plane with
half of the boundary, y 6 0, clamped and the rest free. For this
one can start with the set of linearly independent functions

fFiðx; yÞ ¼ ufiðx; yÞgNi¼1; ð1Þ

with ðx; yÞ is a point in R0 ¼ ðx; yÞ : x2

a2
þ y2

b2
6 1

n o
and a; b as

the semi major and semi minor axes of the elliptical domain.
The functions u and f are chosen to be of the form

u ¼
ðy2 � r2 z2Þ2 for CC-elliptical plate;

ðyþ rzÞ2z for CF-elliptical plate;

1 for FF-elliptical plate;

8><
>: ð2Þ

with z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2
p

; r ¼ b
a
, and

ffi; i ¼ 1; 2; . . .g ¼ f1; x; y; x2; xy; y2; x3; x2y; xy2; y3; . . .g; ð3Þ

so that the essential boundary conditions of the problem are

satisfied. To obtain an orthogonal set we define the inner prod-
uct of two functions f and g by

hf; gi ¼
Z Z

R0

fðx; yÞgðx; yÞdxdy ð4Þ

and the norm of a function f is then defined by

kfk2 ¼ hf; fi ¼
Z Z

R0

f2ðx; yÞdxdy ð5Þ

The orthogonal functions /iðx; yÞ are generated by using
Gram–Schmidt process the algorithm for which may be sum-
marized as follows:

/1 ¼ F1;

/i ¼ Fi �
Pi�1
j¼1

aij/j;

where

aij ¼ hFi;/ji=h/j;/ji; j ¼ 1; 2; . . . ; i� 1

9>>>>>=
>>>>>;
; i ¼ 2; 3; . . . ;N:

ð6Þ

The functions /i can be normalized by using the equation

/̂i ¼ /i=k/ik ¼ /i=h/i;/ii
1
2: ð7Þ
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Computations of aij are greatly simplified if u and fi are chosen

as simple polynomials in x and y such that the essential bound-
ary conditions of the problem are satisfied. The functions /i

and /̂i can be expressed in terms of f1; f2; . . . if desired. Thus
coefficients bij and b̂ij can be found such that:

/i ¼ u
Xi

j¼1
bijfj; /̂i ¼ u

Xi

j¼1
b̂ijfj; i ¼ 1; 2; . . . ;N: ð8Þ
3. Rayleigh–Ritz procedures

For a plate undergoing simple harmonic motion equating the
maximum strain energy Vmax and the maximum kinetic energy
Tmax of the deformed plate the Rayleigh quotient (see Siddiqi,

2004) is

x2 ¼
D
R R
R0

r2W
� �2 þ 2ð1� mÞfW2

xy �WxxWyyg
h i

dxdy

qh
R R
R0

W2dxdy
; ð9Þ

where Wðx; yÞ is the deflection of the plate. Subscripts denote

differentiation with respect to subscripted variables. D ¼
Eh3=½12ð1� m2Þ� is the flexural rigidity, E is Young’s modulus,
q is mass density, m is Poisson ratio, h is the thickness of the
plate which has been taken to be unity all over the plate in this

work, and x is the radian natural frequency of vibration.
Introducing the non-dimensional variables X ¼ x=a and
Y ¼ y=a the new domain R is then defined by

fðX;YÞ : X2 þ Y2=r2 6 1g; r ¼ b

a
: ð10Þ

Assuming the plate deflection to be in the form

WðX;YÞ ¼
XN
j¼1

cj/jðX;YÞ; ð11Þ

and applying the stationary conditions of x2 with respect to
the coefficients c1; c2; . . . ; cN in the form

@x2

@cj
¼ 0; j ¼ 1; 2; . . . ;N; ð12Þ
Table 1 Coefficients b̂ij of first 10-polynomials /̂i for CC-elliptical
results in the eigenvalue problem

XN
j¼1

aij � k2bij
� �

cj ¼ 0; i ¼ 1; 2; . . . ;N; ð13Þ

where

aij ¼
Z Z

R

ð/iÞXXð/jÞXX þ ð/iÞYYð/jÞYY þ m ð/iÞXXð/jÞYY
��

þ ð/iÞYYð/jÞXX
�
þ 2ð1� mÞð/iÞXYð/jÞXY

�
dXdY; ð14Þ

bij ¼
Z Z

R

/i/jdXdY; ð15Þ

k2 ¼ a4x2qh=D: ð16Þ

Solving the resulting eigenvalue problem (13) for k and cj one
gets the frequencies and mode shapes.

4. Numerical results and discussion

The function u in (2) has been so chosen that the essential

boundary conditions of the elliptical plate are satisfied. Conse-
quently the essential boundary conditions of the problem are
thus satisfied by the functions FiðX;YÞ also. Finally BCOPs
can be expressed in terms of fi by computing bij in (8). All

the computations have been worked out by using Mathematica
5.2 on a PC. This greatly simplifies and reduces the huge effort
spent in preparing lengthy computations and cumbersome pro-

grams in any programming high level language. Also one can
examine directly and easily the validity of the chosen function
u whether it is suitable to our case or not without repeating the

hall calculations from the very beginning in case one face any
integration problems. Moreover, it enables one to use varia-
tion functions other than polynomial variations without fear
of the integrals involved (for further work). The coefficients

b̂ij of the orthonormal polynomials have been computed and
reported in Tables 1–4 which correspond to the aspect ratios
r ¼ 0:5; 1:0; 1:5 and 2.0, respectively, for CC-elliptical plate.

Tables 5–8 are for CF-elliptical plate and Tables 9–12 are
for FF-elliptical plate. The case r ¼ 1:0 corresponds to a circu-
lar plate. It is to be noted that the program can generate results
plate with r ¼ 0:5, and m ¼ 0:3.



Table 2 Coefficients b̂ij of first 10-polynomials /̂i for CC-elliptical plate with r ¼ 1, and m ¼ 0:3.

Table 4 Coefficients b̂ij of first 10-polynomials /̂i for CC-elliptical plate with r ¼ 2, and m ¼ 0:3.

Table 3 Coefficients b̂ij of first 10-polynomials /̂i for CC-elliptical plate with r ¼ 1:5, and m ¼ 0:3.
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Table 7 Coefficients b̂ij of first 10-polynomials /̂i for CF-elliptical plate with r ¼ 1:5, and m ¼ 0:3.

Table 5 Coefficients b̂ij of first 10-polynomials /̂i for CF-elliptical plate with r ¼ 0:5, and m ¼ 0:3.

Table 6 Coefficients b̂ij of first 10-polynomials /̂i for CF-elliptical plate with r ¼ 1:0, and m ¼ 0:3.
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Table 8 Coefficients b̂ij of first 10-polynomials /̂i for CF-elliptical plate with r ¼ 2:0, and m ¼ 0:3.

Table 9 Coefficients b̂ij of first 10-polynomials /̂i for FF-elliptical plate with r ¼ 0:5, and m ¼ 0:3.

Table 10 Coefficients b̂ij of first 10-polynomials /̂i for FF-plate with r ¼ 1, and m ¼ 0:3.
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Table 11 Coefficients b̂ij of first 10-polynomials /̂i for FF-elliptical plate with r ¼ 1:5, and m ¼ 0:3.

Table 12 Coefficients b̂ij of first 10-polynomials /̂i for FF-elliptical plate with r ¼ 2, and m ¼ 0:3.
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for any value of the aspect ratio r > 0. The approximation or-
der N has been increased from 1 to 28 for CC and FF-cases but

from 1 to 10 only in the CF-case. It is a gigantic task to go
through approximations beyond this because of the singulari-
ties arising in some integrals due to discontinuities at X ¼ �1.
If it is necessary the recurrence scheme mentioned in Bhat et al.
(1998) is recommended, for further work, which makes the
generation of orthogonal polynomials easier and straight for-

ward. For need of space only 10 polynomials have been re-
ported in all cases. The tabulated coefficients have been
computed once for all and the reader can use these directly
without repeating the calculations again and again. As a check

on accuracy of the results it has been verified that

h/̂i; /̂ji ¼
0 for i – j;

1 for i ¼ j:

�
ð17Þ

Use of these BCOPs as basis functions in Rayleigh–Ritz meth-

od greatly simplifies the resulting eigenvalue problem since the
matrix in (15) becomes a unit matrix. Following these proce-
dures the first four frequencies of the plate vibration have been
computed and reported in Table 13 for the specified values of
r. All the computations have been worked out for m ¼ 0:3. Re-
sults corresponding to some other values have been computed

and reported for comparisons. Note that the values of k1 given
in FF-case is actually the value of k2. For this case the first fre-
quency corresponds to the rigid body motion of translation

and rotation of corresponding frequency 0.0 (Narita and Leis-
sa, 1981). In Table 13 the abbreviation BC denotes the type of
boundary conditions, * used for m ¼ 0:25, and ** for m ¼ 0:33.
Comparison of these results with others and with those com-
puted by using the traditional basis functions (Hassan, 2004)
have been made and found to be better and on the lower side

for the same approximation order. The present method has
faster rate of convergence as compared to the traditional poly-
nomials because the resulting eigenvalue problem is no longer
the generalized one. The trends of convergence of the funda-

mental frequency parameter as computed by using BCOPs
for r ¼ 0:5 and 1.0 are investigated and reported in Table 14
for the three cases of boundary conditions. It is clear from



Table 13 First four frequency parameters of an elliptical plate ðm ¼ 0:3Þ, * for m ¼ 0:25 and ** for m ¼ 0:33.

BC Ref. r N k1 k2 k3 k4

CC Present 0.5 28 27.3776 39.5000 56.3275 69.8841

Hassan (2004) 0.5 36 27.3774 39.4974 55.9757 69.8580

Singh and Chakraverty (1994a) 0.5 36 27.377 39.497 55.985 69.858

Present 1.0 28 10.2158 21.2605 34.8777 39.7733

Hassan (2004) 1.0 36 10.2158 21.2604 34.8770 39.7711

Narita and Leissa (1981) 1.0 36 10.2144 21.2613 34.8808 39.7656

Exact 1.0 10.2158 21.2604 34.8770 39.7711

Present 1.5 28 7.6131 12.6542 18.4388 19.7298

Present 2.0 28 6.8444 9.8748 13.9962 17.4656

CF Present 0.5 10 6.0249 14.1261 27.2132 27.8854

Hassan (2004) 0.5 10 6.0832

Hassan (2004) 0.5 78 5.9937 13.7321 25.6766 27.6245

Present 1.0 10 3.1552 9.7090 10.4854 19.8298

Hassan (2004) 1.0 10 3.2002

Hassan (2004) 1.0 78 2.8781 8.9854 9.4516 18.4377

Present 1.5 10 2.5092 6.6619 9.4444 11.5434

Present 2.0 10 2.2332 5.4693 8.8450 8.9237

FF Present 0.5 28 6.67058 10.5478 17.2116 22.3526

Singh and Chakraverty (1994a) 0.5 20 6.6706 10.548 16.923 22.019

Hassan (2004) 0.5 36 6.6706 10.548 16.923 22.019

Present 1.0 28 5.3583 9.0034 12.4645 21.0331

Hassan (2004) 1.0 36 5.3583 9.0031 12.439 ––

Exact 1.0 5.3583 9.0031 12.439 20.475

Sato (1973) 1.0 20 5.3583 9.0031 12.439 20.475

* Present 1.0 28 5.51119 8.89018 12.8811 21.158

* Sato (1973) 1.0 20 5.5112 8.8899 12.744 20.409

** Present 1.0 28 5.26205 9.06923 12.2625 21.0775

** Sato (1973) 1.0 20 5.262 9.0689 12.244 20.513

** Narita and Leissa (1981) 1.0 36 5.2624 9.0721 12.243 20.512

** Exact 1.0 5.262 9.0689 12.244 20.513

Present 1.5 28 2.87855 3.54941 7.24836 7.33783

Present 2.0 28 1.66765 2.63694 4.3029 5.58816

Table 14 Convergence of the fundamental frequency parameter of an elliptical plate ðm ¼ 0:3Þ.
CC CF FF

N r ¼ 0:5 r ¼ 1:0 N r ¼ 0:5 r ¼ 1 N r ¼ 0:5 r ¼ 1:0

6 27.3954 10.217 3 6.0755 3.3499 10 7.39485 5.79655

10 27.3954 10.217 4 6.0753 3.3278 11 6.70475 5.54263

11 27.3792 10.2166 5 6.0753 3.3278 13 6.70268 5.54200

12 27.3792 10.2166 6 6.0607 3.3161 15 6.70264 5.38067

13 27.3782 10.2163 7 6.0607 3.3161 22 6.67388 5.37167

14 27.3782 10.2163 8 6.0260 3.1553 24 6.67208 5.36885

15 27.3776 10.2158 9 6.0260 3.1553 27 6.67067 5.35834

16 27.3776 10.2158 10 6.0249 3.1552 28 6.67058 5.35834

202 S.M. Hassan
the table that the present results converge to at least three sig-
nificant figures in all the cases at a relatively low approxima-
tion order. Thus in view of the present results one indicates
that there is a significant improvement in the rate of conver-

gence if an orthonormal basis is used instead of the traditional
one.

5. Mode shapes

Fig. 1a–f depict the first six mode shapes and the associated
contour lines for a CF-elliptical plate with r ¼ 0:5 and
m ¼ 0:33. Figures corresponding to m ¼ 0:3 are roughly the
same. These have been plotted by using tools of Computer

Graphics under Turbo C++. The author has prepared his
own software for that purpose. Other more figures correspond-
ing to different aspect ratios are available in Hassan (2004).

6. Conclusion

The author has presented a set of orthonormal bases functions

that can help in solving numerically the vibration problem of
an elliptical plate clamped on lower half of the boundary



Figure 1 First six mode shapes and the associated contour lines for CF-elliptical plate with r ¼ 0:5 and m ¼ 0:33.
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and free on the upper half. Interested readers can use these di-
rectly without repeating the calculations again and again for
similar problems. Those polynomials are not only simplifying
the calculations but also minimizes the effects of ill-condition-
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ing which frequently occurs with such problems since the
resulting eigenvalue problem is no longer the generalized one
now.
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