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A B S T R A C T

The current paper presents the 𝜆𝜆𝜆𝜆-Bernstein operators through the use of newly developed variant of Stancu-
type shifted knots polynomials associated by Bézier basis functions. Initially, we design the proposed Stancu
generated 𝜆𝜆𝜆𝜆-Bernstein operators by means of Bézier basis functions then investigate the local and global
approximation results by using the Ditzian–Totik uniform modulus of smoothness of step weight function.
Finally we establish convergence theorem for Lipschitz generated maximal continuous functions and obtain
some direct theorems of Peetre’s 𝐾𝐾𝐾𝐾-functional. In addition, we establish a quantitative Voronovskaja-type
approximation theorem.

1. Introduction and preliminaries

One of the most well-known mathematicians in the world, S. N. Bernstein, provided the quickest and most elegant demonstration of one of
the most well-known Weierstrass approximation theorems. Bernstein also devised the series of positive linear operators implied by {𝐵𝐵𝐵𝐵𝑠𝑠𝑠𝑠}𝑠𝑠𝑠𝑠≥1. The
famous Bernstein polynomial, defined in Bernstein (2012), was found to be a function that uniformly approximates on [0, 1] for all 𝑓𝑓𝑓𝑓 ∈ 𝐶𝐶𝐶𝐶[0, 1] (the
class of all continuous functions). This finding was made in Bernstein’s study. Thus, for any 𝑦𝑦𝑦𝑦 ∈ [0, 1], the well-known Bernstein polynomial has
the following results.

𝐵𝐵𝐵𝐵𝑠𝑠𝑠𝑠(𝑔𝑔𝑔𝑔; 𝑦𝑦𝑦𝑦) =
𝑠𝑠𝑠𝑠
∑

𝑖𝑖𝑖𝑖=0
𝑔𝑔𝑔𝑔
( 𝑖𝑖𝑖𝑖
𝑠𝑠𝑠𝑠

)

𝑏𝑏𝑏𝑏𝑠𝑠𝑠𝑠,𝑖𝑖𝑖𝑖(𝑦𝑦𝑦𝑦),

where 𝑏𝑏𝑏𝑏𝑠𝑠𝑠𝑠,𝑖𝑖𝑖𝑖(𝑦𝑦𝑦𝑦) are the Bernstein polynomials with a maximum degree of 𝑠𝑠𝑠𝑠 and 𝑠𝑠𝑠𝑠 ∈ N (the positive integers), which defined by

𝑏𝑏𝑏𝑏𝑠𝑠𝑠𝑠,𝑖𝑖𝑖𝑖(𝑦𝑦𝑦𝑦) =

⎧

⎪

⎨

⎪

⎩

(𝑠𝑠𝑠𝑠
𝑖𝑖𝑖𝑖

)

𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖(1 − 𝑦𝑦𝑦𝑦)𝑠𝑠𝑠𝑠−𝑖𝑖𝑖𝑖 for 𝑠𝑠𝑠𝑠, 𝑦𝑦𝑦𝑦 ∈ [0, 1] and 𝑖𝑖𝑖𝑖 = 0, 1,…

0 for any 𝑖𝑖𝑖𝑖 𝑖𝑖 𝑠𝑠𝑠𝑠 or 𝑖𝑖𝑖𝑖 𝑖𝑖 0.
(1.1)

Testing the Bernstein-polynomials’ recursive relation is not too difficult. The recursive relationship for Bernstein-polynomials 𝑏𝑏𝑏𝑏𝑠𝑠𝑠𝑠,𝑖𝑖𝑖𝑖(𝑦𝑦𝑦𝑦) is quite
simple to test.

𝑏𝑏𝑏𝑏𝑠𝑠𝑠𝑠,𝑖𝑖𝑖𝑖(𝑦𝑦𝑦𝑦) = (1 − 𝑦𝑦𝑦𝑦)𝑏𝑏𝑏𝑏𝑠𝑠𝑠𝑠−1,𝑖𝑖𝑖𝑖(𝑦𝑦𝑦𝑦) + 𝑦𝑦𝑦𝑦𝑏𝑏𝑏𝑏𝑠𝑠𝑠𝑠−1,𝑖𝑖𝑖𝑖−1(𝑦𝑦𝑦𝑦).

In 2010, Cai and colleagues introduced 𝜆𝜆𝜆𝜆 ∈ [−1, 1] is the shape parameter for the new Bézier bases, which they called 𝜆𝜆𝜆𝜆-Bernstein operators.
This definition of the Bernstein-polynomials is defined as follows:

𝐵𝐵𝐵𝐵𝑠𝑠𝑠𝑠,𝜆𝜆𝜆𝜆(𝑔𝑔𝑔𝑔; 𝑦𝑦𝑦𝑦) =
𝑠𝑠𝑠𝑠
∑

𝑖𝑖𝑖𝑖=0
𝑔𝑔𝑔𝑔
( 𝑖𝑖𝑖𝑖
𝑠𝑠𝑠𝑠

)

𝑏̃𝑏𝑏𝑏𝑠𝑠𝑠𝑠,𝑖𝑖𝑖𝑖(𝜆𝜆𝜆𝜆; 𝑦𝑦𝑦𝑦), (1.2)
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The preconditioned iterative integration-exponential method is a novel iterative regularization method de-
signed to solve symmetric positive definite linear ill-conditioned problems. It is based on first-order dynamical 
systems, where the number of iterations serves as the regularization parameter. However, this method does not 
adaptively determine the optimal number of iterations. To address this limitation, this paper demonstrates that 
the preconditioned iterative integration-exponential method is also applicable to solving nonsymmetric positive 
definite linear systems and introduces an improved version of the preconditioned iterative integration-expo-
nential method. Inspired by iterative refinement, the new approach uses the residual to correct the numerical 
solution's errors, thereby eliminating the need to determine the optimal number of iterations. When the residual 
of the numerical solution from the initial preconditioned iterative integration-exponential method meets the ac-
curacy threshold, the improved method reverts to the original preconditioned iterative integration-exponential 
method. Numerical results show that the new method is more robust than the original preconditioned iterative 
integration-exponential method and eliminates the need for selecting regularization parameters compared to 
the Tikhonov regularization method, especially for highly ill-conditioned problems.
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1. Introduction

In recent years, ill-conditioned problems have attracted more and more attention and been widely used in engineering and mathematics fields, such 
as geodesy [1], geophysical exploration [2], signal and image processing [3, 4]. The solution methods of ill-conditioned equation have important 
research significance.

The ill-conditioned system can be expressed as the following form:

Ax b= (1)

where A� �
R
n n is an ill-conditioned matrix, x is solution b is observation. For an ill-conditioned system, a small disturbance in b or A can result in a 

significantly larger change in the solution x. This brings quite large difficulty when one solves the system (1) numerically. Thus, it is useless to use 
the conventional numerical methods to solve systems (1). To address this issue, iterative regularization methods such as Tikhonov regularization[5, 
6] (TR), the Landweber iteration [7], and direct regularization methods like truncated singular value decomposition [2, 8] (TSVD), modified truncat-
ed singular value decomposition [9], and modified truncated randomized singular value decomposition[10] have been developed and widely used. 
A common feature of these regularization methods is that their performance depends on various regularization parameters, such as the truncation 
order in TSVD, the Tikhonov regularization parameter, and the iteration number in iterative regularization methods. In recent years, iterative regu-
larization methods for ill-conditioned equations based on the numerical solution of dynamic systems have garnered attention [11–14]. 

The study on connections between iterative numerical methods and continuous dynamical systems often offers better understanding about iter-
ative numerical methods, and leads to better iterative numerical methods by using numerical methods for ordinary differential equations (ODEs) 
and devising ODEs from the viewpoint of continuous dynamical systems [15, 16]. For solving ill-conditioned linear systems, Ramm developed the 
dynamical systems method [11, 17]. Wu analyzed the relationship between Wilkinson iteration method and Euler method and proposed a new iter-
ative improved solution method to solve the problem of ill-conditioned linear equations [12, 18] . Enlightened by Wu’s work, Salkuyeh and Fahim 
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A B S T R A C T

Porosity is a key indicator for evaluating reservoir quality. Porosity analysis identifies the type, structure, 
and distribution of reservoir pores, essential for evaluating oil and gas accumulation and reserves. Accurately 
predicting porosity is crucial for petroleum exploration and engineering in the Shuangcheng Depression, 
Northern Songliao Basin. Traditional methods, such as core sampling, are often limited by high costs, time 
constraints, and the need for discrete samples that may not fully represent the reservoir, thereby hindering 
accurate porosity prediction. Therefore, this study assesses the accuracy of porosity prediction using the Least 
Squares Support Vector Regression (LS-SVR) model, selected for its effectiveness in handling small datasets and 
capturing nonlinear relationships. LS-SVR also mitigates computational challenges associated with traditional 
Support Vector Regression (SVR). The model utilizes geological and geophysical data from the Shuangcheng 
Depression in the southeastern fault zone of the Northern Songliao Basin to predict reservoir porosity. Nine 
well-logging data are used as input features, with porosity values obtained from core samples serving as the 
target label. This study develops an optimal porosity prediction model by training it with a sigmoid function, 
optimizing the penalty factor C and kernel parameter γ via grid search, and selecting the best parameters 
through 5-fold cross-validation. To ensure the model's performance, statistical metrics are used to evaluate the 
model. Evaluation results show that the model achieves an R² of 0.90 on the test set, explaining 90% of the 
variance in the target variable. Compared to traditional methods, the LS-SVR model demonstrates a significant 
improvement in porosity prediction. The remaining metrics include MAE (0.55), MSE (0.40), and RMSE (0.63). 
The results indicate that the LS-SVR method significantly improves the prediction of reservoir porosity in the 
Shuangcheng Depression of the Northern Songliao Basin. It is crucial for reservoir evaluation and petroleum 
engineering decision-making, providing valuable references for further research and practical applications.

1. Introduction

In petroleum reservoir characterization, predicting reservoir 
properties is critical to evaluation research, and porosity is a vital 
parameter for quantifying the void space in rocks (Oluwadamilola 
Olutoki et al., 2024). Accurately estimating porosity is essential 
for reservoir modeling, well placement selection, and production 
optimization (Alatefi et al., 2023). Traditional laboratory analysis of 
core samples is regarded as the most accurate method for porosity 
estimation. However, it is not always feasible. Subsurface geological 
conditions are highly variable and complex. Each well faces unique 
challenges during the coring process, leading to potential difficulties in 
sample analysis (Ahmadi and Chen, 2019). Additionally, core sampling 
provides discrete samples from the drilling process, which may not fully 
reflect the characteristics of the entire reservoir. Establishing regression 
relationships between well-logging curves and reservoir parameters has 
become a widely used method in reservoir evaluation. Well-logging 
data can address the issue of discontinuous core information. However, 
this method relies on empirical relationships and may struggle to 
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adapt to the complexity and heterogeneity of reservoirs. Furthermore, 
logging data gaps may exist, introducing uncertainty and challenges to 
geological interpretation (Xiao et al., 2020), reservoir evaluation, and 
oil and gas exploration decisions. a novel approach is urgently needed 
to overcome these challenges (Newman et al., 1977; Byrnes et al., 1994; 
Wu et al., 2004).

Advancements in machine learning and computing now enable 
nonlinear techniques to analyze the distribution characteristics of 
simulated underground reservoir porosity. These techniques can 
quickly solve large-scale mathematical computation problems and 
meet the scientific requirements for reservoir feature identification in 
oil and gas exploration (Xie et al., 2017; Dong et al., 2016; Othman 
and Gloaguen; 2017, Zhong et al., 2020). Artificial Neural Networks 
(ANN) are powerful tools for predicting reservoir properties from well-
logging data, effectively capturing complex relationships within the 
data (Anifowose et al., 2017). Urang et al. proposed a method using 
neural networks to predict reservoir physical parameters, including 
porosity and permeability, which was applied in the Niger Delta, 
Nigeria (Urang et al., 2020). However, ANN may suffer from overfitting 
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when dealing with small sample sizes, resulting in poor interpretability 
of the generated results. Support Vector Machines (SVM) overcome the 
challenges of complex model structures and parameter selection often 
encountered in traditional neural networks (Behnoud far et al., 2017; 
Konaté et al., 2015; Rafik and Kamel, 2017). SVM, proposed by Boser 
et al., has been successfully applied to classification problems (Boser et 
al., 1992; Cortes et al., 1995). Nevertheless, predicting porosity values 
is a regression problem that requires handling large-scale datasets and 
demands a higher level of interpretability for the results. Therefore, a 
variant of SVM, known as Support Vector Regression (SVR), is more 
suitable in this context.

SVR, as a statistical-based method of SVM regression, exhibits 
better nonlinear modeling capability, generalization ability, and 
interpretability, making it suitable for predicting reservoir properties 
(Wang et al., 2023a). Numerous researchers have achieved significant 
results in predicting reservoir porosity and physical parameters using 
Support Vector Machine regression. For instance, Wang et al. applied 
the SVR model to evaluate reserve abundance, effectively addressing 
a key challenge in petroleum exploration and development (Wang et 
al., 2023b). Kor et al. evaluated the applicability of the SVR model 
for predicting reservoir physical parameters by controlling the sample 
size. The results demonstrated that SVR can generate better prediction 
results when the training samples are appropriately increased (Kor 
and Altun, 2020). Bagheri et al. utilized a radial basis function-based 
SVR method to estimate permeability in the South Pars gas field, Iran. 
The evaluation results revealed the accuracy and effectiveness of this 
approach (Bagheri and Rezaei, 2019). However, solving SVR involves 
addressing a convex quadratic optimization problem, which can be 
challenging (Zhu and Gao, 2018, Bermúdez et al., 2019).

To simplify the solution process and enhance the model's predictive 
capability, this paper proposes the Least Squares Support Vector 
Regression (LS-SVR) method. The inequality constraints are converted 
into equality constraints, and the loss function is modified from error 
to a sum of squared errors. Specifically, the proposed LS-SVR algorithm 
performs modeling and prediction by mapping the input space to a 
high-dimensional feature space to derive the optimal linear function. 

LS-SVR has been widely applied in fields such as geophysics and 
geological engineering. Its ability to address computational challenges 
in traditional SVR makes it particularly suitable for these domains. For 
instance, in 2024, Wei Cong integrated LS-SVR with other machine 
learning models to enhance the accuracy of predicting CH4 and 
C2Hn generated during the gasification process, contributing to the 
reduction of pollutant emissions, waste, and greenhouse gases (Cong, 
2024). Additionally, Chen et al. proposed an Attention-Weighted LS-
SVR Regression method for predicting carbon prices, using attention 
mechanisms to create a weight matrix for variables, thereby enhancing 
the model's performance (Chen and Zhao, 2024). In this study, the 
LS-SVR model demonstrates good predictive capability for porosity 
prediction using geophysical well logging data. It performs well on 
evaluation metrics such as Mean Absolute Error (MAE), Mean Squared 
Error (MSE), Root Mean Squared Error (RMSE), and Coefficient of 
Determination (R²), as shown in Table 1. These results highlight the 
robustness and versatility of LS-SVR in addressing complex prediction 
tasks across diverse domains.

2. Geological setting

The study area is in the southeastern fault zone of the Beicheng 
Depression, which lies within the northern Songliao Basin. Geogra
phically, it is situated within the jurisdiction of Shuangcheng City, 

Fig. 1. Regional geological background of the study area. (a) Geographical location of the Shuangcheng Depression in the southeastern fault area of the Beicheng Depression within 
the northern part of the Songliao Basin (the specific location of the Shuangcheng Depression is indicated by the red border). (b) A schematic diagram of the Shuangcheng Depression 

structure and the study area, with the specific location of the study area outlined by a black border. (c) Tectonic map of the study area and the distribution of core wells.

Table 1.  
LS-SVR model parameter settings and model evaluation metrics.
LS-SVR model Parameters Test

C search range [0.01, 0.1, 1, 10, 100] MAE MSE RMSE R2

γ search range [0.001, 0.01, 0.1, 1, 10, 100]

Test set sample number 212 0.55 0.40 0.63 0.90

MSE: Mean squared error, MAE: Mean absolute error, RMSE: Root mean squared 
error, Coefficient of determination (R²).



Chen et al.� Journal of King Saud University - Science 2025 37 (2) 3382024

3

Harbin City, Heilongjiang Province. Fig. 1(a) shows the geographical 
location of the Shuangcheng Depression, highlighted with a red border, 
providing context for the study area's position within the Songliao 
Basin. The southern part of the Shuangcheng Depression is connected 
to the Yushu fault zone in Jilin, while the western part is adjacent to 
the Duqingshan uplift and the Yingshan depression. It is influenced by 
the Taipingzhuang and Chaoyang faults, with an exploration area of 
1031 km2 within the fault-controlled area. Fig. 1(b) presents a schematic 
diagram of the structural features of the Shuangcheng Depression. 
The black border outlines the study area, showing its position relative 
to the surrounding tectonic boundaries. The diagram emphasizes 
the exploration area of 1031 km². In terms of structural trends, the 
southeastern region of the study area is a deeper, subsiding depression, 
while the central part is characterized by an uplifted region, forming a 
north-northeast-dipping axial syncline. The northwest slope represents 
a transition to a shallower area, where subsidence decreases, and the 
terrain gradually becomes less depressed. This pattern reflects regional 
variations in subsidence and elevation, with the southeastern depression 
being the lowest point and the northwest slope gradually rising in 
elevation. The faults in the study area show inherited development, 
suggesting the reactivation of older fault zones from earlier geological 
periods. These reactivated faults often influence reservoir properties 
by creating heterogeneity in the subsurface, leading to variations in 
porosity and permeability. The movement along these faults can result 
in localized compaction, fracturing, or the creation of barriers that affect 
fluid flow and storage capacity in the reservoir. The main structures 
are along the active fault zones within the area, while the central uplift 
region represents a north-northeast-dipping axial syncline. Fig.  1(c) 
provides a detailed tectonic map of the study area, highlighting major 
fault lines, the structural framework, and the distribution of core wells 
(marked as black circles). The figure illustrates how faults and structural 
highs influence well placement and reservoir characteristics. The core 
wells are predominantly located in structurally significant areas (Chen, 
2021).

In this study, the geological and geophysical data from the 
Shuangcheng Depression within the southeastern fault area of the 
Beichengnan Depression in the Songliao Basin was used, provided by 
the China National Petroleum Corporation. This dataset includes nine 
well-logging features distributed in the Central Uplift and Southeast 
Trough area (drilling locations can be seen in Fig. 1c), encompassing 
logging curve data and lithology interpretation data. Statistical analysis 
of core test data indicates that the Upper Sandstone Formation mainly 
comprises sandstone and siltstone, with porosity ranging from 10.1% 
to 20.9%. Most porosity values fall between 11% and 18%, with an 
average porosity of 14.29% (Fig. 2).

3. Working principle of LS-SVR

LS-SVR is a modified version of the standard SVR Model. In LS-SVR, 
squared error terms replace slack variables in the objective function, 
transforming the optimization problem from quadratic programming 
to a system of linear equations. This makes LS-SVR computationally 
efficient and suitable for tasks that require high-dimensional mapping 
and regression.

Given a training set ( , ), , ,x y i ni i and � �1 , where xi is the input 
feature vector, yi is the target output, and n is the number of training 
samples. LS-SVR constructs a regression model in the form (Vapnik et 
al., 1997):

f x w x bT( ) ( )� �*� (1)

In (1), w is the parameter vector, b is the bias term, and φ( )x  is 
a nonlinear mapping function that projects the input x into a high-
dimensional feature space. The LS-SVR approach minimizes a squared 
error-based objective function with equality constraints, as opposed to 
inequality constraints, which distinguishes it from standard SVR (Li, 
2022). In LS-SVR, grid search is used to determine the optimal penalty 
factor C and kernel parameter γ. The use of squared error simplifies the 
optimization problem, transforming it into a linear system of equations, 
which enhances the efficiency of solving the model.

The optimization problem is formulated as follows:

min w w e
w b e

T

i

n

i
, ,

1

2 2
1

2�

�
�� (2)

Subject to:

y w x b e i ni
T

i i� � � � ��( ) , , ,1

γ is the regularization parameter that controls the trade-off between 
model complexity and fitting error, ei is the error term associated with 
the i-th sample.

The optimization problem is solved by applying the method of 
Lagrange multipliers. The Lagrangian function is constructed as:

L w b e w w e w x b e yT

i

n

i

i

n

i
T

i i i( , , , ) ( )( )�
�

� �� � � � � �

� �
� �1

2 2
1

2

1

(3)

where ai are the Lagrange multipliers associated with each equality 
constraint.

Using the Karush-Kuhn-Tucker (KKT) conditions, we obtain the 
following system of equations:

�
�

� � �

�
�

� � �

�
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� � �
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� �
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� �
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�� � � �y w x b ei
T

i i�( )

(4)

Substituting these conditions back into the Lagrange equation gives:

0 1

1
1

0
T

I
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y� �
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�

�
�
�

�

�
�
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�
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�
�
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(5)

where �ij i j i
T

jK x x x x� �( , ) ( ) ( )� �  represents the kernel matrix, 

K x xi j( , )  is the kernel function, which could be a Gaussian (RBF) 

Fig. 2. Porosity distribution characteristics of core well logging (Each curve represents 
the porosity distribution of an individual well, and the gray area represents the porosity 
distribution characteristics of the reservoir in the Upper Sandstone Formation; The gray 
area in the figure represents the average trend of porosity distribution, reflecting the 

range of porosity variation within the sandstone layer of the reservoir).
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kernel or another suitable kernel, allowing nonlinear relationships to 
be captured.

In the dual form, the regression function f x( )  is expressed as:

f x K x x b

i

n

i i( ) ( , )� �

�
�
1

� (6)

Here, the kernel function K x xi( , ) can be defined as 

K x x
x x

i
i( , ) � �

��

�

�
�

�

�

�
�

exp
 

2

22�
, where σ is a parameter controlling the 

width of the kernel.

4. Data and method

The workflow for predicting porosity using the LS-SVR method can 
be divided into four steps (Fig. 3): 

1.	 Process and optimize the data, then randomly split it into a training 
set (70%), a validation set (15%), and an independent test set 
(15%).

2.	 Select an appropriate kernel function and define hyperparameter 
search ranges: C = [0.01, 0.1, 1, 10, 100] and γ = [0.001, 0.01, 0.1, 
1, 10, 100]. 

3.	 A five-fold cross-validation is conducted on the training set to 
optimize LS-SVR model parameters. In each iteration, one subset is 
for validation, and the other four are for training. This repeats five 
times, averaging performance to determine the best hyperparameter 
combination. The final model, after cross-validation tuning, is 
evaluated on an independent test set to assess its generalization 
performance.

4.	 Evaluate the model using metrics like MAE, MSE, RMSE and R2. 
The test set assesses its ability to generalize and validate predictive 
performance.

4.1 Data analysis and feature selection

4.1.1 Data analysis

Before establishing the model, compensated neutron porosity 
(ΦN), core porosity (Φ), and density porosity (ΦD) were collected for 

comparison (ΦD) (Table 2). The purpose of this analysis was to evaluate 
and validate the accuracy and reliability of the current porosity 
calculation methods. Porosity is a crucial parameter in underground 
reservoirs and has a significant impact on geological research and 
engineering decision-making. If the calculation methods used have 
accuracy or reliability issues, the predicted porosity may deviate 
significantly from the actual conditions, leading to misleading results 
and inaccurate geological interpretations. This would have negative 
implications for subsequent geological research and engineering design, 
potentially resulting in suboptimal engineering outcomes.

Density is linked to rock porosity and mineral composition, and 
density logging is a commonly method for porosity calculation in log 
analysis. This method involves measuring the density of the formation 
to calculate porosity.

First, the reservoir shale content (Vsh) is calculated based on the 
natural gamma ray log (GR) curve, using empirical formulas:

Vsh = a * (GR – GRmin)/(GRmax – GRmin) (7)

In the formula, a represents the calibration coefficient. Based on the 
information provided from the study area, the calibration coefficient is 
chosen as 0.967. GR represents the measured natural gamma ray value 
in API units. GRmin and GRmax represent the minimum and maximum 

Fig. 3. (a) The characteristic data (well logs) from 9 wells (Well 1-Well 9 representing different wells) were preprocessed and 
randomly split into ​three subsets: a training set (70%), a validation set (15%), and an independent test set (15%). Different 
well logging curves reflect distinct reservoir lithology characteristics, enabling the model to learn diverse geological features 
and evaluate its performance across varying subsurface conditions. (b) The preprocessed data (pink circles) were input into 
the LS-SVR model. Grid search combined with five-fold cross-validation was used to identify the optimal hyperparameters. 
This process ensures the model captures nonlinear relationships between input data and labels, avoiding biases observed in 
simpler models. (c) After hyperparameter tuning via cross-validation, the final LS-SVR model was retrained on the ​combined 
training and validation sets and rigorously evaluated on the ​independent test set to assess generalization performance. (d) 
Model performance was quantified using metrics including MSE, MAE, RMSE, and R2. All metrics were calculated ​exclusively 

on the test set to ensure unbiased evaluation. LS-SVR: Least squares support vector regression.

Table 2.  
Comparison of density porosity and compensated neutron porosity results.
Well ΦN Min 

(%)
ΦN Max 

(%)
ΦD Min 

(%)
ΦD Max 

(%)
Φ Min 

(%)
Φ Max 

(%)

Well 1 14.5 27.2 16.26 32.53 9.10 18.90

Well 2 13.95 52.02 5.00 41.51 3.00 19.60

Well 3 12.16 22.85 8.53 26.51 1.90 22.10

Well 4 13.07 19.89 8.18 16.67 4.90 22.20

Well 5 11.19 30.00 3.01 50.00 2.30 21.50

Well 6 14.99 24.53 10.90 35.60 8.30 23.19

Well 7 10.50 20.32 1.56 24.81 2.90 22.90

Well 8 9.57 23.78 7.23 35.54 1.00 21.70

Well 9 11.10 24.30 1.81 39.76 2.40 23.90
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GR values in API units. Vsh represents the shale content, expressed as a 
decimal fraction.

Next, the density porosity is calculated using the empirical formula 
known as the Wylie formula (ΦD):

�D ma b ma f sh ma sh ma fV� � � � � � �( ) * ( ) ( )( )� � � � � � � �/ / (8)

In the formula, ΦD  represents density porosity, expressed as a 
decimal fraction. ρma  is the rock matrix density value, which is 2.66 
g/cm3. ρ f  is the formation fluid density value, which is 1 g/cm3. DEN 
represents the density logging value for the target formation, measured 
in g/cm3. ρsh  is the density of shale, measured in g/cm3. Vsh  represents 
the shale content in the reservoir, expressed as a decimal fraction.

Next, ΦD, ΦN, and Φ are compared and analyzed. From Fig. 4, it can 
be observed that the R2 value between compensated ΦN and Φ is 0.41, 
with an MSE of 6.84. The R2 value between density porosity and core 
porosity is 0.33, with an MSE of 2.54. These results may be attributed 
to the limitations of the calculation methods and the influence of 
empirical relationships.

4.1.2 Feature selection

In this study, 9 kinds of logging curves and core porosity were 
collected, including Core porosity (Φ), Caliper Log (CAL), Compensated 
neutron log (CNL), Density (DEN), Gamma (GR), Laterolog Deep (LLD), 
Laterolog Shallow (LLS), Resistivity (RT), Spontaneous potential (SP), 
Acoustic (AC) for statistical analysis. Table 3 presents the dataset's 

statistical summary, including sample count, average, minimum, and 
maximum values.

To mitigate the risk of high dimensionality and overfitting of the 
input data, a refined selection of well-logging sequences was made. Fig. 5 
shows the correlation matrix of nine well-logging parameters with Φ. 
CAL shows strong collinearity with SP and RT (correlation coefficients: 
0.69, 0.48). RT is also highly correlated with LLS and LLD (0.69, 0.76). 
Thus, GR, SP, CNL, AC, DEN, and RT are selected to predict porosity.

4.2 Model design

Empirical and experimental methods are utilized for parameter 
selection during this process. First, a rough parameter range search 
is conducted to determine the approximate range of parameters. 
Subsequently, a more detailed optimization is performed within 
this range. Prior knowledge and domain expertise help select initial 
parameters, enhance training, and improve model performance.

When selecting parameters, the focus is on the kernel parameter 
and penalty factor (C) Kernel options include linear, polynomial (poly), 
Gaussian (rbf), and sigmoid. The penalty factor (C) controls model 
complexity and penalizes training errors. A grid search is performed 
within the predefined parameter range to exhaustively explore and 
identify the optimal parameters (kernel parameters and penalty factor, 
C) (Fayed and Atiya, 2019). Subsequently, a five-fold cross-validation 
search for optimal parameter values within the specified range (Fig. 6; 
(Wang et al., 2023)). Through this parameter tuning process, a relatively 
optimal model configuration can be obtained (Jung, 2017).

Table 3.  
Statistical summary of logging data and petrophysical properties of Shuangcheng Depression in the southeast fault depression within the northern Songliao Basin.
Features CAL

(cm)
CNL
(%)

DEN
(g/cm3)

GR
(API)

LLD
(Ω·M)

LLS
(Ω·M)

RT
(Ω·M)

SP
(mv)

AC
(us/m)

Φ
(%)

Count 1410 1410 1410 1410 1410 1410 1296 1410 1410 1410

Min 8.09 9.57 1.83 49.71 5.45 6.40 4.85 3.71 186.22 1.00

Max 31.08 52.03 2.63 377.00 71.95 86.12 106.99 313.92 321.81 23.90

Average 10.52 17.59 2.32 117.19 21.99 23.97 22.86 129.27 240.81 14.29

Fig. 4. Error analysis of compensated neutron porosity, density porosity, and core 
porosity. (a) Analysis of errors between neutron porosity and core porosity. (b) Analysis 

of error between compensated density porosity and core porosity.

Fig. 5. Correlation matrix plot of nine well logging parameters and porosity.
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5. Results and Discussion

5.1 Results

5.1.1 Data set partitioning results

Based on the requirements of the problem and the relevance of the 
features, the most representative and predictive features were selected. 
To improve the model's training and generalization, highly correlated 
features were excluded through correlation analysis, thereby reducing 
feature dimensionality and preventing redundancy or collinearity 
among inputs. This ultimately enhances model performance. By 
calculating Pearson correlation coefficients between different well-
logging curves, the linear relationship strength can be assessed. If 
certain curves exhibit weak or close-to-zero correlation, it indicates 
that they are independent in providing information and can serve as 
independent input features. As shown in Fig. 5, the correlation between 
the six well-logging data is weak. Consequently, the well logging data 
of Gamma (GR), Density (DEN), Acoustic (AC), Laterolog Deep (LLD), 
Compensated neutron log (CNL), and Spontaneous potential (SP) can 
be used as input features for porosity prediction. The entire dataset was 
divided into a training set (70%), a validation set (15%), and a test set 
(15%) based on the number of sample labels (Table 4). Prior to dataset 
partitioning, it is important to eliminate outliers from the collected data 
to maintain quality and accuracy and prevent the influence of noise on 
model training. The results indicate that the data fall within the normal 
range, with no outliers or missing values (Fig. 7).

5.1.2 Results of parameter selection and training

Firstly, experiments in LS-SVR were conducted using different 
kernel functions, including the linear kernel, polynomial kernel, 
Gaussian kernel (rbf), and sigmoid kernel. These experiments compared 
the performance of the linear kernel, polynomial kernel, Gaussian 
kernel, and sigmoid kernel. Based on the results in Fig. 8, the sigmoid 
kernel showed the highest correlation with the true values (0.58602), 
making it the most suitable choice among the tested kernels. The RBF 
kernel had a moderate correlation (0.45801), while the linear kernel 
showed a correlation of 0.43159, and the polynomial kernel had the 
lowest correlation (0.13234). Furthermore, the boxplot indicates that 
the sigmoid kernel's predictions are more tightly clustered around the 

Table 4.  
The dataset is divided into training set, test set, and validation set.
Sample Train numbers Test numbers Validation numbers Amount

Well 1 91 20 20 131

Well 2 124 26 26 176

Well 3 136 29 29 194

Well 4 89 19 19 127

Well 5 146 31 31 208

Well 6 44 10 10 64

Well 7 141 30 30 201

Well 8 125 27 27 179

Well 9 90 20 20 130

Amount 986 212 212 1410

Percent 70% 15% 15% 100%

Fig. 7. Distribution of well logging curve values. GR: Gamma, DEN: Density, AC: 
Acoustic, LLD: Laterolog deep, CNL: Compensated neutron log, SP: Spontaneous 

potential.

Fig. 8. LS-SVR regression predictions using different kernel functions.

Fig. 6. Implementation process of 5-fold cross-validation.

true values, with fewer outliers and a narrower range of predictions 
compared to the other kernels. This suggests it provides more stable 
and accurate results. The linear kernel also performs reasonably 
well, although its predictions exhibit slightly more variability. The 
polynomial kernel shows the largest spread in predictions, suggesting 
greater instability and reduced accuracy. Therefore, based on both the 
correlation coefficients and the boxplot analysis, the sigmoid kernel is 
the most accurate choice for this task. Thus, the sigmoid was chosen 
as the kernel function. Subsequently, a grid search was performed 
within the defined parameter range of C= [0.01, 0.1, 1, 10, 100] and γ= 
[0.001, 0.01, 0.1, 1, 10, 100] to identify the initial parameter values. 
The optimal model parameters were determined through five-fold 
cross-validation within the specified parameter range.
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In conclusion, the LS-SVR model, following parameter selection 
and training, successfully predicts rock porosity. The data is modeled 
by employing the sigmoid function from the Scikit-learn library. 
Parameter tuning identified the optimal penalty factor C and kernel 
parameter γ. The final model achieved high accuracies on the test sets. 
Fig. 9 shows the correlation between the LS-SVR model’s predicted 
porosity in the test set and the core sample's measured porosity. Fig. 10 
shows the density scatter plot of predicted versus actual values. Most 
data points cluster near the diagonal, indicating strong predictive 
capability. Nevertheless, a few data points significantly diverge from 
the diagonal, which may be related to varying geological conditions of 
different wells or specific lithological characteristics that could impact 
the model's performance. Future research should analyze the causes of 
these deviations and consider adjusting the feature selection strategy to 
improve performance.

5.2 Discussion

In this study, the LS-SVR model was used to predict porosity 
based on selected geological and geophysical features. To assess the 
effectiveness of LS-SVR in a more intuitive manner, the MAE, MSE, 
RMSE, and R2 were utilized to evaluate the model's predictive capability 
and generalization ability. The calculation formula is as follows:

=
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1
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y y
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The evaluation metrics include MAE (0.55), MSE (0.40), RMSE 
(0.63), and R² (0.90) (Table 1). The evaluation metrics show that 
the LS-SVR model accurately captures the relationship between input 
features and porosity, leading to precise predictions.

To enhance the visual representation of the prediction results, 
Resform was utilized to visualize the well-log curves. The predicted 
porosity results for Well 1 are compared with the porosity data obtained 
from core samples. Fig. 11 illustrates the comprehensive well log plot 
for Well 1, where the hollow circles represent the predicted results 
obtained through the optimized model, and red diamonds represent 
the porosity measured from core samples. The lithological features in 
the study area include gray-brown oil-bearing medium sandstone, gray-
brown oil-bearing fine sandstone, and gray-brown oil-bearing medium 
sandstone. The depth range of the core samples is from 1122.01 m to 
1239.10 m.

It can be observed that the predicted results closely match the actual 
values. By examining the two subplots, it is evident that the predicted 
porosity response varies across different lithological sections. This 
demonstrates the LS-SVR model's ability to quantify the relationship 
between porosity and well logging, capturing the diverse impacts of 
different well log values on rock properties. The model exhibits its 
applicability across different lithologies.

The LS-SVR model, while effective for porosity prediction, exhibits 
several methodological limitations that merit attention. Computational 
inefficiencies arise when processing large datasets, particularly in 
high-dimensional feature spaces typical of geophysical data, where the 
quadratic scaling of kernel matrix operations imposes significant training 
time requirements. Model performance is critically dependent on input 
feature quality and data integrity. Noise in logging curves, imbalanced 

Fig. 10. Density scatter plot between the predicted porosity value of LS-SVR model 
and the actual porosity value (The horizontal axis (X axis) represents the true value (Φ), 

and the vertical axis (Y axis) represents the predicted value).

Fig. 9. Comparative analysis of LS-SVR predicted values and actual values, as well as 
test results.

Fig. 11. (a-b) The LS-SVR model based on training shows the porosity prediction of 
Well 1 and compares the measured porosity of the core with the predicted porosity 
value. (The LS-SVR model predicts the porosity value in hollow circles, and the core 
measurement of the porosity value in red diamonds.) Φt: True porosity, Φp: Predicted 

porosity.
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sample distributions, and insufficient coverage of key lithological 
features collectively degrade predictive accuracy. Furthermore, the 
model’s assumption of static input-output relationships fails to capture 
the dynamic and nonlinear interactions observed in complex geological 
environments, such as those induced by diagenesis or tectonic stress. 
To address these challenges, future research should prioritize advanced 
feature selection methodologies, such as principal component analysis, 
which can reduce dimensionality and enhance feature representation. 
Integrating multi-source geophysical data through Bayesian 
optimization frameworks can improve model robustness against noise 
and variability. Incorporating detailed geological information, including 
stratigraphic and diagenetic constraints, may offer further insights 
into geological variability and refine predictive capabilities. Overall, 
the LS-SVR framework demonstrates robust prediction accuracy and 
stability, supporting its application in porosity estimation for geological 
exploration and oil and gas development. Comparative studies with 
alternative models, such as Gaussian process regression and deep neural 
networks, should evaluate performance across prediction accuracy, 
training efficiency, and model complexity to identify optimal solutions 
for specific geological scenarios.

6. Conclusions

1.	 The LS-SVR model demonstrated strong predictive performance 
in porosity estimation, achieving an R² of 0.90, MAE of 0.55, MSE 
of 0.40, and RMSE of 0.63. It significantly outperforms traditional 
empirical methods by utilizing well-logging and avoiding reliance 
on predefined formulas. Its capability to capture nonlinear 
relationships with porosity makes it especially suitable for large-
scale, complex geological environments where traditional methods 
face limitations.

2.	 While the LS-SVR model achieves high accuracy in porosity prediction, 
its performance depends on the quality and representativeness of 
the training data. In complex geological environments, the assumed 
stationary relationship between input features and porosity may 
not hold. Future research should focus on how to improve feature 
selection methods to improve the robustness of the model and 
respond to geological variability with more detailed geological 
information.

3.	 The LS-SVR model's high predictive accuracy has significant 
practical implications, particularly for geological exploration and oil 
and gas development. Accurate porosity predictions guide reservoir 
characterization, well placement, and production optimization. This 
model offers a valuable tool for oil and gas professionals, improving 
decision-making in early reservoir development. Future work will 
address model limitations by exploring advanced techniques, such 
as multi-source data integration and machine learning model fusion, 
to further enhance prediction accuracy.
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