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This study is the construction of the Green’s function and Sinc function for a class of nonhomogeneous
singular boundary value problems (SBVPs). The equivalent Volterra-Fredholm integral equations can
be derived from SBVPs by applying Green’s function. This can be approximated by Sinc-Collocation
method. Convergence analysis is given. Our approach applied on three various examples. Errors in the
solution are demonstrated in the tables. We conclude that our approach converge rapidly with the expo-
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1. Introduction

We consider a class of nonhomogeneous SBVPs:

Ly(x) =y"(x) + P(x)y'(x) + Q(x)y =R(x), x¢€[0,1], (1)

with boundary conditions:

{ aoy(0) + a1y'(0) = ay, 2)
boy(1) + b1y (1) = b,.
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If P(x) has singularity at x = 0 such as P(x) = £ with g > 0, then
the problems (1)-(2) is called Lane-Emden type equations. We
assume that constants ap and a,, and likewise by and b;, both are
not zero. The unique solution of problems (1) subjected to the
boundary conditions (2) is depend on the following conditions on
P(x),Q(x), and R(x):

E1. Let P(x) is measurable on [0, 1] and continuous on (0, 1];
E2. P(x) > 0 on (0,1];

E3. [) XP(X) < oo;

E4. Let Q(x) is continuous on [0, 1].

The Lane-Emden equations is the model for several phenomena
in physics and astrophysics Parand and Pirkhedri, 2010; Wazwaz,
2011; Yuzbasi and Sezer, 2013.

Many researchers have tried to solve problems (1)-(2) numeri-
cally. Mohanty et al. Mohanty et al.,, 2004 using cubic spline
method for solving SBVPs. Variational iteration scheme by Wazwaz
Wazwaz, 2011. Pirabaharan et al. Pirabaharan and Chandrakumar,
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2016 discussed a new Bernstein polynomials method. The modi-
fied Bessel Collocation by Suayip Yuzbasi, et al. Yuzbasi and
Sezer, 2013.

The Sinc function is widely used in various numerical methods
which introduced by F. Stenger Stenger, 1993; Stenger, 2011.
Rashidinia Rashidinia and Nabati, 2013; Rashidinia and Taheri,
2015 used Sinc methods based on Sinc function for SBVPs.

The Green’ function is used for solving BVPs in one, two, and
three dimensionalRahman, 2007. Z. Cen Cen, 2006 used Green’s
function to developed equivalent integral equation for SBVPs.
Singh et al. Singh et al., 2013 using Adomian decomposition and
Green'’s function.

In this paper, we apply a new direction for approximating the
nonhomogeneous SBVPs (1)-(2) which can be reduced to a
Volterra-Fredholm integral equation with the help of Green’s func-
tion. In our approach, the convergence accuracy of the solution is

O(e(’“m)), where ¥ > 0, and also converges at an optimal rate,

because the singularity on the boundary of approximation is
ignoredRashidinia and Zarebnia, 2007; Rashidinia and Zarebnia,
2007.

Section 2 deals with representation of the solution of the SBVPs
(1)-(2) by Green'’s function. In Section 3, after some preliminary
definitions and theorems of Sinc function, the Sinc-Collocation
method has been used to replace Volterra-Fredholm integral equa-
tion corresponding to problems (1)-(2). The converges of the
methods are considered in Section 4. Finally, three test examples
are presented in Section 5 and the conclusion is considered in
the rest of the section.

2. Representation of the Green’s function

The method of variation of parameter is used to construct
Green's function for an integral representation of nonhomoge-
neous SBVPs (1)-(2). First of all, we convert the nonhomogeneous
boundary conditions (2) to homogeneous Stenger, 1993, then we
define an interpolating boundary function

(azbo — aobz)X + (a1bz — (bo + by )(12)

Tx = —dobg + a;bo — agb,

: 3)
and also using the linear shift

u(x) = y(x) - I'(x). (4)

Consequently, the problems (1)-(2) reduce to the following
problem:

Lu(x) = u"(x) + P(x)u'(x) + Q(x)u(x) = R(x) — L(I'(x)),

xe€0,1] (5)

subjected to homogeneous boundary conditions:

{aou(O) +a,u'(0) =0, (6)
bou(1) + byu'(1) =0,

where

L(T(x)) = I'"(x) + P(x)I"(x) + Q(x)I'(x).
The homogeneous part of Egs. (5) is:

u”"(x) + P(x)u'(x) + Q(x)u(x) =0 (7)

Let u;(x) and u,(x) be two solutions of problem (7) which are
linearly independent. By using variation of parameters (see
Rahman, 2007), the Green’s function of (5) and (6) can easily be
constructed as:

Uy (W)( 2>(f)
t 7

G0 =\ weomo
wiK)

N

t<Xx

N

! 8
1 ®

)

NN

0
0<x<t<

where W = u;u, — upu} = Wronskian # 0.
It is obvious that G(x, t) is matched with boundary conditions
(6). The properties of the G(x,t) are summarised in appendix A.
Now, by using (8), a particular solution of Egs. 5,6 in integral
form can be obtained as:

u(x) = fy Gx.0f (t)de

) J3 S (o) ] e

9)

where f(t) = R(t) — L(T'(t)) is on the right hand side of problem (5).
We apply variation of variable in second integral on the right hand
side of (9), so that

X Uy (),

—uy(X) [ ﬁ dt

X Uy (t+1D)f (t+1) 1 ug (t+x)f (t+%)
+u2(X) Jo Wdt - uz(X) 0 Wdt

ue = (10)

The proof of Eq. (10) is in the appendix B.

3. Sinc function preliminaries and the Sinc-Collocation method

We first introduce some preliminaries of Sinc function, Sinc
interpolation Stenger, 1993; Stenger, 2011 that are important here,
and then we discussed the Sinc-Collocation method.

3.1. Some preliminary results using Sinc function

Definition.Stenger, 1993 We assume that
9 ={zeC:|sm(z)| <d} is a simply connected domain in the
complex plane(C). We consider two separate points 0 and 1 of
0%(boundary of 2). In (0,1), we define a conformal map
¢(z) =1In(;%,), which has inverse y(z) = ¢~'(z) =% For ¢,y,
and a step size h > 0, we consider z, = y(kh), k € Z which is the
Sinc points.

Theorem 1. We assume L, (2) is the set of all analytic functions
and u € L,(2) for a > 0. By considering h = (nd/(aN))"/?, there
exist a constant k; > 0, so

u(z) - iu@)@jw(z)) < kel /o', (11)
j=—N

We define the basis function ®;(¢(z)) as follows:

N
o= Y mawStkh)ep(z), j=-N
k=—N+1
0j(¢(2)) =1 S(J,ho((2)), j=-N+1,..,N-1
N-1
]it%_ 1ik:khs(ksh)ow(z)7 ]:N
k=—N
(12)
based on the Sinc function
» sin([@(z) —jh]/h) .
S(j,h Z)y=————+—" j=-N,...,N, 13
Uihop@ == i (13)
with the following property for points z, = y(kh),k € Z:
. 1 j=k;
0) _ ) )
3 =sUmoe@ls ={y g (14

The proof of this theorem is given in Stenger, 1993.
Theorem 2.Stenger, 1993 We cosider € Ly(2), (o > 0), and

0 <d < . By selecting h = (nd/(aN))"/?, there exist a constant,
k, >0, so

z; N
/ u(tyde —hy" oy Y
a k=N

Zk)

u( (rd)(aN))1/2
e < ke , (15)
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with

1y 1 [ %sin(nz)
s(-1) _ 1
% =3t /0 .
Theorem 3.Stenger, 1993 We cosider £ € Ly(2), o> 0, and

0 < d < 7. By selecting h = (nd/(aN))"/?, there exist a constant,
ks > 0, there fore, for A = [0, 1] the trapezoidal quadrature rule in
the Sinc methods is:

[ uzyde - hZ—' < kyelmd/aM)'”

k=—

(16)

(17)

3.2. Sinc-Collocation method

The approximate solution of integral Eq. (10) by the Sinc basis
function (12) is:

Un(X) = C_n_1To(X) + ZNCJ
The boundary basis functions @, and @; are cubic Hermite
functions given by:

@o(X) = ao(—x)(1 —X)* + a1 (2x + 1)(1 — x)*,
@1 (X) = bo(—2x + 3)x2 + b1 (1 — X)x2.

Upon replacing u(x) in the Volterra-Fredholm integral Eq. (10)
by u,(x), and Sinc function defined in 12, and applying Theorem 2,
for the first and second terms (Volterra integral equation) on the
right hand side of (10), and Theorem 3, for the third term (Fred-
holm integral equation) of (10), and setting points x,, we get the
following system:

) + Cnp1 T (X). (18)

(19)

CN-1To(Xk) + C-NO_N(P(Xk)) +

> N-1¢0;((x))

j=—Nt1
+CNON(P (X)) + 1Tt (Xk)
N 1
B g mow(5)f(5) | wbu (tj+l)f(tj+1)> (20)
= hg; o (5) ( wip) T w(gn)
Uy (X U t+x t+x)
‘hZW’ k=-N-1,.. N+1.
Where
B X el
(p(x) —]n(_l —Xk>" Xk—w- (21)
The matrix form of the system (20) is:
AX = [Cnxl ‘anl “nx(n—4)‘En><l |Fn><l] = B? n=2N+ 3» (22)
where
C= [@o(X-n-1), To(X_n),. .., Wo(Xn), Wo(xns1)]",
D= (O N@XN1)),ONOEN)): -, ON(@xN)), O_n(PxN11))].
I= [5},‘3)], j=-N+1,...N-1k=-N—-1,....N+1,
E= [ON(@X-n-1)), On(@XN)),- -, On(@(XN)), On(@(Xn:1))]
F= [@(XnN1), @1 (XN), .., T (xn), @1 (Xn11)]
X= [Cn1,CNy-eosCny it

We replace the right hand side of the system (20) by g(x,) as
follows:

’g(xN)7g(xN+1 )]T

we apply Newton’s method with

= [8(X-Nn-1),8(X-N); - ..
In solving system (22),

- . . .
X0 = 0, which stop iteration whenever || X 1) — Xl < &.
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4. Convergence analysis

By the following theorem, we proof that the Volterra-Fredholm
Eq. (9) has the unique solution.

Theorem 4. We consider the assumptions (E1
Green’s function 8, so we have.

)-(E4), and

G(x,t)dt| < oo,
)Gy (X, t)dt| < oo.

l.m1 = MaXo<x<1 ‘ ]01
I My := MaXoex<1| fy P(x

Proof. (i) The proof is clear. It follows from the Green’s function
(8) and the assumptions (E1)-(E4).(ii) For Gy(x,t) = %% we have

u’ (x)uy (t
Gu(x.t) = {ﬁ pexst
we > OSX<UE
Hence,
%w _‘;f;_g‘ro _ ”Q(t)uz(f‘)/v—(tl)l/z(t)uz(t) _ (23)
Because, G(x, t) satisfies the differential Eq. (5) as follows:
G + P(X) Gy + Q(X)G = —5(t —X), (24)

where 6(t — x) is a Dirac delta function. We integrate from the rela-
tion (24) then we have

[t, Gxxdx+ft o Gy +Q(X)G)dx = — ft
f‘)c\ﬁo—"c\to—kP()fto Ldx+Q(x ftOde
=-1+0+0=-1

Hence, from (23) we have

0, O0<x<t<l,
P(X)G"(x’t):{—l 0<t<x<1

Hence, we obtain ¢ = maXo«y <1 |P(X)

My = MaXoey 1| [5o PX)Gy(x, £)] < € < o0.

Theorem 5. We assume that u,(x) and u(x) € L,(2) are the
approximate and exact solutions of integral Eq. (10) respectively.
Suppose that all conditions of Theorems 1, 2, and 3 are fulfilled.
By considering h = (nd/(«N))"* and ¥ € L,(2), (2 > 0), there exist
a constant { >0, so

Gx(x,t)dt| < oo, and then.

max|u(x) — tn(x)| < ce™/EN"?
0<X<]| (%) —um(x)| < ¢

Proof. Using the relations (11), (15), and (17), we have

lem(x)] = max|u(x) —

0<xel U (X)|

<CN1WO + ZNC]

dt+hz Yy emalie)

(p W tj

< max|u(x) —
0<x<1

X))+ Cnp @ (X ))

= u (x) fo 20

U (X ) t+1)f(tj+l)‘

+‘u ( )fx = Hltﬂtﬂ dtihZ(pkj w t+1)

[ t;
4= () g arten at+hz )

gkle(nd/(ocN)) 1 kyelmd/( an))/ +k3e 7d/(aN))'/?

By considering { = max{ks, k,, k3 }, we have

lem(x)| < gemd/(aN»‘”
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then the proof is completed.
Theorem 5 demonstrates that the mentioned method converges

at the rate of O(e”"/'v), where 9 > 0.

5. Numerical results

In this section, three examples are presented based on the
Green’s function and the Sinc-Collocation method Parand and
Pirkhedri, 2010; Yuzbasi and Sezer, 2013 for illustrating the effec-
tiveness and importance of the proposed method. All experiments
were performed in Mathematica 11.0. Also, in order to show the

1. The relative error is defined by

 um(Xe) — u(xe)
Erel = U(Xk) . (25)
2. The maximum absolute error is defined by
Eabs = max |u(Xk) - um(xk)|~ (26)

—N-1<k<N+1

3. The root mean square (RMS) error is defined for M = 2N + 3
by

errors and the accuracy of the approximation, on the set of sinc 1 2
. K ’ RMS = — . 27
grid points S kiXN: ](u(xk) U (Xk)) (27)
S=A{XN-1, XNy XN XN ) 4. The L, error norm is defined by
ekh N+1
X =-——>-, k=-N—-1,-N,.... N N+1 P
1+ ek ’ Y ’ =] D () — tm(x))*. (28)
k=—N-1
we apply the following criteria:
Table 1
Relative errors in the solution of Example 1.
PY N=10 N=20 N=30 N =40 N =50
0.1 391x1073 2.38x1074 1.95x107° 1.88x10°° 219x10°8
03 573 x1074 1.11x10°° 3.94 x 1077 1.23x 1077 151 x 1078
05 516 x 107> 6.21x 1077 3.30x 1078 3.27 x107° 452 x1071°
0.7 120 x 1074 3.25x10°° 464 x10°8 241%x10°8 3.33x107°
09 1.19x 1074 583 x10°° 151 x 1077 280x10°8 2.80x 10710
Table 2
Errors in the solution of Example 1.
N h=f Eqps [11l2 RMS
10 0.702481 339x10°° 6.55 x 10°° 143 x 1077
20 0.496729 390x 1078 120 x 1077 1.88x 1078
30 0.405578 2.06 x107° 8.83 x107° 1.13x107°
40 0.351241 2.05x1071° 1.04x107° 1.16 x 10710
50 0314159 2.86 x 107! 1.62 x 10710 161 x107"
Il Il Il Il Il
9O € ¢
© 02 0.4 0.6 0.8 1.0
[ :
( ]
e approximate .
[ ]
-0.02} /
o
° exact
[ ]
-0.04 °
[ )
[ ]
-0.06| o
[}
-0.08| ° °
[ ]
[ ]
[ ]
-0.10 ° °
[ ) ° Y

Fig. 1. Comparison between the exact and approximate solutions of Example 1 with N = 10.
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105

=
> D

»
»
)

N=30

N=40
N=50

i

0.0 0.2 0.4

0.6 0.8 1.0

X

Fig. 2. LogPlot of the relative errors of Example 1 with different values of N.

Table 3
Relative errors in the solution of Example 2.
X N=10 N=20 N=30 N =40 N =50
0.1 1.74x107* 1.96 x 1078 7.22x10°° 235%x10°° 287 x107°
03 423x107° 1.06 x 107° 1.05 x 1078 3.01 x10°® 1.66 x 1076
0.5 1.25x107° 1.02 x 107° 1.19 x 1077 1.88x 1078 3.67 x107°
07 4.65x107° 9.05x10°° 1.01 x 107 2.83x 1078 1.59 x 1078
09 3.21x107° 479 x 10°° 477 x 10°° 2.05%x10°° 294 x10°8
Table 4
Errors in the solution of Example 2.
N h=Z Eqps 1112 RMS Cond(A)
10 0.702481 6.40 x 1074 9.18x 1074 1.96 x 1074 38.90
20 0.496729 1.73x1074 214 %1074 3.31x107° 70.65
30 0.405578 138x 1074 1.856 x 1074 235%x107° 101.97
40 0351241 9.90 x 107° 141 x1074 1.55x107° 133.08
50 0314159 7.34x107° 1.09 x 1074 1.08 x 107° 164.06
In our presented method, we take d =2, = 1 and we applied 1.00 @ M
2 L ¢ o« 4
our procedure for N =10,20,30,40, and 50 and by using Yoo,
[
h = (nd/(aN))'"* we can achieve h. The consistency of approximate e,
and exact solution is shown in the Figures. By increasing N, the 0951 %e
. [}
errors have been decreased in the Tables. .
Example 1. We consider the following SBVP: o
[]
0.90F Ve
"(x) —3y'(x) =3x, x € [0,1 %
X ? I t,/
exac °
y(0) =y(1) =0. 7
. . . approximate — b
This problem has the exact solution y(x) = x* — x3, and by using 0851 .
(8) the Green’s function is: ‘ ‘ ‘ ®
t4(1—x4) 0.05 0.10 0.50 1
— a0 0<t< X Fig. 3. Log-LogPlot of the exact and approximate solutions of Example 2 with
G(x,t) = 2. g-Log pp! p
’ 4(1-t4 N =10.
20 x<r<.

413 ?
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Table 5
Relative errors in the solution of Example 3.
X N=10 N=20 N =30 N =40 N =50
0.1 8.67 x 107° 3.68 x 1074 158 x 1074 6.25x107° 1.01x10°
03 167 x107* 253 %1074 357 x 107° 7.04x107° 3.69 x 107°
0.5 1.26 x 1073 7.68 x 107> 8.63x10°° 135x10°° 262x1077
0.7 3.12x 1073 287 x107° 468 x107° 533x107° 272x107°
09 6.01 x 1072 5.05x 1074 2.84x107° 3.54 x107° 1.73x10°
Table 6
Errors in the solution of Example 3.
N h=Z Egbs I1-1] RMS Cond(A)
10 0.702481 459 x 1072 1.18 x 107! 252 %1072 11.51
20 0.496729 2.56 x 1072 3.44 x 1072 531x1073 21.18
30 0.405578 1.47 x 1072 2.00 x 1072 254 %1073 30.91
40 0351241 9.36 x 1073 133 x 1072 147 x1073 40.67
50 0.314159 6.60 x 1072 9.76 x 1072 967 x1074 50.46
° Example 3. We consider the following SBVP:
2
5.0 d /! 24
% Y'(x)+5y'(x) -4y =-2, x€[0,1]
2N y(0)=1, y(1)=5.5,
45 . \\
') \ \ : : 5sinh(2x) :
. \ \ . The exact solution is: y(x) =0.5+ sinhz - BY using (8), the
40 ° \_  approximate , . .
: o® \ Green’s function is
® exact
° [ ]
3.5 L
(o) (Foe)e 0sesx
cect Gx,t) =
0.0 0.2 0.4 0.6 0.8 1.0

Fig. 4. Comparison between the exact and approximate solutions of Example 3
with N = 10.

By increasing N, we tabulated the relative errors (25) in Table 1.
Table 2 lists the errors (26)-(28). The graph of the approximate and
exact solutions is in Fig. 1 which are coincide together. Fig. 2, illus-
trates LogPlot of the relative errors. In this example, we have
Cond(A) = ||A|l[|[A""|| = 1 in the system (22) for a list of N.

Example 2. We consider the following SBVP:

{y”(x) +2y'(x)+1=0,x€[0,1]
6y(1) + 3y (1) =4,y(0) = 1.

The exact solution is: y(x) = 1 —%. This may be transformed
into the following form with homogeneous boundary conditions.
If we use the relations (3) and (4), then we have:

wx) +2u(x)=4-1, x€[0,1]
u(0) =0, 6u(1)+3uw(l)=0.

By using (8), the Green’s function is

-1 1 2

S+ (-t7), 0<t<x

e~ {000
F+(-r), x<t<1

By increasing N, we tabulated the relative errors (25) in Table 3.

Table 4 is consist of list of the errors (26)-(28), and Cond(A). The

log-log plot of the approximate and exact solutions is in the Fig. 3.

4 2X —2X 2t p—4 —2t 2
(g o) (e e)e, k<<,

By increasing N, we tabulated the relative errors (25) in Table 5
and Table 6 is consist of list of the errors (26)-(28), and Cond(A).
Fig. 4 shows the graph of the approximate and exact solutions
which are coincide together.

6. Conclusion

In this paper, we have demonstrated that Sinc-Collocation
method based on Green'’s function can be applied to solving a class
of nonhomogeneous SBVPs. Numerical results indicate that by
increasing N, the accuracy increases. In our approach, the conver-

gence accuracy of the solution is O(e("’m)>, where 9 > 0. This

approach can be extended to the high dimensional (2D-3D) prob-
lems. According to our knowledge so far, we may need the use of
Laplace transform to be combine with our approach.
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Appendix A
The properties of the G(x,t) are summarised as follows:

I. Boundary conditions:

{x =0: aoG(0,t) +a:1Gx(0,¢)
x=1: boG(1,t) +b;Gy(1,t) =

I. The condition of Continuity:

0
0

x=t, limG(x,t) = lim G(x,t),
0 x—t—0

X—tT
III. Jump discontinuity of the gradient:

oG 0G

ahw _a‘r” =-1

Then a solution of the given BVPs (5)-(6) can be obtained as:

1
u(x) = — /0 G(x, Of (t)dt.

Appendix B

T (OF(0) g¢ % w(Df(©)
_fx U1W(r) dt = f1 u]W(t) dt
_ 1 WD) g¢

—Jo W(t+1)
X up(tDf (1) X g (EHDf(E+)
- fo ! W(t+1) dt — fx—l ! W(t+1) dt

X u (tHDf (1) 1 ug (t+x)f (t+%)
= Jo “wn—dt = Jo i dt
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