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1. Introduction

A Cauchy random variable with location parameter l 2 R and
scale parameter r > 0, denoted by X � C l;rð Þ, has probability
density function
f 0 x;l;rð Þ ¼ pr 1þ x� l
r

� �2
� �� ��1

; x 2 R; ð1Þ
and cumulative distribution function
F0 x;l;rð Þ ¼ 1
2
þ 1
p

tan�1 x� l
r

� �
; x 2 R: ð2Þ

Siméon Denis Poisson discovered the Cauchy distribution in
1824, long before its first mention by Augustin-Louis Cauchy.
Early interest in the distribution focused on its value as a
counterexample which demonstrated the need for regularity
conditions in order to prove important limit theorems (see Stigler,
1974). Thanks to this special nature, the Cauchy distribution is
sometimes considered as a pathological case. However, it can be
used as a model for describing a wealth of phenomena. This is
exemplified in the sequel.

This probability law describes the energy spectrum of an
excited state of an atom or molecule, as well as an elementary par-
ticle resonant state. It can be shown quantum mechanically that
whenever one has a state which decays exponentially with time,
the energy width of the state is described by the Cauchy distribu-
tion (Roe, 1992). Winterton et al. (1992) showed that the source of
fluctuations in contact window dimensions is variation in contact
resistivity, and the contact resistivity is distributed as a Cauchy
random variable. Kagan (1992) pointed out that the Cauchy distri-
bution describes the distribution of hypocenters on focal spheres of
earthquakes. An application of this distribution to study the polar
and non-polar liquids in porous glasses is given by Stapf et al.
(1996). Min et al. (1996) found that Cauchy distribution describes
the distribution of velocity differences induced by different vortex
elements. An example in the context of quantitative finance is pro-
vided in Section 4.

Many statistical procedures, employed in the above mentioned
applications, assume that the random mechanism generating the
data follows the Cauchy distribution. A parametric procedure usu-
ally hinges on the assumption of a particular distribution. It is,
therefore, of utmost importance to assess the validity of the
assumed distribution. This is accomplished by performing a
goodness-of-fit test. In this article, we suggest six tests of fit for
the Cauchy distribution. They are modifications of a test based
on Kullback-Leibler (KL) information criterion, previously studied
by Mahdizadeh and Zamanzade (2017). Information theory deals
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with stochastic processes as sources of information, or as models of
communication channels; see, for example, Stone (2015). It is
known to be a powerful tool in the study of communication and
control in the animal and the machine (Wiener, 1961). Being an
essential part of probability theory, information theory is also clo-
sely related to statistical inference (Kullback, 1997). Vinga (2014)
and Bensadon (2016) provide some applications in biological
sequence analysis, and machine learning, respectively. A large
body of literature has grown around developing goodness-of-fit
tests using the information-theoretic measures such as the entropy
and the KL distance. This approach has been successfully applied
for many distributions, including normal, uniform, exponential,
inverse Gaussian and Laplace, among others. See for example
Vasicek (1976), Dudewicz and van der Meulen (1981),
Grzegorzewski and Wieczorkowski (1999), Mudholkar and Tian
(2002), Choi and Kim (2006), Al-Omari and Haq (2016), Al-Omari
and Zamanzade (2017), Al-Omari and Zamanzade (2018),
Mahdizadeh (2017a,b), Zamanzade and Mahdizadeh (2017a,b).

Section 2 is given to a review of the existing tests. The new
goodness-of-fit tests are presented in Section 3. Power properties
of these tests are assessed by means of Monte Carlo simulations.
The results are reported in Section 4. To illustrate the suggested
procedures, a real data set is analyzed in Section 5. We end in Sec-
tion 6 with a summary.

2. Review of the existing goodness-of-fit tests

Given a random sample X1; . . . ;Xn from a population having a
continuous density function f xð Þ, consider the problem of testing
H0 : f xð Þ ¼ f 0 x;l;rð Þ for some l 2 R and r > 0, where f 0 x;l;rð Þ
is given (1). The alternative hypothesis is H1 : f xð Þ – f 0 x;l;rð Þ for
any l 2 R and r > 0.

The Cauchy distribution is a peculiar distribution due to its
heavy tail and the difficulty of estimating its parameters (see
Johnson et al., 1994). First, the method of moment estimation fails
since the mean and variance of the Cauchy distribution do not
exist. Second, the maximum likelihood estimates of the parameters
are very complex. We therefore estimate l and r by the median
and the half-interquartile range which are attractive estimators
because of their simplicity. Suppose X 1ð Þ 6 � � � 6 X nð Þ are the sample
order statistics, and np 0 < p < 1ð Þ is the sample p th quantile. Then,
the two estimators are given by

l̂ ¼
X n=2ð Þ þ X n=2þ1ð Þ
� 	

=2 if n is even
X nþ1ð Þ=2ð Þ Otherwise

(
; ð3Þ

and

r̂ ¼ 1
2

n0:75 � n0:25ð Þ: ð4Þ

Suppose F0 x;l;rð Þ is defined as in (2). The best-known statistic for
tests of fit is that of Kolmogorov-Smirnov given by

KS ¼ max
i¼1;...;n

max i
n � F0 X ið Þ; l̂; r̂

� 	
;


�
F0 X ið Þ; l̂; r̂
� 	

� i�1
n

�
: ð5Þ

Another powerful test, especially for small sample sizes, is based on
the Anderson-Darling statistic defined as

A2 ¼ �2
n

Xn

i¼1

i� 0:5ð Þ log F0 X ið Þ; l̂; r̂
� 	
 ��

þ n� iþ 0:5ð Þ log 1� F0 X ið Þ; l̂; r̂
� 	
 �

� n: ð6Þ

The famous Cramér-von Mises statistic,

W2 ¼
Xn
i¼1

F0 X ið Þ; l̂; r̂
� 	

� i� 0:5
n

� �2

þ 1
12n

; ð7Þ
leads to an important goodness-of-fit test. The above three test are
based on weighted distance between true and empirical distribu-
tion functions. Gürtler and Henze (2000) proposed a test based on
the empirical characteristic function

Wn tð Þ ¼ 1
n

Xn

j¼1

exp itYj
� 	

of the standardized data Yj ¼ Xj � l̂
� 	

=r̂; j ¼ 1; . . . ;n. The test
statistic,

Dn;k ¼ n
Z 1

�1
Wn tð Þ � e�jtj�� ��2e�kjtjdt;

is the weighted L2 distance between Wn and the characteristic func-
tion of the standard Cauchy distribution, where k denotes a fixed
positive weighting parameter. Large values of Dn;k imply rejection
of H0. After some algebra, an alternative representation of Dn;k is
derived as

Dn;k ¼
2
n

Xn
j¼1

Xn
k¼1

k

k2 þ Yj � Yk
� 	2 � 4

Xn

j¼1

1þ k

1þ kð Þ2 þ Y2
j

þ 2n
2þ k

: ð8Þ

Remark 1. In practice, we use k ¼ 5 which leads to a powerful test
according to the simulation results reported by Gürtler and Henze
(2000).

Recently, Mahdizadeh and Zamanzade (2017) proposed four
new tests of fit for the Cauchy distribution. The first three of them
are modifications of the tests introduced by Zhang (2002). The cor-
responding test statistics are

ZK ¼ max
i¼1;...;n

i� 0:5ð Þ log i� 0:5
nF0 X ið Þ; l̂; r̂

� 	( )"

þ n� iþ 0:5ð Þ log n� iþ 0:5
n 1� F0 X ið Þ; l̂; r̂

� 	� 	( )#
; ð9Þ

ZA ¼ �
Xn
i¼1

log F0 X ið Þ; l̂; r̂
� 	
 �

n� iþ 0:5
þ
log 1� F0 X ið Þ; l̂; r̂

� 	
 �
i� 0:5

� �
; ð10Þ

and

ZC ¼
Xn
i¼1

log
1=F0 X ið Þ; l̂; r̂

� 	
� 1

n� 0:5ð Þ= i� 0:75ð Þ � 1

� �� �2
: ð11Þ

The fourth test utilizes the KL distance (see Kullback (1997))
between f and f 0 given by

D f ; f 0;l;rð Þ ¼
Z 1

�1
f xð Þ log f xð Þ

f 0 x;l;rð Þ

� �
dx

¼ �H fð Þ �
Z 1

�1
f xð Þ log f 0 x;l;rð Þð Þdx; ð12Þ

where H fð Þ is Shannon’s entropy of f defined as

H fð Þ ¼ �
Z 1

�1
f xð Þ log f xð Þð Þdx:

The KL distance is the most common information criterion utilized
for assessing model discrepancy. It is the expectation of the loga-
rithm of the ratio of the probability density functions of two mod-
els, one being a fitted model and the other being the reference
model, where the expectation is taken with respect to the reference
model. Thus, the KL distance is a measure of the information loss in
the fitted model relative to that in the reference model. It is well
known that D f ; f 0;l;rð Þ P 0 and the equality holds if and only if
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f xð Þ ¼ f 0 x;l;rð Þ, almost surely. Therefore, D f ; f 0;l;rð Þ can be
regarded as a measure of disparity between f and f 0.

Constructing a test based on (12) entails estimating the
unknown quantities. The non-parametric estimation of H fð Þ has
been studied by many authors. Vasicek (1976) introduced a simple
estimator which has been widely used in developing tests of fit. His
estimator is given by

HVm;n ¼ 1
n

Xn

i¼1

log
n
2m

X iþmð Þ � X i�mð Þ
� 	n o

; ð13Þ

wherem (called window size) is a positive integer less than or equal
to n=2;X 1ð Þ 6 � � � 6 X nð Þ are order statistics based on a random sam-
ple of size n;X ið Þ ¼ X 1ð Þ for i < 1, and X ið Þ ¼ X nð Þ for i > n. Vasicek
(1976) showed that (13) is a consistent estimator of the population

entropy. In particular, HVm;n !
p
H fð Þ asm ! 1;n ! 1 andm=n ! 0,

where !p denotes convergence in probability. Also,Z 1

�1
f xð Þ log f 0 x;l;rð Þð Þdx

can be estimated by

1
n

Xn
i¼1

log f 0 Xi; l̂; r̂ð Þð Þ; ð14Þ

which is consistent by virtue of law of large numbers. Mahdizadeh
and Zamanzade (2017) suggested to use

bD1 ¼ exp �HVm;n �
1
n

Xn
i¼1

log f 0 Xi; l̂; r̂ð Þð Þ
( )

ð15Þ

as the final test statistic. Large values of bD1 provide evidence against
the null hypothesis.

It is difficult to derive the null distributions of (5)–(11) and (15)
analytically. Monte Carlo simulations were then employed to
determine critical values of a generic test statistic, say T. To this
end, 50,000 samples were generated from C 0;1ð Þ for each sample
size n ¼ 10; 20; 30; 50; 100; 200. The estimators (3) and (4) were
computed from any sample, and plugged into T. Finally, 1� a
quantile of the resulting values was determined which will be
denoted by T 1�a. The composite null hypothesis is rejected at level
a if the observed value of T exceeds T 1�a.

3. The proposed new tests

In this section, we introduce six new testing procedures for the
Cauchy distribution. To clarify motivation of these tests, we first
examine the entropy estimator component of statistic (15). It is
worth noting that H fð Þ can be expressed as

H fð Þ ¼
Z 1

0
log

d
dp

F�1 pð Þ
� �

dp:

Vasicek (1976) used the above representation to propose his non-
parametric entropy estimator. In doing so, the involved derivative
at each sample point X ið Þ; i=n

� 	
is estimated by

di ¼
X iþmð Þ � X i�mð Þ

2m=n
;

where the order statistics and window size are defined as in Sec-
tion 2. Now, HVm;n is simply defined to be the mean of logarithm
of di’s for i ¼ 1; . . . ; n. Clearly, di is not a correct formula when
i 6 m or i P n�mþ 1. To fix this problem, the denominator and/
or the numerator of di should be adjusted. It is also possible to
employ a fully different approach for entropy estimation. In the fol-
lowing, some improved entropy estimators are reviewed. These
estimators are then incorporated in (15) to come up with new tests,
which are expected to be more powerful.

Bowman (1992) studied the estimator

HBn ¼ �1
n

Xn
i¼1

log f̂ Xið Þ
n o

; ð16Þ

where

f̂ xð Þ ¼ 1
nh

Xn
j¼1

K
x� Xj

h

� �
;

and K :ð Þ is a symmetric kernel function which is chosen to be the
standard normal density function. The bandwidth h is selected
based on the normal optimal smoothing formula, h ¼ 1:06sn�1=5,
where s is the sample standard deviation.

Van Es (1992) considered estimation of functionals of a proba-
bility density and entropy in particular. He proposed the following
estimator

HVEm;n ¼
1

n�m

Xn�m

i¼1

log
nþ1
m

X iþmð Þ �X ið Þ
� 	� �

þ
Xn
i¼m

1
i
� log

nþ1
m

� �
;

ð17Þ

where m is a positive integer less than n.
Ebrahimi et al. (1994) suggested two improved entropy estima-

tors. The first one is equal to that of Vasicek plus a constant. This

implies that the test based on this estimator is equivalent to bD1.
So it is not included in this study. The second estimator is given by

HEm;n ¼ 1
n

Xn
i¼1

log
n

dim
Y iþmð Þ � Y i�mð Þ
� 	� �

; ð18Þ

where

di ¼
1þ iþ1

m � i
m2 1 6 i 6 m

2 mþ 1 6 i 6 n�m

1þ n�i
mþ1 n�mþ 1 6 i 6 n

8><>: ;

the Y ið Þ’s are

Y i�mð Þ ¼ aþ i�1
m X 1ð Þ � a
� 	

1 6 i 6 m

Y ið Þ ¼ X ið Þ mþ 1 6 i 6 n�m

Y iþmð Þ ¼ b� n�i
m b� X nð Þ
� 	

n�mþ 1 6 i 6 n

8><>: ;

and a and b are constants to be determined such that
P a 6 X 6 bð Þ � 1. For example, when F (the population distribution
function) has a bounded support, a and b are lower and upper
bound, respectively (for uniform(0,1) distribution, a ¼ 0 and
b ¼ 1); if F is bounded below (above), then a bð Þ is lower (upper)
support, a ¼ �x� ks b ¼ �xþ ksð Þ, where

�x ¼ 1
n

Xn
i¼1

xi; s2 ¼ 1
n� 1

Xn
i¼1

xi � �xð Þ2;

and k is a suitable number say 3 to 5 (for exponential distribution,
a ¼ 0 and b ¼ �xþ ks); in the case that F has no bound on its support,
a and b may be chosen as a ¼ �x� ks and b ¼ �xþ ks.

Correa (1995) proposed another entropy estimator defined as

HCm;n ¼ �1
n

Xn
i¼1

log

Xiþm

j¼i�m

X jð Þ � X ið Þ
� 	

j� ið Þ

n
Xiþm

j¼i�m

X jð Þ � X ið Þ
� 	2

8>>>>><>>>>>:

9>>>>>=>>>>>;
; ð19Þ

where

X ið Þ ¼
1

2mþ 1

Xiþm

j¼i�m

X jð Þ:
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Yousefzadeh and Arghami (2008) introduced the following entropy
estimator

HYm;n ¼
Xn

i¼1

bFy X iþmð Þ
� 	

� bFy X i�mð Þ
� 	

Xn
j¼1

bFy X jþmð Þ
� 	

� bFy X j�mð Þ
� 	

8>>>><>>>>:

9>>>>=>>>>; log
X iþmð Þ �X i�mð ÞbFy X iþmð Þ

� 	
� bFy X i�mð Þ

� 	( )
;

ð20Þ

where for i ¼ 2; . . . ;n� 1,

bFy X ið Þ
� 	

¼ n� 1
n nþ 1ð Þ iþ 1

n� 1
þ X ið Þ � X i�1ð Þ

X iþ1ð Þ � X i�1ð Þ

� �
;

and

bFy X 1ð Þ
� 	

¼ 1� bFy X nð Þ
� 	

¼ 1
nþ 1

:

Alizadeh Noughabi (2010) developed an entropy estimator using
kernel density estimator. His estimator is defined as

HAm;n ¼ �1
n

Xn

i¼1

log
f̂ X iþmð Þ
� 	

� f̂ X i�mð Þ
� 	

2

( )
; ð21Þ

where f̂ xð Þ is just as given in (16).

Remark 2. In the all new entropy estimators which employ
spacings of the order statistics, it is assumed that m is an integer
satisfying 1 6 m 6 n=2, unless otherwise stated.

The test statistics obtained by replacing HVm;n in (15) with
HBn;HVEm;n;HEm;n;HCm;n;HYm;n and HAm;n will be denoted bybD2; bD3; bD4; bD5; bD6 and bD7, respectively. Again, Monte Carlo
approach is adopted to compute critical values of the resulting
Table 1
The optimal window sizes for the tests of size 0.05 based on the KL distance.

n bD1
bD3

bD4

10 2 9 5
20 4 19 10
30 8 29 15
50 20 49 25
100 45 99 50
200 96 199 100

Table 2
0.05 critical points of the tests.

Statistic 10 20 30

KS 0.270 0.196 0.16

A2 0.919 0.983 1.02

W2 0.129 0.138 0.14

Dn;k 0.152 0.152 0.15
ZK 1.890 2.508 2.88
ZA 3.755 3.615 3.54
ZC 12.423 15.940 17.83bD1

2.088 1.464 1.24bD2
1.274 1.158 1.10bD3
1.332 0.975 0.76bD4
0.842 0.740 0.65bD5
1.757 1.263 1.04bD6
1.367 1.109 0.92bD7
1.117 0.865 0.74
tests. To calculate test statistics based on the KL distance (with

the exception of bD2), the window size m corresponding to a given
sample size must be selected in advance. In entropy estimation
based on spacings, choosing optimal m for given n is still an open
problem. For each n, the window size having smallest critical value
tends to yield greater power. For sample sizes 10, 20, 30, 50, 100,
and 200, window sizes producing the minimum critical values
for different tests are given in Table 1. Table 2 contains 0.05 critical
points of the tests considered in this study. For the KL distance
based tests, the above mentioned optimal window sizes are used.
These thresholds will be used in the next section to study the
power properties.

The entropy estimators mentioned in this section are
consistent. In proving this result for the estimators dependent on
the window size, it is assumed that m=n ! 0 as m ! 1 and
n ! 1. See pertinent references for more details. The next
proposition attends to optimal property of the tests based on the
KL distance.

Proposition 1. The tests based on bDi; i ¼ 1; . . . ;7, are consistent.
Proof. Let X1; . . . ;Xn be a random sample of size n from a popula-
tion with density function f 0 x;l;rð Þ given in (1). It is easy to see
that for any l 2 R and r > 0, h

1
n

Xn
i¼1

log f 0 Xi;l;rð Þð Þ!a:s:E log f 0 Xi;l;rð Þð Þf g:

We may now conclude that

1
n

Xn
i¼1

log f 0 Xi; l̂; r̂ð Þð Þ!a:s:E log f 0 Xi;l;rð Þð Þf g;
Statistic

bD5
bD6

bD7

2 5 5
4 10 10
11 15 15
23 25 25
49 50 50
100 100 100

n

50 100 200

3 0.128 0.091 0.065
6 1.037 1.057 1.056

0 0.141 0.143 0.143

9 0.160 0.162 0.162
1 3.231 3.648 4.008
1 3.461 3.389 3.346
4 19.787 22.240 24.692
4 0.940 0.576 0.327

3 1.042 0.967 0.896

3 0.526 0.302 0.163

3 0.531 0.379 0.251

2 0.734 0.410 0.213

4 0.689 0.426 0.245

0 0.614 0.522 0.467
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because l̂ and r̂, defined in (3) and (4), are strongly consistent esti-
mators. Let Hn be a typical entropy estimator. From consistency of
Hn, we have

Hn !
p �E log f 0 Xi;l;rð Þð Þf g:

Putting these together, it follows that under the null hypothesisbDi !
p
1. Now, the result follows from the fact that bDi !

p
d0 > 1ð Þ under

the alternative hypothesis. �

4. Power comparisons

In this section, performances of the proposed tests are evalu-
ated via Monte Carlo experiments. Toward this end, we considered
nine families of alternatives:

� t distribution with n degrees of freedom denoted by tn.
� Normal distribution with mean l and variance r2 denoted by
N l;r2
� 	

.
� Logistic distribution with mean l and variance p2r2=3 denoted
by Lo l;r2

� 	
.

� Laplace distribution with mean l and variance 2r2 denoted by
La l;r2

� 	
.

� Gumbel distribution with mean lþ rc (where c is Euler’s con-
stant) and variance p2r2=6 denoted by Gu l;r2

� 	
.

Table 3
Power comparison for the tests of size 0.05 against several alternative distributions for n

Statistic t3 t5 N Lo La

KS 0.028 0.028 0.031 0.028 0.02

A2 0.013 0.013 0.016 0.012 0.01

W2 0.028 0.028 0.033 0.028 0.02

Dn;k 0.005 0.004 0.003 0.003 0.00
ZK 0.012 0.012 0.013 0.011 0.01
ZA 0.016 0.016 0.021 0.016 0.01
ZC 0.008 0.010 0.014 0.010 0.01bD1

0.114 0.145 0.202 0.159 0.10bD2
0.177 0.230 0.329 0.257 0.15bD3
0.178 0.232 0.330 0.260 0.16bD4
0.192 0.252 0.356 0.280 0.17bD5
0.123 0.157 0.220 0.173 0.11bD6
0.168 0.219 0.312 0.245 0.15bD7
0.156 0.201 0.287 0.224 0.14

Table 4
Power comparison for the tests of size 0.05 against several alternative distributions for n

Statistic t3 t5 N Lo La

KS 0.042 0.049 0.063 0.052 0.04

A2 0.028 0.036 0.059 0.042 0.02

W2 0.039 0.048 0.065 0.052 0.03

Dn;k 0.035 0.059 0.122 0.073 0.03
ZK 0.030 0.038 0.059 0.042 0.02
ZA 0.094 0.140 0.261 0.167 0.07
ZC 0.061 0.098 0.195 0.118 0.04bD1

0.354 0.501 0.739 0.573 0.33bD2
0.441 0.606 0.812 0.675 0.40bD3
0.416 0.592 0.840 0.678 0.42bD4
0.453 0.639 0.873 0.728 0.45bD5
0.365 0.520 0.761 0.593 0.35bD6
0.410 0.581 0.826 0.666 0.41bD7
0.301 0.412 0.611 0.465 0.27
� Beta distribution with mean a= aþ bð Þ denoted by Be a; bð Þ.
� Gamma distribution with mean ab and variance ab2 denoted by
Ga a; bð Þ.

� Mixture of the normal and Cauchy distributions with mixing
probability p denoted by NC p;1� pð Þ. The distribution mixes
N(0,1) and C(0,1) with weights p and 1� p, respectively.

� Tukey distribution with parameter h denoted by Tu hð Þ. It is dis-
tribution of the random variable Z exp Zh2

=2
n o

with Z � N 0;1ð Þ.

The members selected from the above families are t3; t5, N(0,1),
Lo(0,1), La(0,1), Gu(0,1), Be(2,1), Ga(2,1), NC(0.3,0.7) and Tu(1). For
each alternative, 50,000 samples of sizes n ¼ 10;20;30;50 were
generated, and the power of each test was estimated by the per-
centages of samples entering the rejection region. Tables 3–6 pre-
sent the estimated powers of the fourteen tests of size 0.05, given
in Sections 2 and 3, for different sample sizes (the results for
n ¼ 100;200 are provided as Supplementary material). To provide
enough space for the outputs, the reference to parameters of the
distributions is only made in the case of t distribution. For each

alternative, power entry associated with the best test among bDi’s
is in bold. In addition, the highest power value from the other tests
is in italic.

It is observed that no single test is uniformly most powerful. We
note, however, that the tests based on the KL distance are generally
more powerful than the other tests. Compare the bold and italic
¼ 10.

Alternative

Gu Be Ga NC Tu

8 0.048 0.097 0.086 0.040 0.061
3 0.024 0.051 0.044 0.037 0.069

8 0.047 0.085 0.076 0.040 0.063

8 0.003 0.002 0.003 0.032 0.067
2 0.024 0.057 0.048 0.041 0.068
6 0.033 0.079 0.060 0.041 0.067
0 0.020 0.054 0.036 0.042 0.068
3 0.210 0.423 0.282 0.061 0.046

8 0.295 0.502 0.322 0.074 0.038

2 0.296 0.515 0.326 0.074 0.038

2 0.304 0.496 0.311 0.077 0.037

0 0.225 0.441 0.298 0.063 0.045

3 0.286 0.512 0.325 0.072 0.038

2 0.277 0.506 0.335 0.069 0.039

¼ 20.

Alternative

Gu Be Ga NC Tu

0 0.127 0.343 0.279 0.043 0.060
7 0.095 0.247 0.183 0.036 0.072

8 0.105 0.231 0.192 0.039 0.061

1 0.126 0.365 0.184 0.030 0.078
6 0.137 0.417 0.333 0.041 0.070
6 0.313 0.688 0.492 0.053 0.059
9 0.218 0.565 0.343 0.047 0.068
4 0.733 0.974 0.852 0.084 0.036

4 0.765 0.965 0.798 0.098 0.030

8 0.716 0.968 0.717 0.086 0.032

6 0.711 0.947 0.669 0.091 0.031

1 0.745 0.975 0.852 0.085 0.035

6 0.742 0.977 0.779 0.086 0.032

4 0.712 0.966 0.893 0.084 0.035



Table 5
Power comparison for the tests of size 0.05 against several alternative distributions for n ¼ 30.

Alternative

Statistic t3 t5 N Lo La Gu Be Ga NC Tu

KS 0.058 0.071 0.106 0.078 0.046 0.247 0.661 0.546 0.048 0.060

A2 0.050 0.077 0.146 0.092 0.040 0.224 0.560 0.401 0.036 0.075

W2 0.055 0.072 0.113 0.082 0.047 0.191 0.445 0.348 0.043 0.061

Dn;k 0.123 0.225 0.455 0.283 0.100 0.417 0.811 0.519 0.031 0.087
ZK 0.066 0.099 0.189 0.116 0.047 0.417 0.864 0.776 0.046 0.073
ZA 0.245 0.392 0.669 0.474 0.203 0.731 0.974 0.897 0.065 0.054
ZC 0.172 0.300 0.564 0.371 0.141 0.587 0.933 0.764 0.050 0.068bD1

0.584 0.791 0.974 0.880 0.633 0.962 1 0.988 0.086 0.030bD2
0.674 0.855 0.975 0.914 0.659 0.960 1 0.964 0.105 0.026bD3
0.602 0.811 0.986 0.906 0.690 0.918 1 0.907 0.080 0.030bD4
0.655 0.861 0.993 0.941 0.738 0.920 0.999 0.887 0.087 0.029bD5
0.614 0.819 0.983 0.905 0.670 0.965 1 0.983 0.088 0.029bD6
0.604 0.811 0.983 0.901 0.678 0.947 1 0.963 0.083 0.030bD7
0.434 0.596 0.841 0.673 0.412 0.935 1 0.997 0.087 0.031

Table 6
Power comparison for the tests of size 0.05 against several alternative distributions for n ¼ 50.

Alternative

Statistic t3 t5 N Lo La Gu Be Ga NC Tu

KS 0.095 0.137 0.253 0.151 0.063 0.583 0.976 0.928 0.054 0.058

A2 0.142 0.261 0.517 0.316 0.099 0.619 0.955 0.847 0.040 0.079

W2 0.096 0.148 0.281 0.169 0.069 0.421 0.828 0.689 0.047 0.064

Dn;k 0.400 0.644 0.906 0.740 0.328 0.874 0.997 0.937 0.043 0.099
ZK 0.228 0.385 0.701 0.462 0.168 0.933 1 0.998 0.058 0.075
ZA 0.622 0.853 0.988 0.924 0.603 0.995 1 1 0.088 0.051
ZC 0.514 0.774 0.970 0.866 0.482 0.974 1 0.996 0.063 0.069bD1

0.815 0.965 1 0.996 0.939 1 1 1 0.083 0.029bD2
0.917 0.992 1 0.998 0.947 1 1 1 0.115 0.022bD3
0.803 0.960 1 0.996 0.949 0.995 1 0.993 0.078 0.030bD4
0.852 0.979 1 0.999 0.970 0.997 1 0.995 0.086 0.028bD5
0.820 0.967 1 0.997 0.945 1 1 1 0.083 0.029bD6
0.813 0.964 1 0.996 0.943 0.999 1 1 0.080 0.029bD7
0.786 0.943 0.999 0.979 0.827 1 1 1 0.094 0.027

Table 7
Power differences between the best test among bDi ’s and the best of other tests.

Alternative

n t3 t5 N Lo La Gu Be Ga NC Tu

10 0.164 0.224 0.323 0.252 0.144 0.256 0.418 0.249 0.035 �0.023
20 0.359 0.499 0.612 0.561 0.380 0.452 0.289 0.401 0.045 �0.042
30 0.429 0.469 0.324 0.467 0.535 0.234 0.026 0.100 0.040 �0.056
50 0.295 0.139 0.012 0.075 0.367 0.005 0 0 0.027 �0.069
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entries for each alternative. Given a distribution and sample size,
difference of the italic entry from the bold one is reported in
Table 7. The values are sizable for symmetric distributions like
t3; t5, N(0,1), Lo(0,1), La(0,1) and Gu(0,1). All of the tests perform
poorly when the parent distribution is either NC(0.3,0.7) or Tu(1),
and increasing the sample size does not give rise to marked
improvement in power.

With the exception of sample size 10, ZA is generally the best

among KS, A2
;W2;Dn;k; ZK ; ZA and ZC tests. Moreover, it can be seen

that either bD2 or bD4 has mostly the best performance among bDi’s.
5. Example

Heavy-tailed distributions, like Cauchy, are better models for
financial returns because the normal model does not capture the
large fluctuations seen in real assets. Nolan (2014) provides an
accessible introduction to financial modeling using such
distributions.

The stock market return is the return that we obtain from stock
market by buying and selling stocks or get dividends by the com-
pany whose stock you hold. The stock market price is usually mod-
eled by lognormal distribution, that is to say stock market returns
follow the Gaussian law. The feature of stock market return distri-
bution is a sharp peak and heavy tails. The Gaussian distribution
clearly does not enjoy these attributes. So the Cauchy distribution
may be a potential model. The German Stock Index (DAX) is the
major stock market index in Germany which contains the stocks
of 30 largest German companies trading on the Frankfurt Stock
Exchange. The DAX evaluates the Prime Standard of those 30 major
German companies trading on the Frankfurt Stock Exchange. We
now apply the fourteen goodness-of-fit tests to a real dataset con-



Table 8
Scores for 30 returns of closing prices of DAX.

0.0011848 �0.0057591 �0.0051393 �0.0051781 0.0020043 0.0017787
0.0026787 �0.0066238 �0.0047866 �0.0052497 0.0004985 0.0068006
0.0016206 0.0007411 �0.0005060 0.0020992 �0.0056005 0.0110844
�0.0009192 0.0019014 �0.0042364 0.0146814 �0.0002242 0.0024545
�0.0003083 �0.0917876 0.0149552 0.0520705 0.0117482 0.0087458

Fig. 1. The Cauchy Q-Q plot of the 30 returns, and the corresponding histogram
along with fitted Cauchy density.

Table 9
Observed values of the different statistics.

KS A2 W2 Dn;k ZK ZA ZC

0.126 0.498 0.076 0.051 1.343 3.346 5.761

bD1
bD2

bD3
bD4

bD5
bD6

bD7

0.661 0.844 0.255 0.302 0.386 0.358 0.461
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taining 30 returns of closing prices of the DAX. The data are
observed daily from January 1, 1991, excluding weekends and pub-
lic holidays. The data (rounded up to seven decimal places) are
given in Table 8, which are obtained from datasets package in R sta-
tistical software. The Cauchy Q-Q plot appears in Fig. 1. The corre-
sponding histogram, superimposed by a Cauchy density function,
is also included. The location and scale parameters estimated from
the data are l̂ ¼ 0:0009629174 and r̂ ¼ 0:003635871.

The values of all statistics are computed (see Table 9), and com-
pared with the corresponding critical values in Table 2. By using
any test, the null hypothesis that the data follow the Cauchy distri-
bution is not rejected at 0.05 significance level.

6. Conclusion

This article concerns goodness-of-fit test for the Cauchy distri-
bution. Six tests based on the KL information criterion are devel-
oped, and shown to be consistent. A simulation study is carried
out to compare the performances of the new tests with their con-
tenders. In doing so, five sample sizes and nine families of alterna-
tives are considered. It emerges that the new tests are powerful
against many symmetric distributions. The proposed procedures
are finally applied on real data example.
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