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Abstract The goal was to investigate the cellulase enzyme production ability of bacterial strain C1

isolated from cow dung and identified as Bacillus sp. on the basis of 16 S rDNA sequence homol-

ogy. The effects of different carbon sources like Carboxymethyl cellulose (CMC), avicel, starch,

maltose, sucrose, glucose, fructose, galactose and lactose on cellulase production at varying

environmental parameters of incubation period (2–10 days), temperature (35–55 �C), and pH

(6.0–8.5) were examined. The CMC was the best carbon source for cellulase production followed

by lactose in this bacterial strain. The maximum enzyme production was achieved at a temperature

of 50 �C by Bacillus sp. with pH of 7.0 on the 8th day of growth. The nitrogen source NH4NO3 at

0.175% was optimum for cellulase production by this bacterium. A putative mutant (C1M26) was

screened from wild C1 strain after mutagenesis with N-methyl-N0-nitro-N-nitrosoguanidine (NTG)

as a mutagenic agent. The mutant C1M26 produced a larger amount of cellulase in comparison to

wild type C1 strain.
ª 2014 Production and hosting by Elsevier B.V. on behalf of King Saud University.
1. Introduction

Cellulose is themost abundant renewable natural product in the
biosphere with an estimated annual production of 4.0 · 107 tons

(Bekare et al., 2005). It is a linear homopolysaccharide consist-
ing of glucose residues joined with b-1, 4-glycosidic linkage. The
cellulosic biomass can be hydrolyzed to fermentable sugars by

cellulolytic enzymes to produce bioethanol (Fang et al., 2008).
A cellulosic enzyme system consists of three major components:
endo-b-glucanase (EC 3.2.1.4), exo-b-glucanase (EC 3.2.1.91)

and b-glucosidase (EC 3.2.1.21).

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jksus.2014.06.001&domain=pdf
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The cellulases have a central role in the bioconversion of
abundant renewable cellulosic biomass to commodity chemi-
cals (Himmel et al., 1999). It has got very high biotechnologi-

cal potential for applications in different industries, such as
food, brewery, wine, pulp and paper, textile, detergent, feed
and agriculture (Bhat, 2000). However, cost of cellulase

enzyme and their stability are the major factors for their uses.
Cellulases are used in cotton preparations, wool and dyeing
treatment. Due to their vast applications and ever increasing

demand, novel cellulases with better process suitability, high
specific activity, better specificity and stability are being dis-
covered from new lineages of cellulolytic organisms. Majority
of studies on cellulase production have been focused on fungi

for simpler structure with a lesser emphasis on bacterial
sources (Bhat, 2000). However, bacterial cellulase are often
more complex and expressed in multi-enzyme complexes pro-

viding increased function and synergy. Most importantly, bac-
teria inhabit a wide variety of environmental and industrial
niches, which produce cellulolytic strains that are extremely

resistant to environmental stresses viz. these are thermophilic
or psychrophilic, alkaliphilic or acidophilic. So these strains
are able to survive in the harsh conditions, they often produce

enzymes that are stable under extreme stress conditions for
bioconversion process. The wide variety of bacteria in the envi-
ronment permits screening for more efficient cellulases to help
overcome current challenges in application of this enzyme. The

source of this cellulose enzyme system is best suitable from
enriched microflora found in the gut of organisms thriving
on lignocellulosic biomasses as their major feed.

There is increasing interest in cellulase production by bacte-
ria such as Anoxybacillus flavithermus EHP1 (Ibrahim and
Ahmed, 2007), Streptomyces sp. (Chellapandi and

Himanshu, 2008), Thermomonospora (George et al., 2001),
Microbacterium sp. (Sadhu et al., 2011), Streptomyces
transformant T3-1 (Jang and Chen, 2003), Streptomyces sp.

F2621 (Tuncer et al., 2004), Clostridium papyrosolvens
(Thirumale et al., 2001), Acidothermus cellulolyticus (Shiang
et al., 1991), Bacillus sp. (Heck et al., 2002; Bajaj et al.,
2009; Acharya and Choudhury, 2011; Sadhu et al., 2013),

Pseudomonas sp. (Bekare et al., 2005), Cellulomonas sp.
(Sangkharak et al., 2012), Bosea sp. (Sadhu et al., 2012)
Streptomyces griseorubens (Prasad et al., 2013).

We have isolated a bacterial strain from the fecal matter of
cow which might be present as gut micro flora capable of pro-
ducing cellulase designated as C1 strain and it was identified by

16 S rDNA sequence based homology. The present study
envisaged the optimization of carbon source, nitrogen source
and cultural condition for cellulase production by the isolated
C1 strain. The possible mechanism of synergism among

Carboxymethyl cellulose (CMC) with lactose for cellulase
production is also discussed. Strain improvement for cellulase
production was also made by isolation of mutants using

N-methyl-N-nitro-N-nitrosoguanidine (NTG).

2. Materials and methods

2.1. Isolation and screening of cellulase producing bacteria

The cow dung samples were collected from the village of Burd-
wan district, West Bengal, India, in plastic bags by sterilized
spatula and stored in an ice box for approximately 12 h. It
was brought to the laboratory for isolation of cellulolytic bacte-
ria. One gram of cow dung sample was suspendedwith 100 ml of
distilled water and was homogenized by constant shaking using

an orbital shaker for 2 h at 180 rpm. Serial dilutions from 10�6

to 10�7 were prepared using sterilized distilled water. An aliquot
of 100 lL of each dilution was spread plated onto Omeliansky’s

agar medium (Omeliansky, 1902) [g/L (W/V), (NH4)2SO4 1;
K2HPO4 1; MgSO4.7H2O 0.5; NaCl traces; carboxymethyl
cellulose (CMC) 1%, pH7] and incubated at 37 �C.Morpholog-

ically dissimilar and discrete colonies were picked from different
dilution plates and streaked on separate Omeliansky’s agar
medium and incubated at 37 �C for 96 h. The replica plates were
also prepared separately for staining. Cellulase producing bacte-

ria were screened by congo red staining (Teather and Wood,
1982) and C1 strain was selected as potent cellulolytic bacteria
(colony showing largest zone of decolorization).

2.2. Culture medium for production of cellulase

The fermentation medium is the same as the previously used

medium (Omeliansky’s medium) during isolation with the only
difference of addition of different carbon sources or different
nitrogen sources and adjustment of pH for optimization media

in different experiments. Different fermentable sugars or differ-
ent nitrogen sources have been shown to either induce or inhibit
cellulase production depending on individual species. To decipher
the sugar effect or the effect of nitrogen sources on C1 strain

cellulase activities of supernatant samples attained from cultures
grown on either glucose, cellobiose, CMC, lactose, sucrose,
or cellulose etc. as carbon sources and KNO3, (NH4)2SO4,

NH4NO3, NH4Cl, peptone etc. inmediumwere compared. Sim-
ilarly different pH was adjusted during medium preparation to
determine the optimumpHofC1 strain for cellulase production.

All the ingredients were mixed proportionately except carbon
source and the pH was adjusted by 0.2 N NaOH/0.1 N HCl.
Then the medium was sterilized by autoclaving at 121 �C for

15 min. The carbon source was sterilized separately and added
to the fermentation medium during inoculation. To check the
maximum production of cellulase by the C1 strain in culture,
the medium was enriched with the supplements step by step

which individually increase the cellulase production.

2.3. Cultural conditions for cellulase production and preparation
of crude enzymes

Two loops of C1 strain was inoculated into test tubes contain-
ing 5 ml of sterile water and shaken in a rotary shaker for mix-

ing. Thereafter, 0.5 ml of culture was inoculated into 100 ml
Erlenmeyer flask containing 20 ml of fermentation medium.
Carbon sources are added after sterilization. The culture was

incubated in a rotary shaker at 37 �C at 180 rpm for 10 days.
Fermented broths were removed after 2, 4, 6, 8 and 10 day
intervals and were centrifuged at 12,000g for 20 min at 4 �C.
The cell free supernatants containing the crude enzyme were

used for the estimation of cellulase enzymes. In some experi-
ments like optimization pH, temperature, and suitable concen-
tration of N-sources for cellulase production, fermented broths

were removed after 8 day interval for crude enzyme prepara-
tion. The enzyme production by the C1 strain was determined
by assay of cellulase enzymes using UV–visible spectropho-

tometer (Simadzu Model UV-190) at 540 nm.
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2.4. DNA extraction and molecular phylogenetic analyses using
16S rRNA gene sequence

Genomic DNA was isolated from C1 strain following the
method of Johnson (1994). The 16S rDNA genes was amplified

with broadly conserved bacterial 16s rDNA primers SSU16s-F
(50-AAC TCC TACGGGAGGCAG CAG-30) and SSU16s-R
(50-AAG GAC TAC CAG GGT ATC TAA TCC-30) which
yielded PCR products of about 0.4 Kb (Wilmotte et al., 1993).

The nucleotide sequences of the amplified small subunit rRNA
genes were determined bidirectionally with same SSU 16s prim-
ers according to Shaikh andTarr (2003).A continuous stretch of

415-nucleotide 16S rRNA gene sequences was used to search for
similar sequences from RDP database site. After confirmation
of generic affiliation, sequences from type strains of different

species were retrieved from NCBI GenBank. A phylogenetic
tree was constructed showing relationship between C1 strain
and other reference strains by neighbor joining (NJ) method

with Jukes and Cantor correction using TREECON software
as described by Saha and Chakrabarti (2006).

2.5. Cellulase enzyme assay

The CMCase activity was measured by incubating 0.5 ml of
culture supernatant with 0.5 ml of 1% CMC prepared in
0.05 M sodium acetate buffer, pH 4.8 at 40 �C for 1 h. The

reducing sugars liberated were estimated by the 3,5-dinitrosal-
icylic acid (DNS) method (Miller, 1959). The enzyme reaction
was stopped by the addition of 3 ml DNS reagent (dinitrosal-

icylic acid 1 g, NaOH, 16 g, potassium sodium tartrate 300 g,
and distilled water up to 1 L) to the above 1 ml reaction mix-
ture, boiled in capped glass tubes for 5 min, cooled and then
optical density was measured at 540 nm. The CMCase activity

was determined using a calibration curve for D-glucose. One
unit of CMCase activity was defined as the amount of enzyme
that released 1 lmol of reducing sugars as glucose equivalents

min�1 and the specific activity is the number of units of enzyme
activity per milligram of enzyme protein.

Avicelase activity was determined under same conditions

i.e., by incubating 0.5 ml of culture supernatant with 0.5 ml
of 1% Avicel (microcrystalline cellulose) prepared in 0.05 M
sodium acetate buffer, pH 4.8 at 40 �C for 1 h. After incuba-

tion, released reducing sugars were measured by the DNS
method. One unit of Avicelase activity was defined as the
amount of enzyme that released 1 lmol of reducing sugars as
glucose equivalents min�1 and the specific activity is the num-

ber of units of enzyme activity per milligram of enzyme protein.
The filter paper (FPase) activity was measured according to

the method of Ghosh (1987). 50 mg (1 · 6 cm2 strip) of What-

man No. 1 filter paper were added in 0.5 ml of 0.05 M sodium
acetate buffer (pH 4.8) and 0.5 ml of enzyme solution. The
mixture was incubated at 40 �C for 1 h and then the reducing

sugar liberated was measured by the DNS method. One unit of
FPase activity was defined as the amount of enzyme that
released 1 lmol of reducing sugars as glucose equivalents

min�1 and the specific activity is the number of units of enzyme
activity per milligram of enzyme protein.

b-glucosidase (or cellobiase) activity was measured by incu-
bating 0.5 ml of culture supernatant with 0.5 ml of 1% (w/v)

salicin prepared in 0.05 M sodium acetate buffer, pH 4.8 at
40 �C for 1 h. After incubation, released reducing sugars were
measured by the DNS method. One unit of b-glucosidase
activity was defined as the amount of enzyme that released
1 lmol of reducing sugars as glucose equivalents min�1 and

the specific activity is the number of units of enzyme activity
per milligram of enzyme protein.

The presence of glucose was also estimated by glucose oxi-

dase method (Baker and Panow, 1991) as the latter gives true
glucose concentration eliminating interference by other reduc-
ing sugars to detect the effect of lactose on cellulase production.

2.6. Protein concentration

The soluble protein concentration was determined according

to the method of Lowry et al. (1951).

2.7. Mutagenesis by N-methyl-N-nitro-N-nitrosoguanidine
(NTG)

The wide type cell grown in CMC medium at 50 �C for 24 h
was harvested at logarithmic phase by centrifugation
(10,000g, 20 min) at 4 �C and washed twice with McIlvaine’s

buffer (containing 0.1 M citric acid and 0.2 M phosphate buf-
fer) pH 5.0. The cell was resuspended in buffer at a concentra-
tion of 5.8 · 108 cell/ml. and NTG (1 mg/ml) was added into

the cell suspension. After incubation for 1 h at 37 �C in incuba-
tion shaker at 100 rpm, the cell was centrifuged and washed
immediately with buffer. The treated sample was transferred
into CMC plates (Xu et al., 2011) and incubated at 50 �C for

48 h. The cellulolytic activity was assayed using congo red fol-
lowed by Teather and Wood (1982).

2.8. Statistical analysis

The statistical analyses (Zar, 1999) were performed using the
SPSS version 11 software (Kinnear and Gray, 2000) using 3

replicates. It was performed by using a two-way factorial
ANOVA, multivariate ANOVA, and three-way factorial
ANOVA. In all cases, a post hoc Tukey test was carried out

t y test was carried out to determine the significant differences
within the variables.

3. Results

3.1. Isolation of cellulase producing bacteria from cow dung

After pouring congo red solution (0.75%) and washing it with
2% NaCl, a light colored clear zone was found around the
streak. But whole plate becomes deep red in color. This indi-

cates that the strains were cellulase producing. The cellulase
producing C1 strain was isolated from cow dung and was iden-
tified to be a species of Bacillus sp. with the help of partial 16S

rDNA sequence homology of C1 strain (Fig. 1).

3.2. Bacterial growth and cellulase production with various
saccharides

Cellulase production was found to be dependent upon the nat-
ure of the carbon source used in culture media. To maximize

cellulase yield, the effects of different carbon sources (1%W/V)
in production medium have been examined and are presented



Figure 1 Neighbor-joining phylogenetic tree is showing relationship of C1 strain with different spp. of the Bacillus 100% similarities

taken from blast analysis. The tree was generated using TREECON software (Van de Peer and De Wachter, 1997) with Jukes and

Cantor’s correction. Bootstrap values of 1000 replications are shown at the nodes. Sequence of Geobacillus stearothermophilus (AB02196)

was taken as out group. Bar 0.1 substitutions per site.
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in Table 1. The results were taken after 8 days of incubation.
These findings showed that Bacillus sp. utilized all carbon

sources for bacterial growth. The CMC was the best among
the tested carbon sources for this strain, as highest CMCase,
Avicelase, FPase and b-glucosidase were recorded which

proved the powerful induction of extracellular cellulase
activity (Table 1). After CMC, lactose was the next better
water-soluble carbon source for cellulase production by this

strain. To maximize cellulase yield, the effects of different
saccharides as carbon sources in the production medium have
been examined and are presented in Table 1. The results of a
Table 1 Effect of different carbon sources (1%W/V) on cellulase pr

post hoc Tukey test showed significant differences between the paire

presented with NS in superscript.

Carbon sources Specific activity (U/mg protein)

CMCase Avicelase

Starch 0.49 ± 0.012 0.47 ± 0

Maltose 0.47 ± 0.008 0.45 ± 0

Sucrose 0.13 ± 0.005 0.16 ± 0

Glucose 0.11 ± 0.012 0.13 ± 0

CMC 0.73 ± 0.011 0.77 ± 0

AvicelNS 0.26 ± 0.015 0.45 ± 0

Lactose 0.69 ± 0.008 0.70 ± 0

FructoseNS 0.35 ± 0.014 0.31 ± 0

Galactose 0.26 ± 0.008 0.27 ± 0
two way ANOVA revealed significant differences in the spe-
cific activity for different carbon sources (between Carbon

source, CS: F(1)8,72 = 1104.808; P < 0.001) and enzyme types
(between enzyme types, ET: F(1)3,72 = 11.58; P < 0.001) and
their interactions (between CS and ET: F(1)24,72 = 14.46;

P < 0.001).

3.3. Effect of days on cellulase production

Incubation time is an important parameter for optimal pro-
duction of enzymes. For determining the optimum incubation
oduction by C1 after 8 days of incubation at 37 �C. The results of
d variables under carbon sources and enzyme types except those

NS FPaseNS b-GlucosidaseNS

.008 0.45 ± 0.008 0.45 ± 0.008

.008 0.42 ± 0.017 0.35 ± 0.001

.008 0.20 ± 0.014 0.15 ± 0.012

.005 0.20 ± 0.014 0.21 ± 0.011

.011 0.84 ± 0.026 0.93 ± 0.014

.014 0.32 ± 0.014 0.26 ± 0.015

.006 0.75 ± 0.014 0.80 ± 0.020

.008 0.32 ± 0.014 0.38 ± 0.015

.014 0.28 ± 0.008 0.29 ± 0.015
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Figure 2 Time course of CMCase, Avicelase, FPase and

b-glucosidase of crude enzyme produced by culture medium

containing 1% CMC at 37 �C by Bacillus sp.
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days, a range of days (2–10 days) was tested, keeping the incu-
bation temperature constant at 37 �C and pH at 7.0. It was

observed that the strain gradually raised cellulase synthesis
and reached maximum activity (Fig. 2) at 8 days (0.73 U/mg
CMCase, 0.77 U/mg Avicelase, 0.84 U/mg FPase and
0.93 U/mg b-glucosidase) after that enzyme activity slowly

decreased.

3.4. Optimum concentration of CMC

We find that among different carbon sources CMC was the
best carbon source. Among different concentrations of
CMC, 8% CMC was optimum for cellulase production of this

strain (1.114 U/mg CMCase, 1.065 U/mg Avicelase, 1.117 U/mg
FPase and 1.041 U/mg b-glucosidase) (Fig. 3) revealed by a
two way ANOVA followed by Tukey test (Fig. 3). The results

of a two way univariate ANOVA using CMC concentrations
and the enzyme types as variables were tested to justify the
differences in the specific activity exhibited by Bacillus sp.
(strain C1). All P values are significant at P < 0.001 level.

3.5. Effect of temperature on cellulase production

The medium was adjusted to pH 7.0 during the optimization of

incubation temperature. For determining the optimum
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Figure 3 CMCase, Avicelase, FPase and b-glucosidase of crude

enzyme produced by culture medium containing different concen-

trations of CMC at 37 �C after 8 days by Bacillus sp.
temperature, a range of temperatures (35 –55 �C) was tested,
keeping the incubation days constant at 8 days and using 8%
CMC. It was observed that the levels of CMCase, Avicelase,

FPase and b-glucosidase were highest at 50 �C (2.05 U/mg
CMCase, 2.4 U/mg Avicelase, 2.02 U/mg FPase and 2.6 U/mg
b-glucosidase) (Fig. 4), after that cellulase production slowly

decreased. The results of a two-way ANOVA substantiate
the differences in the specific activities at different tempera-
tures for the enzymes .The significant F value for the temper-

ature and enzyme interactions is suggestive of the fact that
the peak activity of the enzymes vary in their temperature
ranges.

3.6. Effect of pH on cellulase production

For determining the optimum pH, a range of pH (6.0–8.5) was
tested, keeping the incubation temperature constant at 50 �C
and 8 days and using 8% CMC. It was observed that the strain
gradually raised cellulase synthesis and reached maximum
activity (Fig. 5) at pH 7.0 (2.26 U/mg CMCase, 2.45 U/mg

Avicelase, 2.05 U/mg FPase and 2.84 U/mg b-glucosidase)
after that enzyme activity slowly decreased. Like the tempera-
ture effects on cellulase production, effects of pH and enzyme

interactions in the ANOVA were also noted (Fig. 5).

3.7. Effect of nitrogen sources on cellulase production

The enzyme production is affected significantly under different

concentrations of the organic and inorganic nitrogen sources
(Table 2). For determining the suitable nitrogen source, all
optimized conditions are used. The results of a two way

ANOVA revealed significant differences in the specific activity
for different nitrogen sources (between Nitrogen source, NS:
F(1)6,56 = 13272.808; P < 0.001) and enzyme types (between

enzyme types, ET: F(1)3,56 = 194.58; P< 0.001) and their
interactions (between NS and ET: F(1)18,56 = 323.941;
P < 0.001). Among the different nitrogen sources tested, the

enzyme activity was higher with NH4NO3 (Table 3). To find
out the suitable concentration of NH4NO3, different
concentrations of NH4NO3 were tested, among which
0.175% NH4NO3 was optimum for this strain (5.6 U/mg
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Figure 4 Production of cellulases by Bacillus sp. in broth culture

containing 8% CMC after 8 days of incubation at different

temperatures.
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Figure 5 Production of cellulases by C1 in broth culture

containing 8% CMC after 8 days of incubation at 50 �C at

different pH.
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CMCase, 5.75 U/mg Avicelase, 5.4 U/mg FPase and 5.62 U/mg
b-glucosidase) (Fig. 6).

3.8. Optimum concentration of lactose

We find that lactose was the penultimate best carbon source
for cellulase production. Therefore, effects of two different

concentrations of lactose have been tested (Figs. 7A and B)
and it was observed that 1% lactose was better for cellulase
production of this strain (Fig. 7A). A repeated measures

ANOVA justified the differences on the supplement added to
the medium, the time (in days) of incubation and the activity
of the different enzyme by this Bacillus sp. strain C1.

3.9. Effect of lactose on cellulase production

CMC was the optimum carbon source for cellulase production
among the sources tested (Table 1). We noticed that the effect
Table 2 Effect of different Nitrogen sources (0.1%W/V) on cellula

and pH 7.0. The results of post hoc Tukey test showed significant dif

enzyme types except those presented with NS in superscript.

Nitrogen source (0.1%) CMCase (U/mg protein) Avicelase (U/mg pr

KNO3 2.26 ± 0.020 2.40 ± 0.015

(NH4)2SO4 1.14 ± 0.015 1.82 ± 0.015

NH4NO3 3.52 ± 0.015 3.52 ± 0.017

NH4Cl 3.03 ± 0.015 3.21 ± 0.011

Peptone 2.37 ± 0.015 2.37 ± 0.015

Yeast extract 1.91 ± 0.020 1.99 ± 0.015

Tryptone 1.05 ± 0.015 1.20 ± 0.015

Table 3 Effect of lactose: culture medium containing (I) 8% (W/L) C

over 8 days at 37 �C by C1 strain. All t-values are significantly diffe

Analysis items I

CM Case specific activity (U/mg protein) 1.114 ±

Avicelase specific activity(U/mg protein) 1.065 ±

FPase specific activity (U/mg protein) 1.117 ±

b-Glucosidase specific activity (U/mg protein) 1.041 ±

Protein (mg/ml) 0.136 ±
of disaccharide lactose on cellulase synthesis significantly dif-
fered. The specific activity of CMCase, Avicelase, FPase and
b-glucosidase recorded highest when 8% CMC was supple-

mented with 1.0% lactose (Table 3). Activities of the same
enzymes under similar conditions were comparatively lower
with 7% CMC with 1% lactose or with any other combination

percentage of them as substrate (Figs. 8A, B).

3.10. Effect of mutagenic treatment on cellulose production

The wild type Bacillus sp. strain C1 was subjected to mutagenic
treatment using NTG for strain improvement. After mutagen-
esis, following C1M11, C1M16, C1M23, C1M26, C1M29 mutant

colonies were obtained based on the ratio of diameter between
the clearing zone and colony on the CMC-congo red medium.
The cellulase activity of clones that displayed the largest clear-
ing zones was assessed after 60 h of cultivation. The five best

isolates were selected and cultivated in the CMC agar medium
(Table 4). Mutant strain C1M26 exhibited the highest CMCase
activity at 16.30 U/mg protein followed by the mutant strain

C1M16 (14.75 U/mg proteins) (Table 4).

4. Discussion

The 16S rDNA sequence has been submitted to Microbial
Type Culture Collection Centre and GenBank, Chandigarh,
India and Accession No. is MTCC10046. The phylogenetic

analysis of the C1 strain using its 16S rDNA sequence data
showed that strain C1 had the highest homology (100%) with
Bacillus circulans. Due to the lack of overall genome related-
ness, chemotaxonomic data, FAME etc. the specific epithet

of C1 strain could not be assigned and identified as Bacillus
sp. (Fig. 1).

Production of cellulase in the presence of different cellulosic

substrates was studied by using C1 strain. The strain has the
ability to metabolize these cellulosic substrates for their growth
se production by Bacillus sp. after 8 days of incubation at 50 �C
ferences between the paired variables under nitrogen sources and

otein) FPaseNS (U/mg protein) b-GlucosidaseNS (U/mg protein)

2.05 ± 0.17 2.82 ± 0.015

1.82 ± 0.015 1.99 ± 0.020

3.56 ± 0.017 3.62 ± 0.011

2.85 ± 0.011 2.74 ± 0.015

2.38 ± 0.015 1.87 ± 0.005

1.52 ± 0.015 1.70 ± 0.015

1.08 ± 0.018 1.12 ± 0.017

MC as carbon source over 8 days or (II) 8% CMC + 1% lactose

rent at P < 0.001 level.

II t(2),2-Value

0.002 6.41 ± 0.023 145.091

0.002 5.46 ± 0.037 120.107

0.005 6.41 ± 0.014 114.303

0.002 5.40 ± 0.023 141.499

0.002 0.720 ± 0.003 99.19
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Figure 6 CMCase, Avicelase, FPase and b-glucosidase of crude

enzyme produced by culture medium containing different concen-

trations of NH4NO3 at 37 �C after 8 days by Bacillus sp.
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by expressing cellulolytic enzyme activities. In the presence of
CMC, the strain displayed significant activity when compared
with others followed by lactose, starch and maltose etc.,
F

b

substantiated by post hoc Tukey test (Table 1). Other carbon
sources did not show a significant role on enzyme productivity.
The results of carbon sources were in accordance with the

results of Streptomyces sp. BRC1 and BRC2 (Chellapandi
and Himanshu, 2008), A. flavithermus EHP1 (Ibrahim and
Ahmed, 2007), Microbacterium sp. (Sadhu et al., 2011),

Bacillus sp. (Sadhu et al., 2013).
In the present study the C1 strain produced highest enzyme

production after 8 days of incubation, after that it was decreas-
ing (Fig. 2). In Streptomyces sp. BRC1 and BRC2 gradually

raised endoglucanase synthesis and reached maximum activity
at 3 days, after that enzyme activity slowly decreased
(Chellapandi and Himanshu, 2008). A similar 8 day incubation

period was essential for cellulase production inMicrobacterium
sp. (Sadhu et al., 2011) and in Bosea sp. (Sadhu et al., 2012). A
10 day incubation period was essential for cellulase production

in Bacillus sp. (Sadhu et al., 2013).
Among different carbon sources, lactose was the next suit-

able carbon source after CMC for cellulase production by this

strain (Table 1). This is reflective of the various physiological
and biochemical adaptations of the bacteria Bacillus sp. and
that the enzyme activities vary with time and the available
energy sources.



Table 4 Comparison on carboxymethyl-cellulase (CMCase), Avicelase, FPase and b-glucosidase activity from wild type and mutant

strain of Bacillus sp. after cultivation in CMC medium at 50 �C.

Bacterial strains CMCase (U/mg protein) Avicelase (U/mg protein) FPase (U/mg protein) b-Glucosidase (U/mg protein)

Wild type C1 strain 9.40 ± 0.002 10.12 ± 0.002 9.55 ± 0.002 9.02 ± 0.002

Mutant C1M11 11.20 ± 0.002 11.35 ± 0.002 11.25 ± 0.002 11.11 ± 0.002

C1M16 14.75 ± 0.037 14.82 ± 0.037 14.55 ± 0.037 14.22 ± 0.037

C1M23 13.21 ± 0.023 13.26 ± 0.023 13.21 ± 0.023 13.02 ± 0.023

C1M26 16.30 ± 0.015 16.55 ± 0.015 16.62 ± 0.014 16.15 ± 0.015

C1M29 12.86 ± 0.014 12.92 ± 0.017 12.70 ± 0.017 12.78 ± 0.011
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Microbial cellulase production has been influenced by tem-
perature. Optimum temperatures for cellulase production are

different in different bacteria (Chellapandi and Himanshu,
2008; George et al., 2001). From Fig. 4, it was found that max-
imum cellulase activity was recorded at 50 �C by this strain.

Similar results have been found in Thermonospora (George
et al., 2001), Streptomyces transformant T3-1 (Jang and
Chen, 2003), Bosea sp. (Sadhu et al., 2012), Bacillus sp.

(Sadhu et al., 2013) and S. griseorubens (Prasad et al., 2013).
Comparison in terms of enzyme activity is difficult to estab-

lish because the prokaryotic cellulases may present very differ-
ent actions from those of fungi, with best pH varying among

them (Heck et al., 2002). The cellulase production was higher
at pH 7.0 in the medium by C1 strain. Similar observations
have been recorded in Streptomyces sp F2621 (Tuncer et al.,

2004), Streptomyces BRC1 and BRC2 (Chellapandi and
Himanshu, 2008), A. flavithermus EHP1 (Ibrahim and
Ahmed, 2007), Bosea sp. (Sadhu et al., 2012), Bacillus sp.

(Sadhu et al., 2013) and S. griseorubens (Prasad et al., 2013).
The production of cellulases is sensitive to the nitrogen

source and nitrogen level in the medium. The production med-
ium was incorporated with different inorganic nitrogen sources

to determine a suitable nitrogen source for CMCase produc-
tion. Meat extract and tryptone (1%) served as intensive nitro-
gen sources to Streptomyces sp. BRC1 and yeast extract (1%)

suited for Streptomyces sp. BRC2 (Chellapandi and
Himanshu, 2008) for cellulase production. The enzyme activity
was higher with NH4Cl (0.15%) in Bacillus sp. (Sadhu et al.,

2013). Similar results have been found in Bosea sp. (Sadhu
et al., 2012).

It was observed from Table 1 the lactose was the penulti-

mate carbon source for cellulase production after CMC for
this strain. It is apparent from the multivariate test that signif-
icant differences were obvious between the enzyme types and
their peak activity in respect to the incubation periods and

the media.
Most microbial cellulases are induced in the presence of cel-

lulose but cellulose itself cannot directly trigger the induction

as it is insoluble. A basal level of cellulase production occurs
in the absence of glucose. The soluble saccharides such as cel-
lobiose, sorphorose, lactose, trehalose, sorbose, and galactose

might serve as inducers for cellulase synthesis as reported in
C. papyrosolvens (Thirumale et al., 2001), A. cellulolyticus
(Shiang et al., 1991). We therefore, investigated the positive

synergistic effect of lactose with CMC on cellulase production
by C1 strain. Lactose synergistically enhanced the cellulase
synthesis. Activities of same enzymes under similar condition
were also lower when the substrates (CMC or lactose) were

added individually. The result is also in accordance with the
results reported earlier with a fungus Hypocrea jecorina
(Seiboth et al., 2002) and in bacteria Microbacterium (Sadhu
et al., 2011). However, the mechanism through which lactose

induces the formation of cellulase is not clearly known;
Seiboth et al. (2002) stated that lactose might act as an inducer
of cellulase formation rather than promoting cellulase biosyn-

thesis by relieving the carbon catabolite repression.
Lactose induces cellulase production in this strain. Lactose

consists of D-galactose and D-glucose though cellulase synthesis

cannot be induced by galactose or glucose individually
(Table 1). This is reflected through the two tailed paired t-test
carried out on the specific activity of the enzymes under the
two different media – 8% CMC and 8% CMC + 1% lactose,

with significantly higher activity in lactose containing medium.
Protein yield was also higher in the medium containing lactose.
Reports from the literature suggested that glucose inhibited cel-

lulose synthesis (Ilmen et al., 1997) and lactose enhances signif-
icantly higher cellulase levels than D-galactose in Trichoderma
reesei (Karaffa et al., 2006). The induction mechanism of cellu-

lase formation is studied in fungus by many workers (Schmoll
and Kubicek, 2003) and in bacteria (Sadhu et al., 2011,
2013). We therefore consider that lactose is a water soluble
disaccharide in the mixed medium with CMC and was fast uti-

lized by Bacillus sp. and produced cellulose initially which
would enable an initial attack on CMC followed by more cellu-
lase production. Thus, the cellulase production was remarkably

enhanced when lactose was added with CMC as a carbon
source. Lactose is a powerful inducer that generally enhances
the cellulase yield in this organism by stimulating secretion of

various proteins along with cellulase. The strain C1 which ini-
tially produced low amount of cellulase but after cultural opti-
mization it increased the production as shown in Table 5.

Mutant strain C1M26 exhibited the highest CMCase activ-
ity. A similar result was found in Cellulomonas sp. TSU-03
where NTG treated mutant strains increased the yield of cellu-
lose (Sangkharak et al., 2012). NTG was suggested to affect

the cellulase genes within these mutants. But, how NTG trig-
gered cellulase production in these mutants is not clear. We
favor the hypothesis that NTG could have affected the regula-

tory genes or the stability of the mRNA leading to greater cel-
lulase synthesis. Similar hypothesis is also put forward in
Pseudomonas sp. where catabolite repression was responsible

for enhanced cellulase production by mutagenesis.

5. Conclusion

The bacteria as enzyme sources have many advantages that, the
enzymes produced are normally extracellular, making easier for
downstream process. The development of economically feasible

technologies for cellulase production and for the enzymatic
hydrolysis of cellulosic materials will enable to utilize the large



T
a
b
le

5
Im

p
ro
v
em

en
t
o
f
ce
ll
u
la
se

p
ro
d
u
ct
io
n
a
s
th
e
ch
a
n
g
es

o
f
th
e
co
n
d
it
io
n
.

E
x
p
er
im

en
t

C
o
n
d
it
io
n

R
es
u
lt

S
p
ec
ifi
c
a
ct
iv
it
y
(U

/m
g
p
ro
te
in
)

C
M
C
a
se

A
v
ic
el
a
se

F
P
a
se

b-
G
lu
co
si
d
a
se

In
cu
b
a
ti
o
n
p
er
io
d
(d
a
y
s)

3
7

�C
,
p
H

7
.0
,
1
%

C
M
C
,
0
.1
%

W
/V

N
2
so
u
rc
e

8
d
a
y
s

0
.7
3
±

0
.0
1
1

0
.7
7
±

0
.0
1
1

0
.8
4
±

0
.0
2
6

0
.9
3
±

0
.0
1
4

C
o
n
ce
n
tr
a
ti
o
n
o
f
C
M
C

(%
)

3
7̊
C
,
p
H

7
.0
,
8
d
a
y
s,
0
.1
%

W
/V

N
2
so
u
rc
e

8
%

1
.1
1
4
±

0
.0
1
5

1
.0
6
5
±

0
.0
1
0

1
.1
1
7
±

0
.0
1
0

1
.0
4
1
±

0
.0
1
0

T
em

p
er
a
tu
re

(�
C
)

p
H

7
.0
,
8
d
a
y
s,
8
%

C
M
C
,
0
.1
%

W
/V

N
2
so
u
rc
e

5
0

�C
2
.0
5
±

0
.0
1
5

2
.4

±
0
.0
1
7

2
.0
2
±

0
.0
1
1

2
.6

±
0
.0
1
0

p
H

5
0

�C
,
8
d
a
y
s,
8
%

C
M
C
,
0
.1
%

W
/V

N
2
so
u
rc
e

7
.0

2
.2
6
±

0
.0
2
0

2
.4
5
±

0
.0
1
5

2
.0
5
±

0
.0
1
7

2
.8
4
±

0
.0
1
5

S
u
it
a
b
le

n
it
ro
g
en

so
u
rc
e

8
d
a
y
s,
8
%

C
M
C
,
5
0

�C
,
p
H

7
.0
,
0
.1
%

W
/V

N
2
so
u
rc
e

N
H

4
N
O

3
3
.5
2
±

0
.0
1
5

3
.5
2
±

0
.0
1
7

3
.5
6
±

0
.0
1
7

3
.6
2
±

0
.0
1
1

C
o
n
ce
n
tr
a
ti
o
n
o
f
N
H

4
N
O

3
(%

)
8
d
a
y
s,
8
%

C
M
C
,
5
0

�C
,
p
H

7
.0

0
.1
7
5
%

5
.6

±
0
.0
1
5

5
.7
5
±

0
.0
1
5

5
.4

±
0
.0
1
5

5
.6
2
±

0
.0
1
1

8
%

C
M
C
+

1
%

la
ct
o
se

3
7

�C
,
p
H

7
.0
,
8
d
a
y
s,
0
.1
%

W
/V

N
2
so
u
rc
e

6
.4
1
±

0
.0
2
3

5
.4
6
±

0
.0
3
7

6
.4
1
±

0
.0
1
4

5
.4
0
±

0
.0
2
3

Optimization and strain improvement by mutation 331
quantities of biomass such as the residues of both food indus-
tries and agriculture. Thus the present investigation was selected
to conduct an extensive study on cellulases from Bacillus sp.

Present study aimed at isolation of promising cellulase produc-
ing Bacillus sp its identification, and optimization of cultural
conditions for production of cellulolytic enzymes. Though we

isolated the C1 strain from cow dung, the input of cellulase pro-
duction by Bacillus sp. was attempted by the optimization and
mutagenesis study. Enhancement of cellulase production in

the presence of lactose has been reported in fungi and in some
bacteria. Present work suggests that lactose has an enhancing
effect on cellulase production in this strain also and strengthen-
ing the hypothesis. NTG treated mutants showed higher cellu-

lase production than wild type of C1 strain. The result
concludes thatmutagenesis byNTGcaused enhancement of cel-
lulase production bymutation of regulatory genes or stability of

mRNA of cellulase or by some other unknown mechanisms.
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