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In this paper, we introduce a new modification of homotopy perturbation method
(NHPM) to obtain exact solutions of systems of linear integro-differential equations. Theoretical
considerations are discussed. Some examples are presented to illustrate the efficiency and simplicity
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1. Introduction

Integro-differential equation has attracted much attention and
solving this equation has been one of the interesting tasks for
mathematicians. These equations have been found to describe
various kind of phenomena such as wind ripple in the desert,
nono-hydrodynamics, dropwise consideration and glass-form-
ing process (Bo et al., 2007; Sun et al., 2007; Wang et al., 2007;
Xu et al., 2007).

The homotopy perturbation method is a powerful device
for solving functional equations. The method has been used
by many authors to handle a wide variety of scientific and
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engineering applications to solve various functional equations.
In this method the solution is considered as the summation of
an infinite series which converges rapidly to the accurate solu-
tions. Considerable research works have been conducted re-
cently in applying this method to a class of linear and
nonlinear equations. This method was further developed and
improved by He and applied to nonlinear oscillators with dis-
continuities (He, 1999), nonlinear wave equations (He, 2000),
boundary value problems (He, 2004), limit cycle and bifurca-
tion of nonlinear problems (He, 2003), and many other sub-
jects (He, 2004, 2005, 2006, 2005). It can be said that He’s
homotopy perturbation method is a universal one, and is able
to solve various kinds of nonlinear functional equations. For
examples it was applied to nonlinear Schrédinger equations
Biazar and Ghazvini (2007), to nonlinear equations arising in
heat transfer (Ganji, 2006), to the quadratic Ricatti differential
equation (Abbasbandy, 2006), and to other equations (Odibat
and Momani, 2008; Siddiqui et al., 2008; Ganji and Sadighi,
2007; Golbabai and Javidi, 2007; Golbabai and Keramati,
2008; Shakeri and Dehghan, 2008; Beléndez et al., 2008).
Biazar and Ghazvini (2009) and Biazar and Ghazvini (2008)
employed He’s homotopy perturbation method to compute
an approximation to the solution of system of Volterra integral
equations and nonlinear Fredholm integral equation of second
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kind. In Mohyud-Din et al. (2010), Raftari and Yildirim
(2010), Yildirim et al. (2010) and Yildirim and Giilkanat
(2010), some recent non-perturbative methods have been stud-
ied to solve various nonlinear problems.

In this article a new homotopy perturbation method is
introduced to obtain exact solutions of systems of integro-dif-
ferential equations. To demonstrate this method, some exam-
ples are given.

2. New homotopy perturbation method (NHPM) for systems of
integro-differential equations

A system of integro-differential can be considered in general as
follows:

d);(tt) =F(t,x(1)) + (/Iot K(s,t, x(s))ds, 1ty =0, 0
x(ty) = xo,

where

x(1) = (x1(0), x2(2), ... x4 ()7,

K(s,1,x(1)) = (ki (s, 1, x(5)), ka (s, 2, x(5)), . . . . Ken(s, 1, x(5))) .

If K(s, ¢, x(¢)) and F(z,x(¢)) be linear, the system (1) can be
represented as the following simple form:

dxl +Z(W” (1 /ki,/’(57 t)x,/(S)ds)

xi(to) =0y, i=1,2,...,n. (2)

For solving system (2), by new homotopy perturbation
method, we construct the following homotopy

dX;
(1-p) (W - xi,o)
dX "
+p (w, j
< J=1

=0,

+ / s, z)x,-(s)ds>>

3)

or equivalently,

t +/[Urk,':/~(s, t))g(s)ds)).

(4)
Applying the inverse operator, L' = f,;()dt to both sides of
Eq. (4), we obtain

X:(t) = o + /l’x,-,o(s)ds —p(/[x,-‘o(s)ds - /t’f,'-(s)ds
,Z(/to wii(8)x;(s ds+/ /k,/srx, dsdr))

(5)

Suppose the solutions of system (5) have the following form:
Xi(t) = Xio(t) + pX,, (1) + PP Xin () + -+, i=1,2,....n

(6)

where X;;(7), i=1,2,...,n and j=0,1,2,... are functions

which should be determined.
Now suppose that the initial approximations to the solu-
tions X;o(7) or x;o(z) have the form

Za,, i=12...,n, (7)

Xzo = ’Czo

where o;; are unknown coefficients and Py(x), Py(x), P»(x),...
are specific functions.

Substituting (6) into (5) and equating the coefficients of p
with the same power leads to

00 t
pOZX,-‘()(I) :GCf'f‘ZO(,‘_j/ P_/(S)dS
Za,,/ cls+/ Sils
+ ,w,- ds+/ / kij(s,7) dsdr)
Z(/fu / /0 i

P Xia() = z”: (/IU wij(8) X1 (s)ds + /m ‘/[0 kij(s, T)X,Ql(s)dsd‘c>,

X </w,,€ i1 (¢ d€+//k,,vr -1 (8 d?dr)
1 o

j=

(3)

Now if these equations be solved in a way that X;,(¢) = 0, then
Eq. (8) result in X;,(7) = X;2(f) = --- = 0, therefore the exact
solution can be obtained by using

_a,+za,,/ )

It is worthwhile to note that if £;(¢) and x;((¢) are analytic at
t = ty, then their Taylor series

wiolt) = ian<z “a) Sl = fjaf,(r ), (10)

X,'([) =

are known coeffi-
which must be

can be used in Eq. (8), where a;,aj,a;,. ..
cients and ayaja,... are unknown ones,
computed.

We would explain this method by considering several
examples.

3. Examples

In this section we present two examples. These examples are
considered to illustrate the NHPM for systems of integro-dif-
ferential equations.

Example 1. Consider the following system of integro-differ-
ential equations with the exact solutions x;(f) =e¢' and
Xz(l) = eit,

dxl(t)

4 3 2
= —r =2
dt

— 64+ (32 — 61+ T)x (£) + 262 (t + 1)xy(2)

+/0 (s> = )x1(s) + 2(s* — lz)xz(s))ds,xl (0)=1,
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dXz(l) _
dt

=32 42+ 2(0— D (8) + (26 + 28 + 28 — Dxa(2)

+ /0,((52 — )x1(s) + £2(s* + £2)x2(5))ds, x2(0) = 1.

(11)

For solving system (11), by NHPM, we construct the fol-
lowing homotopy:

d)iit(l) = x10(t) = plxio(t) — £ + 2+ 22 + 6

— (32 — 6t + )X\ (1) — 222(¢ + 1) Xa(2)

_ /0‘((53 — )X, (5) + A(5* — ) Xa(s))ds),
o) — ) = plasalt) + 7436 = 2= 2= DX, ()

— 2 128 428 — 1) X1 (1)

- /I((s2 — )X, (5) + (5> + £2) X (s))ds.

(12)
Assuming that, x10(f) = > o0 Pu(t), X20(t) = > reoBs
P,(1), Pi(1) =1, X(0) = X,(0) = 1.
By integration of Eq. (12) we have
X, g 2, g £
X () =1 _ % 1 S o D
(=143 2 p(;nJrl 577
2[2 t
+ o6 / (32 = 65+ T) X1 (5) + 252(s + 1) Xa(s))ds
0
1 T
—/ / (s =X (1) + 2 (s* — rz)Xz(r))dsdr>,
0 0
(13)
Xo(1) =1 n n+l o ﬁn /1+l t 2t
5 (1) +; (,,o”+1 + +

- /[(2(5 — DX, (s) 4 (25" +25° + 25> — 1) X, (s))ds

,/Or /OT((S2 — )X (1) +72(52+72)X2(r))dsd1),

(14)

Suppose the solutions of system (13) have the following
form:
Xi(l) :X,vTo(l)—Q—pX[‘](l)+p2X,-‘2(Z)+-~~, l: 1,2, (]5)
where X;;(¢), i=1,2 and j=0,1,2,..
should be determined.

Substituting (14) into (13) and equating the coefficients of p
with the same powers leads to

. are functions which

XI‘O([) = 1 + z ”(1"1 ln+1

X2.0(l‘) =1+ Z n/«fﬁl l"+1

00

le](t) = 72 nﬁlﬂﬁ] +77%7¥76l

n=0
+ [ (357 = 65+ 7)X1(s)
+2s2(S + 1) X50(s))ds
+ [y Lo (8 =) X10(x)
+12(s2 _ TZ)XZO(T))de‘[)’
Xoa (1) = Z nﬂfl [ ﬁ_ P

+2t+ [3(2(s — 1) X1 0(s)
+(25* +25% + 257 — 1) X, (s))ds
+ Jo Jo (58 =) X10(2)
+7(s7 + ) X2 (1))dsdr),
Xim(1) = [5((35 = 65+ T7) X1 1 (5)
+25%(s + 1) Xam1(5))ds
+Jo Jo (8 =) X1 (7)
+7(s? = 1) Xop1 (1) )dsdr),
P Xow(t) = [1205 — DX 1mor(s) + (25°
+25° + 252 — 1) Xa,1(5))ds
+Jo S (8 = ) X1 (7)
+72(s% + ) Xa 1 (1) )dsdr),
m=273....

Now if we set X 1(¢) = 0, then

70(0 71 Oy 3
(]—O(o)l+(7—3——)l‘+(6 20(0—?4‘])1

70(2 30(0 30(1 :BO
+ (12 T 4 4 4 +4+ 2

Toas 200 3o s 2By B _
+(20 s+t 35t s5 T3 +20 T =0,

and if we set X, (7) = 0, then

1 1 1 1
w=1 oo=1 e TR R TR b TR T ERERR
1 1 1
50—*17 /51:7 ﬁ?f ﬂ37§7 /34:*17 ﬂs

Therefore, the exact solutions of the system of integral-
differential equation (11) can be expressed as
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I
+Z +1n+1 Z_:

|
n=0 m

n l1+1 Z
=0

00

1+Z

XQ(Z) =

Example 2. Consider the following system of integro-differen-
tial equations with the exact solutions x;(f) =coshs and
x,(t) = sinhz¢,

dxi(1) 5
PP 6t — 14 x1(¢) + (7 = 2t)x,(1)
+ /’((s +0x1(5) + (s — )’ xa(8))ds,  x,(0) =1,
dx;tm — 3P 41— 64 (T—20x(1) + (1)

+ /O’((s — 1’ x1(5) + (s + )x2(5))ds,  x2(0) = 0.

(16)

For solving system (15) by NHPM, we construct the follow-
ing homotopy:

dX;llll(t) = xl,O(t) —p(xl.o(l) + 13 +6r+1— Xl(l) — (7 — 2[)X2(l>
N /Ot((s +0Xi(s) + (s = 1) Xa(s))ds),
P cio(0) ~ plraol) + 37 146~ (7= 203, ~ (1)

- /0’((5 = 1)’ X1(5) + (s + 1) Xa(5))ds).
(17)

Assuming  that,  xj0(t) = Yo 0 Pu(1), X20(1) = >0
B,Pa(0), Pt) = £, Xi(0) = 1, X3(0) = 0.

Applying the inverse operator, L™ = ft:()dt to both sides
of Eq. (17), we obtain

Xl(z):1+§ni”lt”“p<i Oj:l ”“+4+21 +1
+ (7 = 25)Xa(s))ds
[ [ +axe+6- erz(s))dsdr),
Xz(t):in gt (Z ”+1+t3—§+6t
- [0 =290+ xelopas

_ /Ot /01((S — )X (s) + (s + t)X2(s))dsdr).
(18)

Suppose the solutions of system (17) have the form (14),
substituting (14) into (17) and equating the coefficients of p
with the same power leads to

XLO(Z) =14+ Z ni:l ln+1

Xop(t) =

Z Ly g1
n+l ?

n=0

o0
X0 == 3 et - 37—t

+ Jo(X11(5) + (7 = 25) Xa1(5))ds
+ fol f(;((s +1)X1.1(s)

+(s — 1)’ X1 (5))dsdr),

B 2
Xoi(1) = = ZLmﬂ“—3+%—m

+ fo((7 —28)X1,1(5) + X2,1(5))ds
+Jo i (s =1 X1(5)
+(s + 1) X2.1(8))dsdr),

Xin(t) = [o(Xi o1 () + (7 — 25) X201 (s))ds
+Jo Jo (s + 1) X101 (5)
+(s — 1) Xo 1 (5))dsdr),

Xz’" .ﬁ) 7 29)X1 m— 1( )+X2,m71(s))ds
+f0 f()((s_ T)>X1,,,1_1(S)
(5 + 1) X1 (5))dsclr),
m=273,....

If we set X;,(¢) =0, then

7
—O(ol+<2+ﬁ— —OCI)IZ

7 2
m+ﬁ_ﬂ_%g

+(2+6 6 3 3

w S Th B 1w
12 24 12 4 4 4

2
+ (ﬁ_%+%_ﬁ+7al)t + . .=0.

20 5 20 15 120

Further assume that X>,(¢#) = 0. Then we have

(1= o)+ (“Ml,&,&),z

6 3 6 3

4 (ﬁ_%_‘_&_&_ )t3

+(7a2 5By By ﬁz)t4

12 24 4 4 12

20 120 20 15 5 20

4 (E_‘_Lﬁl &_%_&_L)ﬁ_‘_...zo.

It can be easily shown that

OC():O7

1 1
OC]ZI, 062:0, 063257 054:07 “5257
1
17 ﬁ1:07 ﬂ2 2'7 ﬂ3:O7 ﬂ4_4!7 ﬂ5:o7
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Thus
00 o o] 2n
xi(t) =1 "l = =cosht
x1(t) +;n+1 ;(211)! cosh,
( ) i ﬁ +1 i t2n—l h
X,(t) = _ntn = — =ysinht.
c~n+1 — 2n—1)!

which are exact solutions.

4. Conclusion

In this work, we considered a new homotopy perturbation
method for solving systems of linear integro-differential equa-
tions. New method is a powerful straightforward method.
Using this method we obtained new efficient recurrent rela-
tions to solve these systems. The new homotopy perturbation
method is apt to be utilized as an alternative approach to cur-
rent techniques being employed to a wide variety of mathemat-
ical problems. The computations associated with the examples
in this paper were performed using maple 10.
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