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The present paper investigates the approximate solution of a one-dimensional linear space-fractional dif-
fusion equation using a new preconditioning matrix to develop an efficient half-sweep accelerated over-
relaxation iterative method. The proposed method utilizes unconditionally stable implicit finite
difference schemes to formulate the discrete approximation equation to the problem. The formulation
employs the Caputo fractional derivative to treat the space-fractional derivative in the problem. The
paper’s focus is to assess the improvement in terms of the convergence rate of the solution obtained
by the proposed iterative method. The numerical experiment illustrates the superiority of the proposed
method in terms of solution efficiency against one of the existing preconditioned methods, precondi-
tioned accelerated overrelaxation and implicit Euler method. The proposed method reveals the ability
to compute the solution with lesser iterations and faster computation time than the preconditioned
accelerated overrelaxation and implicit Euler method. The method introduced in the paper, half-sweep
preconditioned accelerated overrelaxation, has the potential to solve a variety of space-fractional diffu-
sion models efficiently. Future investigation will improve the absolute errors of the solutions.
� 2022 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Fractional calculus has gained considerable popularity and
importance for almost five decades now. It is mainly from various
demonstrated applications in biological science, physical science
and other branches of sciences. Fractional calculus has significantly
contributed to the modelling of transmission of Covid-19 infection
(Cui and Liu, 2022), pharmacokinetic compartments (Azizi, 2022),
Meningitis with treatment and vaccination (Peter et al., 2022),
tumour and immune cells interactions (Tang et al., 2022), mechan-
ical behaviour of asphalt mastic (Lagos-Varas et al., 2022), fluid
flow and heat transfer (Turkyilmazoglu, 2022), control behaviour
of wearable exoskeletons (Sun et al., 2021) and control behaviour
of a knee joint orthosis (Delavari and Jokar, 2021). Many different
fractional differential equations (FDE) have arisen from the realis-
tic applications of fractional calculus. FDE is a generalization of dif-
ferential equations based on the established theory and application
of fractional calculus. FDE can also be considered the extended par-
tial differential equations by modifying the integer-order deriva-
tive into the fractional-order derivative.

The solutions of FDEs must be obtained to understand the frac-
tional mathematical models. Various solution methods have been
proposed to the literature, such as the finite difference method
with collocation (Mesgarani et al., 2021;Safdari et al., 2020;Jaleb
and Adibi, 2019), finite difference method with preconditioners
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(Barakitis et al., 2022; Shao and Kang, 2022; Sunarto et al., 2022;
Sunarto et al., 2021), finite difference method with Lucas polyno-
mials (Ali et al., 2022), Adomian decomposition method
(Turkyilmazoglu, 2022; Ahmad et al., 2022; Turkyilmazoglu,
2021) and variational iteration method (Ibraheem et al., 2022). Fol-
lowing the high interest towards the finite difference method with
preconditioners, this paper aims to investigate the approximate
solution of a type of FDE, the space-fractional diffusion equation,
using a new preconditioning matrix to develop an efficient half-
sweep accelerated overrelaxation iterative method. This paper uti-
lizes the Caputo fractional derivative to treat the space-fractional
derivative because it allows the inclusion of traditional and con-
ventional initial-boundary conditions in the formulation of the
problem (Elsayed and Orlov, 2020). In addition, the Caputo
space-fractional derivative’s memories affect the dynamics of the
considered variables (Sene, 2022). The importance of Caputo
space-fractional can be seen in the modelling of biological models
(Haghi and Ghanbari, 2022), sediment suspension in ice-covered
channels (Wang et al., 2022), drug diffusion through the skin
(Caputo and Cametti, 2021) and chaotic processes (Owolabi et al.,
2020).

The paper’s focus is to assess the improvement in terms of the
convergence rate of the solution obtained by the proposed iterative
method. Among various iterative methods that can be used to solve
the generated system of equations from an FDE (She et al., 2023;
AllaHamou et al., 2022; Wen et al., 2022; Sun et al., 2022; Tang
and Huang, 2022), the paper proposes a modified accelerated over-
relaxation iterative method using a new preconditioning matrix
with a half-sweep iteration strategy. The paper’s contribution is a
new preconditioned iterative method that can solve a space-
fractional diffusion equation at a good efficiency level. The follow-
ing sections of the paper are organized: Section 2 formula tesa dis-
crete approximation to a one-dimensional linear space-fractional
diffusion equation using a half-sweep type finite difference
method in the Caputo sense. Section 3 derives the proposed itera-
tive method to solve the generated system of equations from the
discretized problem. Section 4 illustrates the numerical results of
solving several initial-boundary value problems using the pro-
posed numerical method and the comparison analysis against the
standard preconditioned accelerated overrelaxation method
(Sunarto et al., 2016). The conclusion of the paper is stated in
Section 5.
2. Half-sweep type finite difference method in caputosense

This section describes the formulation of a discrete approxima-
tion to a one-dimensional linear space-fractional diffusion equa-
tion using a half-sweep type finite difference method in the
Caputo sense. The paper usesa general space fractional FDE in
the formulation, which is given by (Reutskiy and Lin, 2018),

@U x; tð Þ
@t

¼ c1 xð Þ @
bU x; tð Þ
@xb

þ c2 xð Þ @U x; tð Þ
@x

þ c3 xð ÞU x; tð Þ þ g x; tð Þ;
ð1Þ

and the solution is assumed to exist under the following initial and
boundary conditions,

U x;0ð Þ ¼ I xð Þ;U 0; tð Þ ¼ B1 tð Þ;U L; tð Þ ¼ B2 tð Þ: ð2Þ
Based on Eq. (1), the variables ci; i ¼ 1;2, and 3 are either con-

stants or functions in terms of x while g x; tð Þ is a source function.
This paper utilizes half-sweep type implicit finite difference

schemes to discretize Eq. (1) for the time derivative, integer-
order space derivative and other functions (Ibrahim and
Abdullah, 1995; Sunarto et al., 2021; Chew et al., 2021). Mean-
while, Caputo fractional derivative is applied to approximate the
2

fractional-order space derivative. Below is the following estab-
lished definition of Caputo fractional derivative used in the dis-
cretization (Oldham and Spanier, 2006):

Definition 1. Let x be the upper limit of the integral, and a real
number b be the fractional order, such that 0 � m� 1 < b < m

where m is a positive integer. Then, f mð Þ nð Þ represents the m-th
order derivative of a smooth function f xð Þ. Hence, the Caputo frac-
tional derivative of f xð Þ is defined as

Db
x f xð Þ ¼ 1

C m� bð Þ
Z x

0

f mð Þ nð Þ
x� nð Þb�mþ1 dn: ð3Þ

Combining half-sweep type finite difference schemes and Eq.
(3) gives the following discrete approximation to the space-
fractional derivative,

@bU x; tð Þ
@xb

¼ 1
C 2� bð Þ

Xi�2

j¼0;2;4;���

Z jþ1ð Þh

jh

� Ui� j�2ð Þ;n � 2Ui�j;n þ Ui� jþ2ð Þ;n

4h2 Ph� nð Þbdn; ð4Þ

where for i ¼ 0;2;4; :::; s� 2 and h ¼ L=swhere L and s represent the
spatial interval and the numberof grid points, respectively. For the
sake of simplicity, Eq. (4) can be simplified, and the space-
fractional derivative can be equivalent to

@bU x; tð Þ
@xb

¼ q
Xi�2

j¼0;2;4;���r
b
j Ui� j�2ð Þ;n � 2Ui�j;n þ Ui� jþ2ð Þ;n
� �

; ð5Þ

where

q ¼ 2hð Þ�2

C 3� bð Þ ; ð6Þ

and

rb
j ¼

j
2
þ 1

� �2�b

� j
2

� �2�b

: ð7Þ

Then, putting Eq. (5) together with the half-sweep finite
differences for other derivatives such as first-order time derivative,
first-order space derivative and source functions, Eq. (1) can be
rewritten in the form of finite difference approximation equation
in Caputo sense as follows,

k�1 Ui;n � Ui;n�1
� � ¼ c1 xð Þq

Xi�2

j¼0;2;4;���r
b
j Ui� j�2ð Þ;n � 2Ui�j;n þ Ui� jþ2ð Þ;n
� �

þc2 xð Þ 4hð Þ�1 Uiþ2;n � Ui�2;n
� �þ c3 xð ÞUi;n þ gi;n: ð8Þ

Further arrangement and simplification can yield

c�2Ui�2;n þ c�3Ui;n � c�2Uiþ2;n

� c�1
Xi�2

j¼0;2;4;���r
b
j Ui� j�2ð Þ;n � 2Ui�j;n þ Ui� jþ2ð Þ;n
� �

¼ k�1Ui;n�1 þ gi;n; ð9Þ

where c�1 ¼ c1 xð Þq; c�2 ¼ c2 xð Þ 4hð Þ�1 and c�3 ¼ k�1 � c3 xð Þ:
Based on Eq. (9), one may have the following equations sub-

ject to different values of j. For instance, when j ¼ 0, Eq. (9)
becomes

c�2Ui�2;n þ c�3Ui;n � c�2Uiþ2;n � c�1r
b
0 Uiþ2;n � 2Ui;n þ Ui�2;n
� �

¼ k�1Ui;n�1 þ gi;n; ð10Þ
and when j ¼ 2, Eq. (9) becomes

c�2Ui�2;n þ c�3Ui;n � c�2Uiþ2;n � c�1r
b
0 Uiþ2;n � 2Ui;n þ Ui�2;n
� �
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�c�1r
b
2 Ui;n � 2Ui�2;n þ Ui�4;n
� � ¼ k�1Ui;n�1 þ gi;n: ð11Þ

Hence, when the pattern continues for j ¼ 4;6; � � �, one can
easily obtain a general form of the equation that can generate a
large-scale system of equations as follows,

�si þ aiUi�6;n þ biUi�4;n þ piUi�2;n þ qiUi;n þþriUiþ2;n ¼ f i;n; ð12Þ

where

si ¼ c�1
Xi�2

j¼6;8;���r
b
j Ui� j�2ð Þ;n � 2Ui�j;n þ Ui� jþ2ð Þ;n
� �

; ð13Þ
ai ¼ �c�1r
b
4; ð14Þ
bi ¼ �c�1r
b
2 þ 2c�1r

b
4; ð15Þ
pi ¼ c�2 � c�1r
b
0 þ 2c�1r

b
2 � c�1r

b
4; ð16Þ
qi ¼ c�3 þ 2c�1r
b
0 � c�1r

b
2; ð17Þ
ri ¼ �c�2 � c�1r
b
0; ð18Þ

and

f i;n ¼ k�1Ui;n�1 þ gi;n: ð19Þ
When Eq. (12) takes all points bounded by a specified solution

domain, the large-scale system of equations can be expressed in
the form of a matrix equation,

M bU ¼ bf ; ð20Þ

where

M ¼

q2 r2
p4 q4 r4

. .
. . .

. . .
. . .

. . .
.

as�4 bs�4 ps�4

as�2 bs�2

2
66666664

3
77777775

s�2ð Þ� s�2ð Þ

; ð21Þ
bU ¼

U2

U4

..

.

Us�4

Us�2

2
66666664

3
77777775

s�2ð Þ�1

; ð22Þ

and

bf ¼

f 2 � U0p2

f 4

..

.

f s�4

f s�2 � Usps�2

2
66666664

3
77777775

s�2ð Þ�1

: ð23Þ

Noted that the matrix dimensions of matrix M, bU and bf are
s� 2ð Þ � s� 2ð Þ, s� 2ð Þ � 1, and s� 2ð Þ � 1, respectively. This
paper suggests that an efficient iterative method needs to be devel-
oped to solve a complex matrix equation like Eq. (20). Hence, this
paper proposes a new preconditioning matrix that can enhance the
convergence rate of the iterated solutions. Moreover, this paper
develops a new iterative method called the half-sweep precondi-
tioned accelerated overrelaxation.
3

3. Derivation of a preconditioned iterative method

This section is devoted to showing the derivation of the pro-
posed preconditioned iterative method to solve the system of
equations shown (Eq. (20)). From here, the paper shall use HSPAOR
to stand for the proposed method to solve space-fractional diffu-
sion problems. To begin the derivation, let’s consider a transformed
matrix equation that corresponds to Eq. (20) as follows,

AbU ¼ bf : ð24Þ
Eq. (24) is obtained using the following matrix transformations

with a new preconditioning matrix P,

A ¼ PMPT ; ð25Þ

bf ¼ Pbd; ð26Þ
and

bU ¼ PTbd: ð27Þ
The preconditioning matrix P that is proposed in this paper has the
form of

P ¼ I þ S; ð28Þ
where I is the identity matrix, and S has the form of

S ¼

0 �u2 0 0 0
0 0 �u4 0 0

0
0
0

0
0
0

0 . .
.

0
0 0 �us�4

0 0 0

2
66666664

3
77777775

s�2ð Þ� s�2ð Þ

: ð29Þ

Based on the coefficient matrix A that presents in the trans-
formed matrix equation shown in Eq. (24), this paper considers a
unique decomposition of matrix A that is given by

A ¼ AD � AL � AU ; ð30Þ
where AD;AL; and AU are the diagonal, the strictly lower triangular
and the strictly upper triangular coefficients, respectively. Then,
by strategically adding two accelerating parameters x and h, the
HSPAOR method can be derived into

bU kþ1ð Þ ¼ AD �xALð Þ�1 xAU þ h�xð ÞAL þ 1� hð ÞAD½ �bU kð Þ

þ h AD �xALð Þ�1bf ; ð31Þ

where bU kþ1ð Þ and bU kð Þ denotes the set of unknown points at kþ 1ð Þ-
th and kð Þ-th iterations, respectively. Based on the iterative method
shown by Eq. (31), two accelerating parameters must be adjusted
until some fixed values achieve the maximum convergence rate.
Although the theory of estimating the optimum parameters exists,
which can be referred to in (Hadjidimos, 1978), the theory is only
valid for solving simple systems of linear equations.

Hence, to achieve the desired convergence rate and the objec-
tive of the numerical study, which is to investigate the numerical
solutions, a manual selection of accelerating parameters is con-
ducted by running the developed simulation program several
times until the smallest number of iterations is obtained. The
selection procedure can be described as follows. We initially let
h ¼ 1 and use different values of x within the range 1;2ð Þ. When
the smallest number of iterations is obtained for some value of
x, by using the ‘‘optimum” value of x, we increase the value of h
gradually until the final smallest number of iterations is obtained.
The implementation of the HSPAOR method is programmed using
the C++ programming language. The structure of the code and
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instructions are made thoroughly. Due to the copyright issue, the
paper can only provide the following algorithm.
Algorithm 1: HSPAOR method to solve space-fractional diffu-
sion equations

(i) Set the initial guess bU k¼0ð Þ ¼ 0; and the tolerance error
� ¼ 10�10:

(ii) For i ¼ 2;4; � � � ; s� 2, iterate Eq. (31).
(iii) For i ¼ 1;3; � � � ; s� 1, run linear interpolation module.

(iv) If bU kþ1ð Þ � bU kð Þ
��� ��� � �; then go to the next time-step or

n ¼ nþ 1.
(v) If the time-step reaches the final step or n ¼ N, display out-

puts such as numerical solutions, the maximum number of
iterations, program execution time, and maximum absolute
errors.
Fig. 1. Numerical solutions by HSPAOR agains

Fig. 2. Numerical solutions by HSPAOR agains

4

4. Numerical experiment and results

Section 4 illustrates the proposed method’s results by solving
several initial-boundary value problems of space-fractional diffu-
sion. Below are the following test problems considered in this
paper.

Example 1. Consider the given one-dimensional linear time-
dependent space-fractional diffusion equation (Khader, 2011),

@U x; tð Þ
@t

¼ C 1:5ð Þx0:5 @
bU x; tð Þ
@xb

þ x2 þ 1
� �

cos t þ 1ð Þ � 2x

� sin t þ 1ð Þ; ð32Þ
subjects to
t exact solutions of Example 1 at b ¼ 1:2.

t exact solutions of Example 1 at b ¼ 1:5.
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I xð Þ ¼ x2 þ 1
� �

sin 1ð Þ;B1 tð Þ ¼ sin t þ 1ð Þ; B2 tð Þ ¼ 5 sin t þ 1ð Þ:
ð33Þ

Based on Eq. (32), the value of C 1:5ð Þx0:5 represents the diffu-
sion coefficient, while the function x2 þ 1

� �
cos t þ 1ð Þ � 2x sin t þ 1ð Þ is

the source of diffusion. The accuracy of the numerical solution
obtained by HSPAOR is compared to the exact solution,

U x; tð Þ ¼ x2 þ 1
� �

sin t þ 1ð Þ: ð34Þ

Example 2. Consider another one-dimensional linear time-
dependent space-fractional diffusion equation (Khader, 2011),

@U x; tð Þ
@t

¼ C 1:2ð Þxb @
bU x; tð Þ
@xb

þ 3x2 2x� 1ð Þe�t ; ð35Þ

subjects to
Fig. 3. Numerical solutions by HSPAOR agains

Fig. 4. Numerical solutions by HSPAOR agains

5

I xð Þ ¼ x2 1� xð Þ;B1 tð Þ ¼ B2 tð Þ ¼ 0: ð36Þ
Based on Eq. (32), C 1:2ð Þxb represents the diffusion coefficient,

while 3x2 2x� 1ð Þe�t is the source function. The accuracy of the
numerical solution obtained by HSPAOR is compared to the exact
solution,

U x; tð Þ ¼ x2 1� xð Þe�t : ð37Þ
The results considered take account of numerical solutions, the

number of iterations to obtain the final solutions kf
� �

, the final time
after completing the C++ program,which is measured in seconds sð Þ
and the value of absolute errors. Fig. 1 until 6 show the numerical
solutions obtained by HSPAOR after solving Examples 1 and 2 using
b ¼ 1:2;1:5; and 1:8. The solutions are compared to the exact solu-
tions at various points and time level T ¼ 2:0 seconds.

Based on Figs. 1 through 3, the effectiveness of HSPAOR in com-
puting numerical solutions of Example 1 at various orders of space-
fractional is illustrated. The numerical solutions are sufficiently
t exact solutions of Example 1 at b ¼ 1:8.

t exact solutions of Example 2 at b ¼ 1:2.
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close to the provided exact solutions at b ¼ 1:2 and well-fitted to
the exact solutions at both b ¼ 1:5 and 1:8. However, HSPAOR
shows some disadvantages in computing the numerical solutions
of Example 2 at b ¼ 1:2 and 1:5 compared to the exact solutions,
see Figs. 4 and 5. The accuracy of the solutions by HSPAOR is better
when the value of space-fractional order is set to be greater than
1.5 or b ¼ 1:8; for instance, see Fig. 6.

Next, comparison in terms of the number of iterations, program
completion time and maximum absolute error between HSPAOR
and two testedmethods, such as the standard or full-sweep precon-
ditioned accelerated overrelaxation (FSPAOR) (Sunarto et al., 2016)
and implicit Euler (Meerschaert and Tadjeran, 2006) is shown in
Tables 1 until 6. The comparison is conducted using three different
values of space-fractional order, b ¼ 1:2;1:5, and 1:8, and five differ-
ent numbers of domain points for the consistency of the solutions.

Based on Tables 1 until 6, the comparison results show that the
HSPAORmethod ismore efficient than he FSPAOR and implicit Euler
Fig. 5. Numerical solutions by HSPAOR agains

Fig. 6. Numerical solutions by HSPAOR agains

6

methods in solving Examples 1 and 2. The number of iterations and
programcompletion time required by theHSPAORmethod to obtain
the final numerical solutions at all different points are significantly
lesser than the other two tested methods. However, the absolute
errors produced by the HSPAOR method are slightly larger than
the FSPAOR and implicit Euler methods for Example 1 using
b ¼ 1:5 and 1:8 and Example 2 using b ¼ 1:8. Furthermore, by
observing the consistency of the numerical solutions with the
increasing number of points in computation, this paper found that
the absolute errors show some sign of gradual growth for Example
1 at b ¼ 1:2 and Example 2 at all values of b.

To complete the numerical experiment, this paper compares the
maximum absolute errors produced by the proposed HSPAOR
method (with a time-step 0.2) with some numerical methods,
including the methods that utilize the Chebyshev polynomial of
degree np. The error comparison is made using a similar setting
of Example 2 that has been done (Khader, 2011; Saadatmandi
t exact solutions of Example 2 at b ¼ 1:5.

t exact solutions of Example 2 at b ¼ 1:8.



Table 2
Results comparison of solving Example 1 using b ¼ 1:5.

s Method k Seconds Max Error

128 Implicit Euler 251 4.95 6.21e-04
FSPAOR 77 1.84 6.21e-04
HSPAOR 40 0.61 6.99e-04

256 Implicit Euler 666 51.01 5.69e-04
FSPAOR 204 17.51 5.69e-04
HSPAOR 100 7.040 6.21e-04

512 Implicit Euler 1780 550.52 5.35e-04
FSPAOR 548 177.13 5.35e-04
HSPAOR 261 49.26 5.69e-04

1024 Implicit Euler 4750 2970.31 5.13e-04
FSPAOR 1469 873.87 5.13e-04
HSPAOR 696 523.33 5.35e-04

2048 Implicit Euler 13,230 15348.70 5.09e-04
FSPAOR 4012 4274.43 5.09e-04
HSPAOR 1856 2132.82 5.24e-04

Table 3
Results comparison of solving Example 1 using b ¼ 1:8.

s Method k Seconds Max Error

128 Implicit Euler 930 18.29 3.99e-04
FSPAOR 234 5.56 3.99e-04
HSPAOR 103 2.43 4.03e-04

256 Implicit Euler 3029 233.01 3.97e-04
FSPAOR 769 66.34 3.97e-04
HSPAOR 323 26.16 3.99e-04

512 Implicit Euler 9840 2755.31 3.96e-04
FSPAOR 2528 828.27 3.96e-04
HSPAOR 1067 305.81 3.97e-04

1024 Implicit Euler 46,847 7259.97 3.95e-04
FSPAOR 11,783 2081.94 3.95e-04
HSPAOR 5463 1005.63 3.96e-04

2048 Implicit Euler 187,322 28979.20 3.93e-04
FSPAOR 47,253 8800.61 3.93e-04
HSPAOR 22,125 4232.91 3.95e-04

Table 1
Results comparison of solving Example 1using .b ¼ 1:2.

s Method k Seconds Max Error

128 Implicit Euler 74 1.48 2.37e-02
FSPAOR 33 0.73 2.37e-02
HSPAOR 19 0.30 2.24e-02

256 Implicit Euler 152 11.64 2.44e-02
FSPAOR 64 5.21 2.44e-02
HSPAOR 35 2.73 2.37e-02

512 Implicit Euler 312 90.64 2.47e-02
FSPAOR 127 35.22 2.47e-02
HSPAOR 70 15.21 2.44e-02

1024 Implicit Euler 709 972.27 2.49e-02
FSPAOR 272 342.76 2.49e-02
HSPAOR 147 139.66 2.47e-02

2048 Implicit Euler 1647 3727.45 2.52e-02
FSPAOR 597 1195.59 2.52e-02
HSPAOR 318 452.46 2.49e-02
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and Dehghan, 2011; Azizi and Loghmani, 2013). Table 7 shows the
comparison in terms of maximum absolute errors against the
selected three methods.

Based on the findings through the numerical experiment,
HSPAOR possesses the advantage in terms of computational effi-
ciency, especially when a large system of equations is consid-
ered. The reason is that the iteration procedure by the
7

preconditioned accelerated overrelaxation is highly efficient in
computing the generated system of equations. Besides that,
using a half-sweep strategy in formulating the finite difference
approximation in the Caputo sense has successfully reduced
the computational complexity in the developed program. How-
ever, to achieve a greater efficiency level, the accuracy of the
solution becomes the trade-off. The disadvantage of the HSPAOR



Table 5
Results comparison of solving Example 2 using b ¼ 1:5.

s Method k Seconds Max Error

128 Implicit Euler 182 4.41 1.80e-02
FSPAOR 77 1.84 1.80e-02
HSPAOR 40 0.61 1.73e-02

256 Implicit Euler 481 45.32 1.84e-02
FSPAOR 204 17.51 1.84e-02
HSPAOR 100 7.04 1.81e-02

512 Implicit Euler 1297 484.4 2.39e-02
FSPAOR 548 177.13 2.39e-02
HSPAOR 261 49.26 1.84e-02

1024 Implicit Euler 3493 2614.51 2.45e-02
FSPAOR 1469 873.87 2.45e-02
HSPAOR 696 523.33 1.86e-02

2048 Implicit Euler 9541 13859.30 2.92e-02
FSPAOR 4012 4274.43 2.92e-02
HSPAOR 1856 2132.82 1.86e-02

Table 6
Results comparison of solving Example 2 using b ¼ 1:8.

s Method k Seconds Max Error

128 Implicit Euler 569 13.7 1.25e-04
FSPAOR 234 5.56 1.25e-04
HSPAOR 103 2.43 1.76e-04

256 Implicit Euler 1861 164.77 1.44e-04
FSPAOR 769 66.34 1.44e-04
HSPAOR 323 26.16 1.76e-04

512 Implicit Euler 6235 2027 1.53e-04
FSPAOR 2528 828.27 1.53e-04
HSPAOR 1067 305.81 1.82e-04

1024 Implicit Euler 29,937 5248.83 1.65e-04
FSPAOR 11,783 2081.94 1.65e-04
HSPAOR 5463 1005.63 1.84e-04

2048 Implicit Euler 121,482 22345.00 2.30e-04
FSPAOR 47,253 8800.61 2.30e-04
HSPAOR 22,125 4232.91 2.45e-04

Table 4
Results comparison of solving Example 2 using b ¼ 1:2.

s Method k Seconds Max Error

128 Implicit Euler 57 1.42 5.44e-02
FSPAOR 33 0.73 5.44e-02
HSPAOR 19 0.30 5.16e-02

256 Implicit Euler 117 10.95 5.58e-02
FSPAOR 64 5.21 5.58e-02
HSPAOR 35 2.73 5.44e-02

512 Implicit Euler 249 81.84 5.58e-02
FSPAOR 127 35.22 5.58e-02
HSPAOR 70 15.21 5.28e-02

1024 Implicit Euler 560 853.89 5.65e-02
FSPAOR 272 342.76 5.65e-02
HSPAOR 147 139.66 5.32e-02

2048 Implicit Euler 1296 3157.00 5.80e-02
FSPAOR 597 1195.59 5.80e-02
HSPAOR 318 452.46 5.73e-02
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method is revealed when it is used to solve Example 2 using
b ¼ 1:2 and 1:5. Since the development of HSPAOR is based on
implicit finite difference schemes, the accuracy of HSPAOR is
limited by the properties of implicit finite difference schemes,
8

which are second-order accurate in space. This paper hypothe-
sized that the magnitude of absolute errors could be reduced
using higher-order finite difference schemes and different frac-
tional definitions.



Table 7
Errors comparison of solving Example 2 using b ¼ 1:8 at time-level T ¼ 2:0 seconds for various points, x.

x HSPAOR (Khader, 2011), np ¼ 3 (Saadatmandi and Dehghan, 2011) (Azizi and Loghmani, 2013), np ¼ 5

0 0 1.71e-04 0 0
0.1 5.87e-03 2.11e-05 2.89e-05 1.40e-07
0.2 6.98e-03 1.77e-04 1.09e-04 9.06e-07
0.3 6.31e-03 3.01e-04 2.20e-04 3.25e-08
0.4 5.10e-03 4.04e-04 3.40e-04 6.55e-08
0.5 3.83e-03 4.89e-04 4.45e-04 1.02e-08
0.6 2.67e-03 5.63e-04 5.15e-04 7.38e-09
0.7 1.71e-03 6.33e-04 5.27e-04 1.64e-07
0.8 9.54e-04 7.06e-04 4.60e-04 2.75e-08
0.9 3.91e-04 7.87e-04 2.91e-04 1.32e-07
1.0 0 8.83e-04 0 0
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5. Conclusion

This paper successfully developed an efficient half-sweep accel-
erated overrelaxation iterative method using a new precondition-
ing matrix to solve several space-fractional diffusion problems.
The Caputo fractional derivative is compatible with formulating a
discrete approximation equation via implicit finite difference
schemes. The numerical results showed the superiority of the pro-
posed method in terms of solution efficiency against the standard
preconditioned accelerated overrelaxation and implicit Euler
methods. When the absolute errors by the proposed method are
compared against several existing numerical methods, the errors
are slightly larger than all considered methods. The magnitude of
errors can be reduced by using higher-order finite difference
schemes and different fractional definitions. Based on the perfor-
mance of the proposed method in terms of efficiency, it has the
potential to solve a variety of space-fractional diffusion models
efficiently. Future investigation will improve the solutions’ abso-
lute errors so that the proposed method’s reliability can be
increased.
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