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Abstract In this paper, we use rationalized Haar (RH) functions to solve the linear Volterra inte-
gral equations system. We convert the integral equations system, to a system of linear equations.
We show that our estimates have a good degree of accuracy.
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1. Introduction

This integral equation is a mathematical model of many evolu-
tionary problems with memory arising from biology, chemis-
try, physics, engineering. In recent years, many different
basic functions have been used to estimate the solution of inte-
gral equations, such as orthonormal bases and wavelets. In the
recent paper, we apply RH functions to solve the linear Volter-
ra integral equations system. The method is first applied to an
equivalent integral equations system, where the solution is
approximated by a RH functions with unknown coefficients.
The operational matrix of product is given, this matrix is then
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used to evaluate the unknown coefficients and find an approx-
imate solution for y(1) = (3, (1), 12 (1), - ., 1, (1))-

2. Properties of RH functions
2.1. Definition of RH functions
The RH functions RH(r,7), r=1,2,3,..., are composed of

three values 1, —1 and 0 and can be defined on the interval
[0,1) as

]7 Ji <1< J%
RH(I‘,[): -1, J%<Z<Jo, (1)
0, otherwise

where J, =% and u = 0,1, 1 (Ohkita and Kobayashi, 1986).

i DR
The value of r is defined by two parameters i and j as

r=24j—1; i=0,12,..., j=123...2, b)

RH(0, ¢) is defined for i = j = 0 and is given by
RH(0,71)=1; 0<t<].
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The orthogonality property is given by

(RH(r, ), RH(v,1)) = /ol RH(r, £)RH(v, 1) dt

f— 27]’
=10

where v and r introduced in Eq. (2).

forr=v
for r#v

2.2. Function approximation

A function f{¢) defined over the space L*[0, 1) may be expanded
in RH functions as

A0 =S aRH( 1), ()

where
(f(1), RH(r, 1))
(RH(r, 1), RH(r, 1)) 4)

Ifweleti=0,1,2,3,...,a then the infinite series in Eq. (3)
is truncated up to its first k terms as

a, =

k—1
A1) = ZarRH(r, 0)=A"¢(1), (5)
where k =2*"" 0 =0,1,2,...,,(1) = RH(r, 1),
A= [ao,a1,...7a1\»,1]T7 (6)
B(1) = [o(0), 1 (1), .-, i, (D] (7)

If each waveform is divided into k intervals, the magnitude
of the waveform can be represented as

b)) B

where in Eq. (8) the row denotes the order of the RH functions
(Maleknejad and Mirzaee, 2006).
By using Egs. (8) and (5) we get

[f(i) , f(;—k) . f(%)] = A" rsr. 9)

We can also approximate the function k(z,s) € L*([0, 1) x
[0,1)) as follows:

k(t,s) =~ ¢"(t)H(s), (10)
where H = [hy],, is an k x k matrix that:

L (RH(L0), (K(1,5), R, 5) )
"~ {RH(i,1), RH(i, 0){RH(j, 1), RH(j 1))

fori,j=0,1,2,....k— 1.
From Egs. (8) and (9) we have:

s\ A
H= <¢k></c) Hopp (12)
where
~ . ~ 2i—1 2j—1 ..
H:[h(/}kxk’ /’l,']':k( 2k 77)7 l,_]:1727...7k7

and

bita= (1) (o) ([ 0070 (13)

We also define the matrix D = D, as follows:
1
D= / d(1)p" (1) dt. (14)
0
For the RH functions, D has the following form Maleknejad

and Mirzaee (2006, 2003) and Razzaghi and Ordokhani (2002):

1 11 1 1 1

PR b

—
2

2.3. Operational matrix of integration
The integration of the ¢(¢) defined in Eq. (7) is given by
t
| ottrar = poo. (15)
0

where P = Py, is the k X k operational matrix for integration
and is given in Maleknejad and Mirzaee (2006, 2003) as

L[ Po ~Poe)

Pok =35 . . 7 (16)
(%)

where ¢, = [1], P,y = EIE

2.4. The product operation matrix

The product operation matrix for RH functions is defined as
follows:

()" (1A ~ Arad(1), (17)

where 4 is given in Eq. (6) and Apxi in an k x k matrix, which
is called the product operation matrix of RH functions.
In general we have

- IZA k FIA k

T — | Ao Hox ) (18)
Hoxg Dyxy

with

glx] = do,

H(g)x@ = ¢(§)x(§) ~diag[a%,a%+17 e 7ak—l:|7
Hiya = ding|ay g ] 9
and

D(’—ﬁ')x(%) = diag[[am ayy ..., agfl] . (b(%)X(%)] .

See Razzaghi and Ordokhani (2002).
3. Linear Volterra integral equations system
We consider the following linear integral equations system:
Zn;gij(f)yi(f) + Z /01 kij(2, 5)y;(s) ds = xi(1);
= =

i=1,2,...,n, (19)

where  x;(1),g;(t) € L*[0,1), k;(t,s) € L*([0,1) x [0,1))  for
i,j=1,2,...,nand y,(¢) for i =1,2,...,n are unknown func-
tions (Delves and Mohammed, 1983).
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Table 1 Numerical results for Example 1.

Nodes ¢

Method of Saeed and Ahmed (2008) with z = 0. 01

Presented method for k = 32

Exact solution

=0

= 0.1
=02
=03
=04
=05
= 0.6
=0.7
=028
=09
=1

NN N N N N N~ N N~

(1,0)

(1.01020,0.20305)
(1.01021,0.30712)
(1.03011,0.41223)
(1.03992,0.51840)
(1.04962,0.62562)
(1.05922,0.73392)
(1.06872,0.84330)
(1.07811,0.95378)
(1.08740,1.10653)
(1.09657, 1.99806)

(1,0)

(1.00009,0.20001)
(1.00006,0.40007)
(1.00002,0.60004)
(1.00003,0.80005)
(1.00002,1.00001)
(1.00006, 1.20002)
(1.00009, 1.40008)
(1.00001, 1.60008)
(1.00009, 1.80002)
(1.00001, 1.99992)

(1,0)

(1,0.2)
(1,0.4)
(1,0.6)
(1,0.8)
(1, 1)

(1,1.2)
(1,1.4)
(1,1.6)
(1,1.8)
(1,2)

Table 2 Numerical results for Example 2.

Method of Saeed and Ahmed (2008) with 2 = 0.01

Presented method for & = 32

Exact solution

Nodes ¢
t=20
t=0.1
t=102
t=103
t=04
t=20.5
t=0.6
t=0.7
t=0.8
t=09
t=1

(0,0)
(0.09999,0.01005)
(0.19999,0.04020)
(0.29998,0.09046)
(0.039996,0.16083)
(0.049994,0.25131)
(0.059991,0.36191)
(0.69989,0.49263)
(0.79985,0.64347)
(0.89982,0.81443)
(0.99977,1.00552)

(0,0)

(0.10008,0.01008)
(0.20008,0.04002)
(0.30008,0.09002)
(0.40008,0.16008)
(0.50009,0.25005)
(0.60008,0.36009)
(0.70008,0.49005)
(0.80008, 0.64005)
(0.90008,0.81009)
(0.99999,0.10003)

(0,0)

(0.1,0.01)
(0.2,0.04)
(0.3,0.09)
(0.4,0.16)
(0.5,0.25)
(0.6,0.36)
(0.7,0.49)
(0.8,0.64)
(0.9,0.81)
(1,1)

If we approximate x;(f),g;(1),

and (10) as follows:

(1) = X1 (0),
g;(1) ~ G;¢(l)7

> (cpoune’
=¢"(0X;;

yilt) =
k,_','(t, S) ~

Yio(1),

n)+3 [eon

i=1,2,....n

By using Eq. (17) we have:

Zfﬁr(f)GfoYi+Z/o ¢"(1)Hy Y;p(s) ds
J=1 J=1

=¢" ()X

i=1,2,3,...,n,

¢T(1)H[/¢(S)~

With substituting in Eq. (19) we have:

()97 () Y, ds

- qusT(z)GT/Yf LS 6 0H,T, / ' b(s) ds

=¢"(0X; i=1,2,3,.
;»Z¢ G,,Y+Z¢> 1) H;; Y, P(1)
=" (X 12123

:>ZGUY +ZH,,Y,P¢ )

=X

17123

»;(2) and ky(t,s) by Egs. (5)

(20)

In order to construct the approximations for y(z) =

ya()y ...

(yl (t)7

,¥,(1)) we collocate ¢(7) in k points. By using Eq.

(8) and Newton—Cotes points given in Philips and Taylor

(1937) as

2p—1

=Tk
we have
o(t,)

where

e, =10,0,...

= (/)kxkep;

;o p=1,2,...

,0,1,0,...,0)"

p:1727"'7

k
€ R,

(21)

and 1 pth-component. Eq. (20) can be expressed as

17

i=1,2,3,...

) 1,

By solving this system of linear equations we can find vec-

ZG,,Y +ZH,,YP¢,(X/&€[,
p=1,2,3,...,k.

tors ¥; so:

y(0) = ¢ ()Y j=12,...n

4. Numerical examples

(22)

For computational purpose, we consider two test problems.
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Example 1. Consider the integral equations system (Saeed and
Ahmed, 2008):

)

{W)—ﬁ)’yz(s)ds— g
»(t) — f(;yl(s) ds =t

and the exact solution y(¢r) = (y,(¢),»,(¢)) = (1,2t), Table 1
shows the numerical results and comparison with the exact
solution and Monte-Carlo method (Saeed and Ahmed, 2008).

Example 2. Consider the integral equations system (Saeed and
Ahmed, 2008):

{yl(l) = Jo( = )i (s) +3a())ds = 1 +58 + 504 =17
va(t) = fo s (s) +yy(9))ds = 2 =47 — g1t ’

and exact solution y(t) = (y,(¢),»,(¢)) = (¢,#*), Table 2 shows
the numerical results and comparison with the exact solution
and Monte-Carlo method (Saeed and Ahmed, 2008).

5. Conclusions

In this work, we applied an application of RH functions meth-
od for solving the linear Volterra integral equations system.

According to the numerical results which obtaining from the
illustrative examples, we conclude that for sufficiently large k
we get a good accuracy, since by reducing step size length
the least square error will be reduced.
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