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Abstract Acidotolerant Streptomyces sp. MBRL 10 isolated from limestone deposit site on

Gauze’s medium No. 1 (pH 5.3) showed significant antagonism against the tested fungal pathogens.

It exhibited the highest mycelial growth inhibition by diffusible and volatile compound(s) produc-

tion against Rhizoctonia solani. Culture filtrates also exhibited significant inhibition zone but the

inhibition activities vanished when sterilized. The strain produced chitinase, b-1,3-glucanase, lipase,
protease and ammonia but not b-1,4-glucanase. It could produce 25 lg/ml of indole acetic acid, sol-

ubilize up to 140 lg/ml of phosphate with a concomitant decrease in pH of the medium. The bioac-

tive actinomycete strain produced hydroxamate type of siderophore. Casamino acid was found to

be the best medium for siderophore production (87% siderophore units).

MBRL 10 showed the highest rice seedlings vigor index corresponding to an inoculum size of

0.3 � 108 cfu/ml. Strain treated rice seeds at an inoculum size of 0.3 � 108 cfu/ml showed higher

germination percentage and significantly enhanced (P 6 0.05) the growth of seedlings. Strain trea-

ted rice seedlings challenged with pathogens also exhibited higher germination percentages and
a.
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significantly enhanced (P 6 0.05) growth over seedlings challenged with pathogen alone in the

absence of the bioinoculant. Rice plants treated with the strain significantly promote (P 6 0.05)

the growth under nethouse conditions.

� 2016 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is

an open access article under theCCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Rice (Oryza sativa) is one of the most important staple foods
for more than three billion people i.e. over half the world’s

population (IRRI, 2006) and this cereal crop influences the
livelihoods and economies of several billion people across the
world. It provides 27% of dietary energy and 20% of dietary

protein in the developing world (Redoña, 2004). The majority
of the global rice production (88%) is done in Asian countries,
with China and India being the major producers (IRRI, 2008).
However, since 2000, the world’s average growth rate in rice

production has not kept up with population increases and
demand for rice has outstripped its production (FAO, 2000).
Intensive research on plant growth promoting bacteria (PGPB)

is underway worldwide for developing biofertilizers and bio-
control agents as better alternative to agrochemicals, as the lat-
ter harm the environment and human health besides

demanding high costs (Ningthoujam et al., 2009).
Actinomycetes are prolific producers of several agricultur-

ally important secondary metabolites and several members

have been considered as plant growth promoting agents
(Goodfellow and Williams, 1983; Nimaichand et al., 2013).
Until the investigations of Corke and Chase (1964), and
Khan and Williams (1975) had been published, all soil actino-

mycetes were believed to be neutrophilic. Acidophilic isolates
grow in the pH range 3.5–6.5, with optimum growth between
pH 4.5 and 5.5 (Khan and Williams, 1975). The most fre-

quently encountered acidophilic/acidotolerant actinomycetes
belong to the genus Streptomyces (Hagedorn, 1976;
Poomthongdee et al., 2015). Soil pH can drop below 5.0 after

prolonged use of ammonia-based fertilizers or acid rain and
this can cause considerable reduction in bacteria and actino-
mycetes population and increase the relative abundance of
fungi in soil (Ventura, 2000; Haney et al., 2000). Acidophilic

actinomycetes may be a potential source of new effective
agents for controlling fungal plant diseases and plant growth
promotion for sustainable agricultural product where soil

has been contaminated with the excessive use of agrochemicals
and environmental factors.

Streptomyces sp. has played an important role in chitin

decomposition in acidic soil and litter, where fungi are impor-
tant colonizers (Williams and Robinson, 1981). Release of
ammonia by the deacetylation and deamination of N-

acetylglucosamine residues may raise the pH of the soil
(Williams and Robinson, 1981) making the way for the other
neutrophilic PGPB to colonize and compete with the patho-
gens. In an acidic soil environment, they probably involved

in competition with fungi, and therefore, it is logical that aci-
dophilic actinomycetes possess an antifungal activity
(Zakalyukina and Zenova, 2007). Acidophilic/acidotolerant

actinomycetes that can inhibit the growth of different Fusar-
ium sp. have been reported (Zakalyukina and Zenova, 2007).
But there is limited report for their potential as biocontrol
and plant growth promoting bacteria especially for rice. Aci-
dophilic/acidotolerant Streptomyces sp. has been reported to
show antagonistic activity against rice fungal pathogens such

as Fusarium moniliforme, Helminthosporium oryzae and Rhi-
zoctonia solani (Poomthongdee et al., 2015).

Hundung limestone deposit site is a unique, non-
rhizospheric habitat in Ukhrul, Manipur, India falling under

the Indo-Burma Biodiversity hotspot. The present investiga-
tion aimed to study the native acidotolerant actinomycetes,
Streptomyces sp. MBRL 10 showing in vitro antagonistic

activity against important rice fungal pathogens as well as
plant growth promoting activity. It also aimed to study rice
plant growth promotion under nethouse conditions.

2. Materials and methods

2.1. Isolation

Soil samples were collected from Hundung limestone deposit,

Ukhrul District, Manipur. Isolation was performed on
Gauze’s Medium No. 1 (GM 1, pH 5.3) by serial dilution tech-
nique (10�3 to 10�6) as described earlier (Nimaichand et al.,
2012). After incubation at 30 �C for 1 week, colonies obtained

with distinct morphologies were selected and subcultured in
the same medium to get pure cultures. The purified cultures
were preserved as agar slants (4 �C) and glycerol stocks

(20% v/v, �20 �C) for further use.

2.2. Preliminary antagonistic bioassays

The isolates obtained were subjected to preliminary antagonis-
tic assays by dual culture method (described in the following
section) against fungal pathogens. Of the isolates showing

antagonistic activity, the best isolate MBRL 10 was character-
ized and further screened for other antagonistic and plant
growth promoting traits.

2.3. Genomic DNA isolation and strain characterization

Genomic DNA extraction and PCR amplification of the 16S
rRNA gene was performed as described by Li et al. (2007).

The almost complete 16S rRNA gene sequence of the strain
was identified using the EzTaxon-e server database (Kim
et al., 2012) and aligned with the 16S rRNA gene sequences

of related species using CLUSTAL X version 2.1 (Larkin
et al., 2007). Phylogenetic analyses were performed using the
software package MEGA version 5 (Tamura et al., 2011). Phy-
logenetic distances were calculated with the Kimura two-

parameter model (Kimura, 1983) and tree topologies were
inferred using the neighbor-joining method (Saitou and Nei,
1987). To determine the support of each clade, bootstrap anal-

ysis was performed with 1000 resamplings (Felsenstein, 1985).

http://creativecommons.org/licenses/by-nc-nd/4.0/
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2.4. Antagonistic assay

2.4.1. Fungal pathogens

The rice fungal pathogens, viz, Rhizoctonia solani (MTCC

4633), Rhizoctonia oryzae-sativae (MTCC 2162), Bipolaris ory-
zae (MTCC 3717), Pyricularia oryzae (MTCC 1477), Fusarium
oxysporum (MTCC 287) and Curvularia oryzae (MTCC 2605)
were procured from Microbial Type Culture Collection

(MTCC), Institute of Microbial Technology (IMTECH),
Chandigarh, India. The strains were grown and maintained
on Potato Dextrose Agar (PDA).

2.4.2. Antagonism assay by diffusible and volatile compounds

The antifungal bioassays due to diffusible compound(s) were
done by dual culture method (Khamna et al., 2009). Agar

plugs (6 mm) of 5 d old strain MBRL 10 grown on GM1 were
placed at the corners of the PDA plates leaving 1 cm from the
margins. The plates were incubated at 30 �C for 24 h. Fungal

plugs (6 mm) were then placed at the centers of the plates.
Plates containing fungal plugs without the isolates were kept
as controls.

The antagonism due to production of volatile compound
(s) (VOCs) was screened according to Trivedi et al. (2008)
with some modifications. Strain MBRL 10 was allowed to
grow on GM1 until full growth was observed. The lids of

the plates were then replaced with PDA plates containing
fungal plugs (6 mm) at the centers. In the control plates, lids
of the GM1 plates without the isolate were replaced with

PDA plates containing fungal plugs (6 mm) at the centers.
Plates were wrapped with parafilm and kept incubated at
30 �C.

The inhibition zone was measured after the fungal mycelia
in the control plates reached the edges of the plates. Colony
growth inhibition was calculated using the formula: (C � T)/

C � 100, where C represent the radial growth of the test patho-
gen in the control plate (measured in mm), and T is the radial
growth of test pathogen in the test plates (mm).

2.4.3. Antagonism assay by culture filtrates

For bioassays of antifungal compounds in the culture filtrates,
the strain was inoculated in GM1 broth (GMB) and incubated
with shaking conditions for 5 d (150 rpm, 30 �C). Culture

broth was then centrifuged (10,000 rpm, 10 min) (Centrifuge
5810, Eppendorf) and the supernatants collected were filtered
through a membrane filter (0.2 lm pore size). The filtrates were

then divided into two portions; one portion was autoclaved at
121 �C for 20 min (Sterile) and other was maintained at room
temperature (Non-sterile). Hundred ll of each of the treated

culture filtrate were then incorporated in a well on each side
of PDA plates. Fungal plugs were then placed at the centers
of the plates. The inhibition zone was measured in mm.

2.4.4. Assay for fungal cell wall degrading enzyme production

Colloidal chitin from chitin (shrimp shells) was prepared
according to Reid and Ogrydziak (1981). A loop full of 5 d

old culture was transferred into sterile vials containing 2 ml
of semi-solid GM1 (0.1% agar), and gently shaken for unifor-
mity. Then it was streaked on Colloidal Chitin agar plate and

chitinase production was screened according to Hsu and
Lockwood (1975). b-1,3-Glucanase and b-1,4-glucanase pro-
duction were assayed according to Srividya et al. (2012) and
Ariffin et al. (2006) respectively. Lipase and protease produc-
tion was screened on Tributyrin agar and Skim Milk agar

according to Cappucino and Sherman (1992).

2.4.5. Ammonia production

Ammonia production was studied in peptone water according

to Cappucino and Sherman (1992).

2.5. Plant growth promoting (PGP) assay

2.5.1. Indole acetic acid (IAA) production

IAA production was determined according to the method of

Bano and Musarrat (2003). Strain MBRL 10 was inoculated
on Starch Casein Nitrate broth (SCNB) containing 2 mg/ml
of L-tryptophan (trp) and incubated in a shaker (150 rpm,

30 �C) for 5 d. One ml of the culture supernatant was mixed
with 2 ml of Salkowski reagent. Appearance of pink color indi-
cated IAA production.

For quantitative assay of IAA production, strain was

allowed to grow on SCNB containing 2 mg/ml of trp under
shaking conditions (150 rpm, 30 �C). Five ml aliquot was with-
drawn periodically from each culture flask at 24 h intervals and

centrifuged (10,000 rpm, 10 min). One ml supernatant was
mixed with 2 ml Salkowski reagent and kept incubated for
20 min at room temperature. Absorbance was measured at

530 nm (BioSpectrometer, Eppendorf) and the amount of
IAA produced was calculated by comparing with the standard
IAA curve. The amount of IAA produced was compared with

the dry cell mass.

2.5.2. Siderophore production

Siderophore production was determined according to You

et al. (2005) with few modifications. An agar plug of strain
MBRL 10 fully grown on GM 1 were inoculated on Starch
Casein Nitrate agar (SCNA) (without iron) amended with

CAS-substrates and kept incubated at 30 �C for 7 d. Forma-
tion of orange zone surrounding the colony indicates sidero-
phore production. Catecholate or hydroxamate type of
siderophore was determined according to the method of

Arnow’s (1937) and Meyer et al. (1995).
Quantitative estimation of siderophore production was

done by CAS-shuttle assay (Payne, 1994). Strain was inocu-

lated on five different iron deficient liquid media according
to Sayyed et al. (2005) viz, SCN, Casamino acid medium
(CAA), Nutrient broth (NB), Succinic acid medium (SM)

and Bharbhiaya and Rao medium (BR), and kept incubated
under shaking condition (150 rpm, 30 �C). A 5 ml aliquot
was withdrawn periodically at 24 h interval, centrifuged
(10,000 rpm, 10 min) and 1 ml supernatant was mixed with

an equal volume of CAS reagent. Absorbance was measured
at 630 nm against a reference consisting 1 ml uninoculated
broth and 1 ml CAS reagent. The amount of siderophore pro-

duced (% siderophore units) was calculated using the formula:
(Ar � As)/Ar � 100, where, Ar represent absorbance of refer-
ence at 630 nm and As absorbance of sample.

2.5.3. Phosphate (P) solubilization

P solubilization assay was done as described by Mehta and
Nautiyal (2001) using NBRIP-BPB medium. Quantitative



146 K. Tamreihao et al.
estimation of P solubilization was done according to Kapri
and Tewari (2010).

2.5.4. 1-Aminocyclopropane-1-carboxylic acid (ACC)
deaminase production

ACC deaminase activity was screened according to El-
Tarabily (2008) using the nitrogen-free Dworkin and Foster’s

salts minimal agar medium (DF, Dworkin and Foster, 1958).

2.6. In vitro seed germination test (vigor index)

MBRL 10 was grown on GMB medium for 5 d and harvested
by centrifugation (10,000 rpm, 10 min) and the pellet was
washed thrice with sterile distilled water (SDW). The pellet

was dissolved in SDW and different inoculum sizes were pre-
pared (0.3 � 108, 0.6 � 108, 1.2 � 108, 1.8 � 108, 2.4 � 108,
3 � 108 cfu/ml). Different inoculum sizes were prepared by set-

ting the inoculum at different optical density (OD600) and mea-
suring the cfu/ml using standard plate count method. Rice
seeds (Variety: Jatra) were surface sterilized with 70% ethanol
for 5 min followed by 0.2% sodium hypochlorite for 5 min and

rinsed four times with SDW. Sterilized seeds were soaked in
the cell suspensions prepared earlier and kept under shaking
conditions (150 rpm, 2 h). Sterilized seeds soaked in SDW were

taken as control. The seeds were then transferred to sterile
plates containing wetted filter papers at the rate of 10 seeds
per plate. Plates were incubated at 28–30 �C and after 3 d,
 Streptomyc
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Figure 1 Neighbor-joining tree showing phylogenetic relationship
the number of germinated seeds, root lengths and shoot
lengths were noted and compared with controls. Four replica-
tions were done per treatment and the experiments were

repeated twice. Vigor index was calculated using the formula
(Baki and Anderson, 1973): Percent germination � Seedling
length (i.e. shoot length + root length).

Vigor indices were also calculated under pathogen chal-
lenged conditions. Rice seeds were sterilized with the same
method as stated above. Sterilized seeds were soaked in cell

suspensions corresponding to the highest vigor index
(0.3 � 108 cfu/ml) in the above experiment and kept incubated
under shaking conditions (150 rpm, 2 h). Ten seeds were then
placed in the petri plates containing a modified PDA (HiMe-

dia, 0.48% w/v) and agar (0.8% w/v). Fungal plugs were
placed in the center of the plates. Sterilized seeds soaked in
SDW were also placed in plates containing only the fungal

plugs and in control plates. Plates were incubated at 28–
30 �C and after 8 d, the number of germinated seeds, root
lengths and shoot lengths were noted and compared with fun-

gal challenged and control seedlings. Four replications were
done per treatment and the experiments were repeated twice.
Vigor index was calculated using the same formula.

2.7. Evaluation of PGP activity under nethouse conditions

Rice seeds were allowed to grow for 24 d in a pot containing
sandy-loamy soils. Rice plants were uprooted and washed
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of strain MBRL 10 with its closely related Streptomyces strains.
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284, Fusarium oxysporum; MTCC 2605, Curvularia oryzae.

Table 1 Inhibition zone of mycelial growth by culture filtrates

of MBRL 10.

Fungal pathogens MBRL-10

Non-sterile (in mm) Sterile

MTCC 4633 20 –

MTCC 2162 – –

MTCC 3717 23 –

MTCC 1477 22 –

MTCC 287 20 –

MTCC 2605 17 –
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thoroughly under running water to remove the adhering soils

of the roots. Roots were then dipped into a culture suspension
corresponding to the highest vigor index (prepared as stated
above) and kept for 2 h. For control the roots were dipped into
SDW. Four plants were planted in each pot containing dried

sandy-loamy soils (kept dried for 1 month). Six pots were kept
for each treatment in randomized block design. Pots were
watered daily with tap (nonsterile) water. The plants were har-

vested after 30 d and selected parameters (root length, shoot
Table 2 Antagonistic and PGP characteristics of MBRL 10.

Characteristics CP 1,3-GP 1,4-GP LP

MBRL 10 + + � +

CP, Chitinase production; 1,3-GP, b-1,3-glucanase production; 1,4-GP

production; AP, Ammonia production; PS, Phosphate solubilization; IP,

ACC deaminase production.
length, leaf length, leaf width, number of leaflets, fresh root
weight, dry root weight, fresh shoot weight and dry shoot
weight) were measured and compared with the controls.

2.8. Statistical analysis

All data were tested for significance by a one-way ANOVA fol-
lowed by independent t-test at P 6 0.05 using the SPSS 17 soft-

ware package (SPSS Inc., USA).

3. Results

3.1. Strain selection and characterization

A total of 22 acidotolerant actinobacteria were isolated from a
limestone deposit sample collected from Hundung, Ukhrul,
Manipur and preserved as described earlier. These strains were

screened for biocontrol activities against six rice fungal patho-
gens, of which 4 (four) isolates (18%) exhibited growth inhibi-
tion against almost all the indicator pathogens. Strain MBRL

10 was further selected as it showed maximum antagonistic
activity against all the tested pathogens.
PP AP IP PS SP ACCP

+ + + + + �
, b-1,4-glucanase production; LP, Lipase production; PP, Protease

Indole acetic acid production; SP, Siderophore production; ACCP,
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On the basis of 16S rRNA gene sequence analysis, strain

MBRL 10 shared 100% sequence similarities with Strepto-
myces manipurensis MBRL 201T while sharing 99.8% similar-
ities with Streptomyces cirratus NRRL B-3250T, Streptomyces

noijiriensis LMG 20094T, Streptomyces racemochromogenes
NRRL B-5430T and Streptomyces polychromogenes NBRC
13072T, and 99.7% similarities with Streptomyces amritsarensis

2AT and Streptomyces cinnamonensis NBRC 15873T. How-
ever, neighbor-joining dendrogram with the 16S rRNA gene
sequences of closely related Streptomyces strains retrieved
from EzTaxon-e server database (Fig. 1) indicated strain

MBRL 10 form a separate clade within the closely related spe-
cies of the genus Streptomyces. Due to the complex nature for
species affiliation of Streptomyces strains and absence of

polyphasic taxonomic data, the strain is hereby assigned as
Streptomyces sp. MBRL 10.
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3.2. Antagonistic activities

Streptomyces sp. MBRL 10 showed significant antagonism
against all the indicator fungal pathogens. It exhibited the
highest mycelial growth inhibition by diffusible compound(s)

against R. solani (69%) and the lowest antagonism was
observed against R. oryzae-sativae (50%) and C. oryzae
(50%). Inhibition by VOCs was the highest against R. solani
(63%) and the lowest against F. oxysporum (32%) (Fig. 2).

Culture filtrates also exhibited significant inhibition zone (15
to 23 mm), but it fails to exhibit an inhibition on R. oryzae-
sativae. The inhibition activities of culture filtrates vanished

when sterilized (Table 1). The strain produced chitinase, b-
1,3-glucanase, lipase and protease but not b-1,4-glucanase.
MBRL 10 showed positive results for ammonia production

(Table 2).

3.3. Plant growth promoting activities

Streptomyces sp. MBRL10 showed positive results for almost
all the PGP traits tested (Table 2). It produced maximum
amounts of IAA (25 lg/ml) after 12 d of incubation (Fig. 3),
solubilized P (up to 140 lg/ml) after 8 d of incubation with

concomitant decrease in pH (from pH 7–4.22) of the medium
(Fig. 4). The bioactive actinomycete strain produced hydroxa-
mate type of siderophore and CAA was found to be the best

medium for siderophore production (87% siderophore units,
after 5 d of incubation). Little or no siderophore production
was observed in GM, GP and NB media (Fig. 5). MBRL 10

gave negative results for ACC deaminase (Table 2).

3.4. In vitro seed germination test (vigor index) and rice plant
growth promotion under nethouse conditions

Among the different inoculum densities, MBRL 10 showed the
highest vigor index (632) corresponding to inoculum size of
0.3 � 108 cfu/ml. There was a decrease in vigor index with cor-
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responding increase in the concentration of culture suspension
(Table 3). Strain treated rice seeds at inoculum size of
0.3 � 108 cfu/ml showed higher germination percentage and
significantly enhance (P 6 0.05) the growth of root and shoot

length over control. Strain treated rice seedlings challenged
with pathogens also exhibited higher germination percentages
Table 3 In vitro rice seed germination (vigor index) by MBRL 10 a

Treatment Inoculum size (�108 cfu/ml) Germination percent

Control 00 95

MBRL 10 0.3 100

0.6 100

1.2 100

1.8 100

2.4 100

3 100

* Values with the same letter within a column are not significant at P 6

Table 4 Vigor index of MBRL 10 inoculated rice seeds under fung

Treatment Germination percent Ro

Control 93.3 1.9

MBRL 10 100 1.6

MTCC 4633 75 0.8

MTCC 4633 +MBRL 10 100 1.4

MTCC 2162 75 0.9

MTCC 2162 +MBRL 10 96.6 0.5

MTCC 3717 83.3 0.4

MTCC 3717 +MBRL 10 96.6 0.6

MTCC 1477 80 1.0

MTCC 1477 +MBRL 10 100 1.2

MTCC 287 86.6 1.7

MTCC 287 +MBRL 10 100 0.8

* Values with the same letter within a column are not significant at P 6
and significant increase (P 6 0.05) in root and shoot lengths
over seedlings challenged with pathogen alone in the absence
of the bioinoculant (Table 4) (Supplementary Fig. S1).

When assayed for growth promotion under nethouse condi-
tions, bioinoculant rice plants showed significant increase
(P 6 0.05) in root, shoot and leaf length, leaf width, fresh

and dry shoot weight and fresh root over control plants
(Table 5) (S2).

4. Discussion

Intensive screening for new secondary metabolites is focusing
on minor groups of actinomycetes, including species that are

difficult to isolate and culture, and those that grow under
extreme conditions (i.e. alkaline and acidic conditions)
(Goodfellow and O’Donnell, 1989; Lazzarini et al., 2000;

Zakalyukina and Zenova, 2007). Since many actinomycetes
can produce spores, that help dissemination and confer resis-
tance to many adverse conditions (Chater, 1993), they can be
promising agents for development as novel biofertilizers and

bio-control products under extreme environmental conditions.
In the present study, Streptomyces sp. MBRL 10 exhibited

biocontrol activities against several important rice fungal

pathogens. The strain showed mycelial growth inhibition by
diffusible and volatile antifungal metabolites. Another possible
factor contributing to the antifungal activity of the strain

could be the production of cell wall degrading enzymes.
Streptomyces sp. producing chitinase, b-1,3-glucanse, lipase
t different inoculum sizes.

Root length* (cm) Shoot length* (cm) Vigor index

4.07 ± 0.34a 1.2 ± 0.59a 500.6

4.86 ± 0.23c 1.45 ± 0.05c 632

4.66 ± 0.19b 4.66 ± 0.19b 599

4.42 ± 0.12b 1.25 ± 0.05b 567

4.79 ± 0.30c 1.32 ± 0.08b 560

4.68 ± 0.46b 1.21 ± 0.08a 550

4.30 ± 0.14b 1.19 ± 0.05a 549

0.05.

al challenged conditions (inoculum size, 0.3x108 cfu/ml).

ot length* (cm) Shoot length* (cm) Vigor index

6 ± 0.87c 3.99 ± 0.97b 555.2

9 ± 0.20c 4.44 ± 0.50c 613

6 ± 0.73c 1.90 ± 1.78a 207

3 ± 1.05c 4.81 ± 0.61c 624

8 ± 0.77c 2.68 ± 2.05a 274.5

0 ± 0.33a 3.79 ± 1.38b 414.4

6 ± 0.40a 2.52 ± 1.32a 248.2

5 ± 0.40a 3.94 ± 1.53b 443.3

4 ± 0.93a 2.38 ± 1.57a 273.6

0 ± 1.08c 4.73 ± 0.34c 593

9 ± 1.12c 3.44 ± 1.95b 452.9

1 ± 0.54b 4.45 ± 0.92c 526

0.05.



Table 5 Different growth parameters of rice plants (Jatra) by MBRL 10.

Treatment Root

length

(cm)*

Shoot

length

(cm)*

Leaf

length

(cm)*

Leaf width

(cm)*
Leaflet* Fresh shoot

weight (g)*
Dry shoot

weight (g)*
Fresh root

weight (g)*
Dry root

weight (g)*

Control 8.5 ± 2.1a 52 ± 5.7a 33.5

± 4.9a

0.55

± 0.1a

4a 0.8 ± 0.4a 0.35 ± 0.2a 0.16 ± 0.06a 0.12 ± 0.07a

MBRL 10 12.5

± 4.9b

59 ± 0b 34.9

± 6.9b

1.05

± 0.1b

5a 2.71 ± 0.9b 0.59 ± 0.2b 0.37 ± 0.04b 0.14 ± 0.04a

* Values with the same letter within a column are not significant at P 6 0.05.
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and protease exhibited antagonism against R. solani, Colleto-
trichum gloeosporioides, Alternaria brassicae and Phytophthora

capsici (Srividya et al., 2012). The antifungal compound(s)
present in the culture filtrates must be heat labile as antagonis-
tic activity was lost when sterilized. Antagonistic activity

of the culture filtrates of MBRL 10 may be largely due to
the presence of thermolabile enzymes such as chitinase and
b-1,3-glucanase as reported by Prapagdee et al. (2008).

MBRL 10 could produce ammonia. Ammonia produced by
Enterobacter cloacae, has been reported to suppress the disease
caused by Pythium sp. (Howell et al., 1988).

The bioactive actinomycete strain also showed promising

PGP traits. MBRL 10 could produce significant amounts of
IAA, a phytohormone essential for the growth and develop-
ment of plants. IAA producing Streptomyces spp. promoted

seed germination and plant growth in maize and cowpea
(Khamna et al., 2010). The strain could solubilize inorganic
P and increase in the level of solubilization corresponded with

the decrease in the pH of the medium. This may be due to pro-
duction of low molecular weight organic acids as reported by
Rodriguez et al. (2004). MBRL 10 showed positive results
for siderophore production; a compound that can chelate iron

and make the bound iron available to the plants (Burd et al.,
1998; Dimpka et al., 2008).

Rice seeds treated with cell suspension of MBRL 10

enhanced vigor index, germination percentages and growth
of rice seedlings. Challenged with fungal pathogen reduced
the rice seedlings vigor index. However, treatment with the cell

suspension enhanced vigor index, germination percentage and
growth of rice seedlings. Rice seeds soaked in Streptomyces sp.
suspension have been reported to show enhanced germination

rate and increased root and shoot lengths of the rice seedlings
(Gopalakrishnan et al., 2012). MBRL 10 strain could also sig-
nificantly enhance the growth of rice plants under nethouse
conditions. Streptomyces sp. has been reported to enhance

the growth of rice plants (Rungin et al., 2012). Acidophilic
Streptomyces sp. MBRL 10 can be regarded as a potential
agent for fungal disease protection and plant growth promo-

tion in rice plants. Further investigation is needed in order
to develop a formulation for application in agricultural crops
especially rice, where soil pH can drop below 5.0 due to pro-

longed and excessive use of agrochemicals such as ammonia-
based fertilizers or environmental factors such as acid rain.

5. Conclusions

Acidotolerant Streptomyces sp. MBRL 10 showed significant
antagonism against important rice fungal pathogens by dif-

fusible and volatile compound(s) production. Culture filtrates
also exhibited significant inhibition zone. The strain could pro-
duce fungal cell wall degrading enzymes such as chitinase, b-
1,3-glucanase, lipase and protease. It also showed positive

results for IAA and siderophore production, and solubilize
inorganic P. MBRL 10 treated rice seeds showed higher germi-
nation percentage and significantly enhance the growth of

seedlings even under pathogen challenged conditions. Rice
plants treated with the strain significantly promote the growth
under nethouse conditions. Strain MBRL 10 can be regarded

as potential for biocontrol and plant growth promoting agent
especially for rice plant.
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