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Abstract The main aim and contribution of the current paper is to implement a semi-analytical
iterative method suggested by Temimi and Ansari in 2011 namely (TAM) to solve two chemical
problems. An approximate solution obtained by the TAM provides fast convergence. The current
chemical problems are the absorption of carbon dioxide into phenyl glycidyl ether and the other
system is a chemical kinetics problem. These problems are represented by systems of nonlinear ordi-
nary differential equations that contain boundary conditions and initial conditions. Error analysis
of the approximate solutions is studied using the error remainder and the maximal error remainder.
Exponential rate for the convergence is observed. For both problems the results of the TAM are
compared with other results obtained by previous methods available in the literature. The results
demonstrate that the method has many merits such as being derivative-free, and overcoming the
difficulty arising in calculating Adomian polynomials to handle the non-linear terms in Adomian
Decomposition Method (ADM). It does not require to calculate Lagrange multiplier in Variational
Iteration Method (VIM) in which the terms of the sequence become complex after several iterations,
thus, analytical evaluation of terms becomes very difficult or impossible in VIM. No need to con-
struct a homotopy in Homotopy Perturbation Method (HPM) and solve the corresponding alge-
braic equations. The MATHEMATICA® 9 software was used to evaluate terms in the iterative
process.

© 2016 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is
an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

In practical life, there are many phenomena in Chemistry,
Mechanics, Biology, Physics and Fluid Dynamics can be rep-

Peer review under responsibility of King Saud University. resented by either linear or nonlinear differential equations.

In Chemistry for example, the condensations of carbon dioxide
and phenyl glycidyl ether and chemical kinetics problem are
represented by systems of nonlinear ordinary differential equa-
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Figure 1  Logarithmic plots of MER, , against n is 1 through 4
and m = 1.

Carbon dioxide (CO,) is used in many fields such as plant
photosynthesis, fire extinguishers, and removing caffeine from
coffee. Carbon dioxide is generally a beneficial gas which con-
sists of one carbon atom and two oxygen atoms (Duan et al.,
2015; AL-Jawary and Radhi, 2015; Muthukaruppan et al.,
2012). On the other hand the chemical kinetics system intro-
duced by Robertson in 1966 is a nonlinear model
(Aminikhah, 2011; Ganji et al., 2007).

Many types of ODEs are solved either analytically or
numerically for examples: the Variational Iteration Method
(VIM) is used to solve the nonlinear settling particle equation
of Motion (Ganji, 2012). The He’s Homotopy Perturbation
Method (HPM), which does not need small parameter in the
equation is implemented for solving the nonlinear Hirota—Sat-
suma coupled KdV partial differential equation (Ganji and
Rafei, 2006). Deniz and Bildik (2014) have implemented the
comparison of Adomian Decomposition Method (ADM)
and Taylor matrix method for solving different kinds of partial
differential equations. Also, Bildik and Deniz (2015a) have
used both Taylor collocation and ADM for solving systems
of ordinary differential equations. Moreover, Bildik and
Deniz (2015b) have successfully implemented taylor colloca-
tion method, lambert w function and VIM for solving systems
of delay differential equations. Wazwaz (2005) has used the
ADM for solving the Bratu-type equations.

Several methods have been used to solve the system of con-
densations of carbon dioxide and phenyl glycidyl ether and
obtained analytical approximate solutions such as, Adomian
Decomposition Method (ADM) was applied to simple
steady-state condensations of CO, and PGE (Duan et al.,
2015; Muthukaruppan et al., 2012), the VIM (AL-Jawary
and Radhi, 2015) and the iterative method (DJM) (AL-
Jawary et al., 2016).

On the other hand, the chemical kinetics problem is solved
by many methods and the solution is obtained as approximate
solutions. Ganji et al. (2007) have successfully implemented
both the VIM and HPM for the system. Khader (2013) has
used the so-called Picard—Pade technique to solve the system.
Also, Aminikhah (2011) has used (HPM) to solve the system.
Moreover, Matinfar et al. (2014) have applied the homotopy
analysis method (HAM) and the solutions obtained by
HAM have high accuracy in comparison with HPM and
VIM introduced in Ganji et al. (2007).

Furthermore, some analytic and approximate methods
have recently been used and implemented to solve different
chemical and physics problems and other sciences for exam-
ples: Differential Transform Method (DTM) has been used
to solve fourth order singularly perturbed two-point boundary
value problems which occur in chemical reactor theory (El-
Zahar, 2013). Matinfar et al. (2015) have found that the inter-
action of electromagnetic wave with electron is solved by VIM.
In Vazquez-Leal et al. (2015) the authors present a comparison
of Homotopy Perturbation Method (HPM), Nonlinearities
Distribution Homotopy Perturbation Method (NDHPM),
Picard, and Picard—Pade methods to solve Michaelis—Menten
equation. Also, Ca zares-Ramirez and Espinosa-Paredes
(2016) the authors studied the behavior of heat and mass trans-
fer during hydrogen generation in the core of the boiling water
reactor (BWR). Makinde (2007a,b) has implemented the
ADM to compute an approximation to the solution of the
non-linear system of differential equations governing the SIR
epidemic model and the ratio-dependent predator—prey system
with constant effort harvesting. In addition, Makinde (2009)
has successfully applied the ADM coupled with Padé approx-
imation technique and VIM to approximate the solution of the
governing non-linear systems of a mathematical model that
describes the dynamics of re-infection under the assumption
that the vaccine induced immune protection may wane over
time.

Recently, Temimi and Ansari (2011a) have introduced the
semi-analytical iterative technique in 2011 for solving nonlin-
ear problems. The TAM is used for solving many differential
equations, such as nonlinear second order multi-point bound-
ary value problems (Temimi and Ansari, 2011b), nonlinear
ordinary differential equations (Temimi and Ansari, 2015),
korteweg—de vries equations (Ehsani et al., 2013) and the
results obtained from the method indicate that the TAM is
accurate, fast, appropriate, time saver and has a higher
convergence.

In this paper, the TAM will be applied to solve two chem-
ical problems. The first problem is a nonlinear system of the
concentrations of carbon dioxide and phenyl glycidyl ether.
The other is a chemical kinetics problem which is also repre-
sented by a nonlinear system of ODEs. Special discussion is
given for the study of the convergence based on Temimi and
Ansari (2015), the error analysis of the method (TAM), the
error remainders and the convergence of the TAM will be
discussed.

This paper has been organized as follows: In Section 2, the
steady-state of the chemical problems will be introduced. In
Section 3, the basic idea of TAM is presented and discussed.
In Section 4, solving the chemical problems by the TAM will
be given. In Section 5, the convergence and error analysis
are introduced and discussed. In Section 7, the numerical sim-
ulation will be illustrated and discussed. Finally, the conclu-
sion in Section 8 will be given.

2. Steady-state of the chemical problems

2.1. Condensations of carbon dioxide and phenyl glycidyl ether

The mathematical formulation of the concentrations of Car-
bon dioxide and phenyl glycidyl ether can be shown as follows
(Muthukaruppan et al., 2012):



Table 1 Comparison the absolute errors for w;(x) obtained by TAM and RK4.

X 2 T I'e rg 10 12 I'4 RK4

0.01 0.0000262321 0.0000004391 0.0000000062 7.54566 x 107! 7.68318 x 1013 5.72573 x 1071 7.29719 x 10~ 1® 4.13714 x 10~
0.02 0.000024461 0.0000008795 0.0000000124 1.50827 x 10~ 1° 1.53562 x 1012 1.14416 x 10~ 1.453 x 107" 8.37143 x 10~
0.03 0.0000786239 0.0000013183 0.0000000186 2.26025 x 10717 2.30089 x 102 1.71378 x 10~ 14 2.16332 x 1077 1.27044 x 10713
0.04 0.0001047471 0.0000017560 0.0000000248 3.00963 x 1071° 3.06311 x 10712 2.28044 x 1074 2.85416 x 1077 1.71349 x 10~ 3
0.05 0.0001307976 0.0000021921 0.0000000309 3.75556 x 10710 3.82125 x 10712 2.84314 x 101 3.51824 x 1077 2.16605 x 10713
0.06 0.000156757 0.0000026263 0.0000000370 4.49716 x 10 1° 4.57429 x 1012 3.40091 x 10~ 14 4.15249 x 1077 2.62727 x 10713
0.07 0.0001826069 0.0000030581 0.0000000431 5.23354 x 10717 5.32120 x 10712 3.95271 x 10~ 4.74338 x 1077 3.09697 x 1013
0.08 0.0002083288 0.0000034873 0.0000000492 5.96383 x 10710 6.06094 x 10712 4.49756 x 10714 5.29091 x 1077 3.57353 x 10713
0.09 0.0002339039 0.0000039133 0.0000000551 6.68714 x 107 1° 6.79247 x 1072 5.03445 x 10714 5.78964 x 10717 4.05634 x 10713
0.1 0.0002593132 0.0000043358 0.0000000611 7.40257 x 1071° 7.51467 x 10712 5.56233 x 10714 6.22332 x 1077 4.54387 x 10713

Table 2 Comparison the absolute errors between for w,(x) obtained by TAM and RK4.

X 92 qa4 96 qs q10 q12 q14 RK4

0.01 0.0000043404 0.0000000867 1.43202 x 107~° 2.07046 x 107! 2.63624 x 10713 2.89372 x 1071° 2.5289 x 10717 2.62139 x 10~12
0.02 0.0000087001 0.0000001737 2.86934 x 1077 4.14783 x 10! 5.28026 x 10713 5.79446 x 10713 5.06322 x 10717 5.24143 x 10712
0.03 0.0000130979 0.0000002615 431717 x 1077 6.23893 x 107! 7.93962 x 10713 8.70885 x 10712 7.6111 x 107Y7 7.85826 x 10~ 12
0.04 0.0000175522 0.0000003502 5.7806 x 10~° 8.3504 x 107! 1.06217 x 1072 1.16439 x 10714 1.01481 x 107 '° 1.04701 x 10~
0.05 0.0000220809 0.0000004404 7.26459 x 107° 1.04887 x 10~ 1° 1.33341 x 10712 1.46064 x 10~ 1.27502 x 107'° 1.30750 x 10~
0.06 0.0000267014 0.0000005322 8.77399 x 10~° 1.26603 x 10~ '° 1.60836 x 1072 1.76018 x 10~ 1.53089 x 10~ '° 1.56714 x 10~
0.07 0.0000314306 0.0000006251 1.03135 x 1073 1.48711 x 107 1° 1.88771 x 1012 2.06371 x 10~ 1.78677 x 107 '° 1.82574 x 10~ 1!
0.08 0.0000362846 0.0000007220 1.18875 x 10~* 1.71272 x 1071° 2.17214 x 1072 23718 x 107 2.04697 x 10~'° 2.08313 x 10~ !!
0.09 0.0000412793 0.0000008207 1.35006 x 1078 1.94342 x 107 1° 2.46225 x 10712 2.685 x 1014 2.30718 x 107'° 233914 x 10~
0.1 0.0000464297 0.0000009222 1.51568 x 1073 2.17975 x 10~ 1° 2.75868 x 1072 3.00385 x 10714 2.58474 x 107 '° 2.59360 x 10~
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The comprehensive reaction between CO, and PGE for
forming (5-membered cyclic carbonate) can be presented as

o
- coaan /U\
catalyst (QX) o 2 )
PGE(A2) /\
R R

where R is a functional group of -CH,—O-C4Hs. The compre-
hensive reaction of Eq. (1) consists the two following succes-
sive steps: (1) the reaction between PGE (A,) and THA-CP-
MS41(QX) for forming (E;); (2) the reaction between (E;)
and CO, (A)) for forming (QX)and 5-membered cyclic carbon-
ate (C):

by
Ay +0X . E; (2)
A4+ EZCrox (3)

At steady state condition, the successively chemical reaction
rate of CO, for forming E, is given as follows:
Cy,S:

F'Ay cond =

4)
1 1 Cy (
H+m+—2

b3Cyy

where, C,4, and C,4, are the concentrations CO, and PGE
respectively, S, is the surface area of catalyzer. B is the reaction
balance constant, the constant »; in Eq. (2), is the forward
reaction rate constant and in Eq. (3) b5 is the forward reaction
rate constant. The mass equilibrium of CO, and PGE using the
film theory escorted by the successively chemical reactions are
presented as follows (Choe et al., 2010):

D &Cy C4,S, s
AT T 1 Cay (5)
T Cay | b3Cy,
&#C CuS
D/42 y 2/12 _ 1 lAz t o (6)
- E*Bbml +b36.4,

where z is the distance and D4, and D,, are the diffusivity of
CO, and PGE successively. The boundary conditions are:

ac,,
Ca = Cy,, ?f‘-:o atz=0,Cy4, = Cy,,
CAZ = CAZO atz =z, (7)

The Egs. (5), (6) and the boundary conditions (7) can be
normalized by employing the following parameters:

b GG ESCanbhs
! CA1i7 2 CA207 Dy, ’
Z%StCA,iBb3
S
CA ,'Bb; CAG()BI?I z
B, = L . =227 _ =
[1 b] ) ﬁ2 b] 5 X Z£

where o, oy, 8, f, are normalized parameters, y, is the con-
densation of (CO,), y, is the condensation of (PGE) and x is
the dimensionless distance.

Now, the two nonlinear reactions Eqgs. (5) and (6) in nor-
malized form will become as follows:

dz}‘| _ %1 V1)

dx* T HBiyi+han

. (8)
&y wmyn

dx* 1481 y1+B2ya

and boundary conditions will become:

1

11(0) =0, y(1) =
BO= )=

where the above Egs. (8) is the system of nonlinear differential
equations and m > 3. The enhancement factor of CO2 is as

follows: § = (%),\:0'

2.2. Chemical kinetics problem

The mathematical model of chemical kinetics problem is pre-
sented in Aminikhah (2011), Ganji et al. (2007), Khader
(2013) and Matinfar et al. (2014):

Let us define three spaces of a model of chemical process
which are denoted by D, E and H, the reactions are presented
by:

D—E 9)
E+H—D+H (10)
E+E—H (11)

The concentrations of D, E and H can be denoted by w;, w,
and ws, respectively. It is worth to suppose that these are
aggregations of 3 concentrations is one. Let (¢;) denote the
reaction rate of Eq. (9) this meaning that the rate at which
w, increases and at which w, decreases, because of this reac-
tion, will be equal to (¢;w;). In the second we will denote to
the reaction rate of Eq. (10) by (¢,), and H works as a catalyzer
in the production of D from E, meaning that in this reaction
the increase of wy and the decrease of w; will have a rate equiv-
alent to (cawaws).

Lastly the rate of the third reaction will be equivalent to
(c3w3) because the production of H from E will have constant
rate equivalent to (c3).

The system of ordinary differential equations to difference
with time of the three condensations by putting all these Ingre-
dients of the process together will then be (Aminikhah, 2011;
Ganji et al., 2007; Khader, 2013; Matinfar et al., 2014):

‘g—’\‘} = —C Wi + CoWaws

dwy N a2

T = W — oWy — C3W; (12)
dws 2

= c3w3

and the initial conditions are:

wi(0) =1, w(0)=0, w;(0)=0

where ¢;, ¢, and c¢; are the reaction rates.



324

M.A. AL-Jawary, R.K. Raham

Table 3 Comparison between the ADM, the VIM and TAM of MER,,.

S

MER, , by the ADM

MER,,, by the VIM

MER;, by the TAM

A WD =

0.0263902
0.00318202
0.000296418

0.0000205945

0.00285565
0.00114207
0.000456784
0.000182708

0.000205654
0.0000884596
0.000068774
0.000064352

Table 4 Comparison between the ADM, the VIM and TAM of MER;,.

S

MER,, by the ADM

MER,,, by the VIM

MER,, by the TAM

1 0.0527803 0.00571131 0.000411307
2 0.00636405 0.00228414 0.000176919
3 0.000592835 0.000913568 0.000137548
4 0.000041189 0.000365417 0.000128704
Table 5 The MER, , by the TAM, where n = 1,...,4 and x are divided by m.
m n

1 2 3 4
3 0.000205654 0.0000884596 0.000068774 0.000064352
5 0.0000471627 0.0000125072 5.87609 x 107 3.3354 x 10°°
10 6.1817 x 10°° 8.3866 x 1077 1.99081 x 1077 5.69789 x 107°
15 1.86177 x 107° 1.69779 x 1077 2.69968 x 10~% 5.16875 x 1077
20 7.91955 x 1077 5.43946 x 10~% 6.50441 x 10~° 9.35771 x 10710
25 4.07511 x 1077 2.24494 x 1078 2.15122 x 1077 2.47894 x 107
30 2.36618 x 1077 1.08814 x 1078 8.69954 x 10'° 8.36112 x 10!
35 1.49365 x 1077 5.89497 x 10~° 4.04314 x 10710 3.33282 x 1071
40 1.00243 x 1077 3.46501 x 1077 2.08082 x 107'° 1.50156 x 10!
45 7.05026 x 10~° 2.16782 x 1077 1.15778 x 10710 7.42927 x 1072
50 5.14541 x 1078 1.42474 x 107° 6.85117 x 107! 3.95786 x 10712
Table 6 The MER,, by the TAM where n = 1,...,4 and x are divided by m.
m n

1 2 3 4
3 0.000411307 0.000176919 0.000137548 0.000128704
5 0.0000943255 0.0000250144 0.0000117522 6.6708 x 10~°
10 0.0000123634 1.67732 x 107° 3.98162 x 1077 1.13958 x 1077
15 3.72354 x 107° 3.39557 x 1077 5.39935 x 10~° 1.03375 x 107°
20 1.58391 x 10°° 1.08789 x 1077 1.30088 x 10°* 1.87154 x 107°
25 8.15022 x 107 4.48988 x 10°% 4.30245 x 1077 4.95789 x 10710
30 473236 x 1077 2.17629 x 107° 1.73991 x 10~° 1.67222 x 1071°
35 2.98729 x 1077 1.17899 x 10~ 8.08628 x 10! 6.66563 x 10!
40 2.00486 x 1077 6.93002 x 1077 4.16165 x 10710 3.00313 x 107!
45 1.41005 x 1077 4.33564 x 10~ 2.31556 x 10710 1.48585 x 107!
50 1.02908 x 1077 2.84949 x 1077 1.37023 x 10710 7.91572 x 1072

3. Basic idea of semi-analytical iterative technique (TAM)

To illustrate the basic idea of TAM, let us consider the general
differential equation as given in Temimi and Ansari (2011a,b,
2015), Ehsani et al. (2013):

Lu(x)) + N(u(x)) + g(x) = 0

with boundary conditions

du
Blu=)=
(u, dx) 0

(13)
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Table 7 Comparison between the HPM, the VIM and TAM of MER| ,,.

n MER,, by the HPM MER , by the VIM MER;, by the TAM
1 0.001 0.001 0.001

2 5.x 107 4.99999 x 107¢ 4.99999 x 107°

3 1.66726 x 107° 1.66666 x 107 1.66666 x 107

4 3.57414 x 1071 4.16664 x 1071 4.16665 x 107!

Table 8 Comparison between the ADM, the VIM and TAM of MER, ,,.

n MER,, by the HPM MER,, by the VIM MER;, by the TAM
1 0.0010009 0.0010009 0.0010009

2 4.10898 x 107¢ 5.00898 x 107° 5.00898 x 107°

3 7.71961 x 10~ 1.66965 x 1078 1.66965 x 108

4 1.12015 x 107" 4.17412 x 1071 4.17412 x 1071

where u(x) is an unknown function, x is the independent vari-
able, L is a linear operator, g(x) is a known function, N is a
nonlinear operator and B is a boundary operator.

L is the main requirement here and it’s the linear part of the
differential equation but we can taken some linear parts and
put them with the nonlinear parts N as needed.

The suggestion method works in the following way. Let us
consider that the initial approximate of the problem is uy(x)
and it’s a solution of the problem

L(uo(x)) + &(x) =0, (14)

with B(up,%2) = 0, and to calculate the next iterative u;(x), we
must solve the following problem

L(1(x)) + N(uo(x)) + g(x) = 0, (15)

with B(uy, %) = 0,
Generally, we can calculate the other iterations by solving
the following problem

L(un11(x)) + N(un(x)) + g(x) =0, (16)

with B(u,1,%41) = 0.

It is worth to mention that each of the u;(x) represents
alone solutions to Eq. (13). This iterative procedure is very
simple to use and has characterized that each solution is a
development of the previous iterate, when we increase the iter-
ations, we obtain a solution that is convergent to solution of
Eq. (13).

4. Solving the chemical problems by TAM

In this section, we implement the proposed method (TAM) to
solve the nonlinear chemistry problems

4.1. Problem (1)

System of condensations of carbon dioxide and phenyl glycidyl
ether
We can rewrite the system of Eq. (8) as follows:

{}’Q'(x) = a1y (0)y2(x) = () (B1y1(X) + By (x))

() = 3 (¥a(0) = A B () + Borae)) D)

with boundary conditions

1
yl(o):07 yl(l):E7
, 1 1
15(0) = »(1) o

First, we will divide the system of Egs. (17) as follows:
Ll()’luh) = y/l/(x)ﬁ

Ni(y1,32) = oy (X)12(x) = p7(2) (Bry1 (x) + Boya(x)),

Ly(yy,3,) = ¥5(x),
No(y1,32) = w0y ()2 (x) = ¥5(x) (B3 (x) + Boya (X)),

& (x) =0.
For simplicity and accuracy purposes, we will consider the
boundary conditions in the following form:

X X

11(0) :gv n(1) 257

X X

}’2(1)13'

which satisfies the boundary conditions when m = 3. Now, to
calculate the initial approximate of the system, we will solve
the initial problem:

{ y/l/,o(x) =0,

Vo(x) =0, (18)

with boundary conditions

X X
yl,o(o) = 3 J’Lo(l) = 3

X X

yz,o(o) = gv yZ‘O(l) = gv

By taking the double integration to both sides of the prob-
lem (18), then we get:
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X
Vio(x) = 3

X
Vao(x) = 3

We can calculate the second iteration by solving the
problem:

yll/,l (x) = 0‘1J’1,0(x)J’2.0(x) - y,(.o(x)(ﬁ]}’l.o(x) + Bayao(x)),

y,2/,l (x) = O‘2}'1.0()C)J’2.0(X) - y,z/.o(x)(ﬂﬂl.o(x) + ﬁzyz,o(x)):
(19)
with boundary conditions
x x

}’1‘1(0) = 3 yl,l(l) :57

X X
yz‘l(o) = 3 yz,l(l) 257

Once again, by taking the double integration to both sides
of problem (19), we obtain:

1
P11(%) = 1og (36X — xau + o),

1
Ya(x) = 108 (36x — xop + x*aty).

In the same way, the additional solutions can be obtained by
solving the problems generated by:

Pt () = 0101, ()12, (%) = W, () (Bry1,n(x) + Boya (%)),

y’Z/,;H»l ('x) = azy],n(x)yln(x) - yg‘n(x)(ﬁlyl,n(x) + ﬁZyZ,n(x))v
(20)
with boundary conditions

X

X
yl,n+l(0) = 57 yl,n+l(1) = gv

X X

y2‘n+](0):§7 y2‘n+l(1):§‘

Then each of y, ,(x) and y, ,(x), withn = 1,2,... represents
the solutions of the system of Eq. (17). To show the accuracy
of the realized approximate solution (since the exact solution
of the system in Eq. (8) unavailable) the relevance function
of the error remainder will be used as follows (Duan et al.,
2015; AL-Jawary and Radhi, 2015):

_ 0171,,(%) 12, (%)
1+ ﬂlyl,n(x) + B2y (x) '

ERL” = ylll,n ()C)

01, (X)2,,(x)

ERy, = (x) — ’
2 = V() L4 B1y1, (%) + Boyy,(x)

and the maximal error remainder parameters are:

MER,, = max |ER,,|, MERzﬁ,,zomax |ER, ,|. (23)

0.01<x<0.1 01<x<0.1

4.2. Problem (2)

System of chemical kinetics problem:
Let us rewrite the system of Eq. (12) as:

Wi (x) = —ciwy + cawaws,
wh(x) = cwy — cawaws — ¢c3w3, (24)
wh(x) = c3w3,
with the initial conditions
wi(0) =1, wy(0)=0, w3(0)=0.
First, we will divide the system of Eq. (24) as follows:
Li(wy,wa, w3) = wi(x),
Ni(wi, wa, w3) = —ciwy + cawaws,
gi(x) =0,
Ly (wy, wa, w3) = wh(x),
No(wi, wa, w3) = ciw — cawpaws — c_;w%,
& (x) =0,
Ls(wy, wa, w3) = wi(x),
Ni(wy, wa, w3) = c3w3,
g (x) =0.
To calculate the initial approximate of system wjq(x),
wao(x), and w3p(x), we will solve the initial problems:
Wll,O(x) =0,
le,o(x) =0, (25)

W/lO (x)=0,

with initial conditions

wip(0) =1, wy(0) =0, w;0(0)=0,

By integrating both sides of the problem (25), we achieve:
Wl?() (x) = 1,

WZ,O (X) = 0,

W3 (X) = 0,

and we can calculate the second iteration by solving the
problem:

w'u(x) = —c1wio(x) + cawao(X)ws(x),
W'ZJ (x) = cywio(x) — cawag(X)wsp(x) — c;w%}o (x), (26)
Wg,l (x) = cBW%,o(-’C)v
Once again, by taking the integration to both sides of prob-
lem (26), we get:
wii(x) =1-¢x,
wai(x) = ¢rx,
wii(x) =0.

In the same way, the additional solutions can be obtained by
solving the problems generated by:

W1 (X) = —crwi () 4+ cowa (X)W, (x),
W1 (%) = Cwia(X) = cowan(X)wsa(x) — 3w, (x),  (27)
Wi (X) = €33, (x).
with initial conditions
Wiar1(0) =1, wa,1(0) =0,

Then each of wy ,(x), wo,,(x) and w;,,(x); n = 1,2, ... repre-
sents the solutions of the system of Eq. (24), it is worth to men-
tion here the exact solution for the system in Eq. (12) is
unavailable.

W3 541 (O) = 07



ITterative technique for solving chemistry problems 327
To show the accuracy of the realized approximate solution with initial conditions
we will use the relevance function of the error remainder as fol- w1 (0) = ay
lows (Duan et al., 2015; AL-Jawary and Radhi, 2015): ) ’
wa =,
ERy, = Wi, (x) + ciwi n(x) — cowan(X)W3,(x), (28) (37)
ERy; = W), (X) — ciwin(X) 4+ e (X)ws,(x) + c3w§'n(x), W (0) = @y,
(29) The system of Eq. (36) will transform to
ERs, = w, (x) — c;wén(x). (30) wi(x) = fi(W], wi, wh, wa, oo W Wi, X),
o ' _ Wh(x) = fa(Wy, Wiy Why wa, ooy W Wi, X)),
and the maximal error remainder parameters are: (38)
MER, = max |ER,|, MER,, = max |ERy,|, :
1<x<0.1 0.01<x<0.1 W (X) = [, (W), wi, Wh, way oo W Wiy, X),
MER;, = o dnax 1\ERg,1| (31) subject to the initial conditions (37).
fers Where f,,f,...,f, are nonlinear analytic functions and
. Si W, wi,wh wa, W oW, x) = =Ny (Wi, wa, . W) — g1(X),
5. Convergence and error analysis ,
LW, wi,wh,wa, o W W, x) = —No(wi, wa, .o W) — 85(X),
Firstly, we will present the error reminder for the system, then
: 2
will recall the £°-norm S W wi,whowa, o Wl Wy, X) = =Ny (Wi, Wy, W) — €, ().

= ( xf?dty (32)

Let us rewrite the system of m —coupled nonlinear ordinary
differential equations:

Li(wi,way ..oy wy) + Ni(wi,wo, ..o,

W) + Na(wi,wa, ...

wm) +81(x) =0,

Ly(wy,wa, ..., W) + 8(x) =0,

L,(wi,way oo ywy) + Np(wi,way . ooyw) + g,(x) =0,

(33)

Then the error remainders of the system are (Duan et al.,
2015; AL-Jawary and Radhi, 2015):

ERLVI(X) = L,‘(W], Wa,enny WWI) + Ni(1v17 Woyenny Wm) + gi(x)7
i=1,....,m (34)

and the maximal error remainders are (Duan et al., 2015; AL-
Jawary and Radhi, 2015)

MER,, = max |ER,(x),i=1,....m (35)

0.01<x<0.1

6. Convergence of initial value problems

Now, we will present the convergence of semi analytical itera-
tive technique (TAM) for system of m-coupled nonlinear ordi-
nary differential equations with initial conditions as follows
(Temimi and Ansari, 2015):Let us rewrite the system of Eq.
(33) as follows:

Li(wi,way ..oy wy) + Ni(wi,wa, ...

,Wm) +gl(x) = Oa
W) + Na(wy,wa, ... 0

Ly(wi,wa,y ..., W) + 8, (x) =0,

Lm(W] yW2seeey Wm) + Nm(wl y W2y Wlﬂ) + gm(x) = 07

(36)

The main aim in this section is prove the sequences of the
functions w4, Wk, . .., Wy Which are solutions of

Wi (X)

War1 (X)

/
me@ Wink, x) ’

/
3 wm7k7 Wink s x)7

_ / Y
= [1OV) s Wik, Wa s Waks + -5
_ / Y
= oW g Wik, W s Waks - - -
(39)
N
3 wnLkv Wink X),

S — S 7
Wink+1 (x) *fm(”’l,kv Wiks Wogos Woks - - -

with initial conditions (37).

Converge to the solutions of problem (38) and we can take
the initial guess functions wy g, w2y, . .., Wno as the solutions of
the initial problem

Ly (wyo(x), wao(x),...,
Ly (wyo(x), wag(x),...,

Wm‘O) + 8 (X) = 07
Wm‘O) +g2(x) = 07

(40)
L,,(wio(x), wa0(x), ..., Wno) + gu(x) =0
with initial conditions (37).
The solution of (38) in linear integral form:
o0
= / Gi(x, £)f;i(Wy, wi, wh, wa, oo Wl Wy, 8)ds (41)
0

where i = 1,2,...,m, we will start with Green’s formula over a
finite interval

0 < x < X, by Jerri (1985) we get
X
—/ Gi(x, £)f;(Wy, wi, wh, wa, oy W Wy, 8)ds
0

- {w,.(x) %} - {w,-(O)W} (42)

By putting the two terms on the right hand side in the limit
X — oo as follows (Makinde, 2007b)

lim Gy(x, 5) = lim 90158

X—00 X—00 X

i=1,...,m

we get the solution w; as follows
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o0
w; = / Gi(x, D)f; (W), Wi, Wy, Wa, ..., W, Wy, S)dS
0

dG;(0,t dG;(0,t dG;(0,t
*Pl 0., , dGi(0.0) dGi(0, 1)

dx dx Tt dx (43)

To study the convergence of the semi-analytical iterative
technique (TAM), we need to recall the Green’s function
(G), which was firstly introduced by Bellman and Kalaba
(1965) associated with (38) that is

A + Byx, x<s
G](X,S) :{ : : 5
C, + Dx, x>
Ay + Byx, x<s
@@@={ B |
C, + Dyx, x> (44)
A+ Bx, x<s
Gp(x,s) = .
C,+ D,x, x>

We have C;=D;=0,i=1,...,m. The continuity and
jump conditions at x = s then yields

s—XxX, x<s§ .

G,‘ 5 = 5 = 17 ey 45
(x,9) {0, x> ! " (45)
Let k; = max |Gi(x, s)| = {|s — x|}
and

k = maxk; (46)

1<i<m

By putting the values of Green’s function (%E?’t) = 71) in

Eq. (43) we get

w; =/ Gi(x, 1)f;(Wy, wi, Wy, wa, o W Wy, 8)ds
0
+ a1 +ar + - 4 ay,)] (47)

and

X
Wikt =/0 Gi(%, OF (W) s Wik, Wh s Waes + s Wiy s Wine, $)ds
+lar +ax+ - +ay
(48)
In order to illustrate of formulation, we use the notation
Wy = (Wi, wy),
Then, applying the general mean value theorem and sub-

tracting (47) from (48) leads to

o)
Wi,k+l —W; = / G,‘(X, S)fi(ei‘k)A(Wl_k — Wi, Wok
0

— Wy Wik — Wy )dS (49)
where 0,'_/{ = (9[,1,/(7 9,"2_’/(, ceey 0,’1,,,7/{) and 9,’_,4'/{ S (Wl}kv W,') for
iir=0,1,...,m

Let

dfi

M,":ma —9,' N .7.:1727...
1104 <)1(H dw,»( ) b

M; = maxM;;, M = maxM; (50)
1<j<m 1<i<m

We can prove the sequences of functions w;; converge to
the exact solutions w; of system (36) through the next
theorems:

Theorem 5.1. Let w; and w;y respectively, be the solution of
(38) and (39). Assume that f; are nonlinear analytic functions
for i=1,2,...,m. Then, if MKb, <1, the sequences of

functions w;; converge to the exact solutions w; in the -
norm, where (M) and (K) are defined, respectively, by (46) and
(50).

Proof: see Temimi and Ansari (2015).

Theorem 5.2. Let w; and w;; be the solution of (38) and (39),
respectively. Assume that f; are nonlinear analytic functions
for i=1,2,...,m. Then, if MKb,, <1, the residual error
defined by (35)converges to zero with respect to the exact
solutions w; where (M)and (K)are defined, respectively, by (46)
and (50).

Proof: see Temimi and Ansari (2015).

7. Numerical simulations

Perhaps a good starting point for testing the performance of

TAM is to consider an example in which the exact solution

is available. Let us consider the following system of nonlinear

ODEs (Saadatmandi et al., 2009):

{ wi(x) = xwh —wy +x° — 2x% + 6x, 51
Wi(x) = —xw) —wiwy +x° — x* + 233 + X2 — x + 2, 1)

with boundary conditions
wi(0) =0, w(l)=0,
wy(0) =0, wy(l)=0.
First, we will divide the system of Eq. (51) as follows:
Li(wy, wy) = wi(x),
Ni(wi,wy) = xwh — wy,
g,(x) = x* — 2x% 4 6x,
Ly (wi, wa) = wh(x),
Nao(wi, wa) = —xw| — wiw,
&Hx)=x = x* +2x° +xF —x+2.

Now, to calculate the initial approximate of the system, we
will solve the initial problem:

wi o (x) = x> — 2x% + 6x,
//~ 5 4 3 2 (52)
Wyp(x) = X7 = x* +2x7 + X2 — x + 2,
with boundary conditions
wio(0) =0, wio(l) =0,
10(0) ro(1) (53)
w2~0(0) = 07 Wz.()(l) =0.

By taking the double integration to both sides of problem
(52), we get:
wio(x) =g5(—53x +60x* — 10x* +3x%),
Wa(X) = 735 (—423x 4+ 420x% — 70x° 4 35x* +42x° — 14x5 +10x7).

and we can calculate the second iteration by solving the
problem:
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Figure 2 Logarithmic plots of MER,,, against n is 1 through 4
and m = 1.

{ wi (X)) = xwhy — wig 4 x° = 2x% + 6x,

W (X) = —xwi g — wigwa + x° = x* 4+ 2 + 57 — x + 2,
(54)
with boundary conditions
wi1(0) =0, wy(1)=0,
wy1(0) =0, wy(1)=0.

Once again, by taking the double integration to both sides of
the problem (53), we obtain:

w1 () —14825x + 14808x* — 378x° + 252x°

= 15120
+162x7 — 54x* +35x”)

1
- 1816214400(
~35315280x° + 16702686x* — 10594584

+31879848x° — 14886300x" + 15308865x®
—4806802x° — 1145144x'° + 756756x'" — 472836x"
+65604x" — 11880x'*)

wa1(x) —1813695333x + 1816214400x>

In the same way, the additional solutions can be obtained
by solving the problems generated by:

{ Wiy () = xwh, — wi, + X7 — 2% 4 6x,

Wy () = =xwi = wiawa, + X7 — x4+ 260+ xF — x4 2,
(55)
with boundary conditions
Wl,n+l(0) = 07 wl,n+1(l) = 07
waui1(0) =0,  wa, (1) =0.

Then each of wy,(x) and w,,(x); n = 1,2,... represents the
solutions of the system of Eq. (51) and the exact solution of
Eq. (51) is:

3

Wier(X) = X° — X, war(X) = X* — x (56)

Next, we will compare the results obtained by the ATM
between the exact and approximate solution together with its
convergence.

Further investigation can be done by applying the classical
Runge-Kutta method (RK4) using MATHEMATICA (see
appendix) and compute the absolute errors to assess the per-
formance of TAM in comparison with the numerical method.
In the Tables 1 and 2 below, we note that the increase in the
number of iterations n from 1 to 14 leads to the decrease in
the values of absolute errors (r;andg;),, where r; = [wy.(x)—
wi(x)|, ¢; = [Waex (x) — wai(x)|, i=2,4,6,8,10,12 and 14,
and wy,,, wyya, are the exact solutions given in Eq. (55), and
wi;(x), wa(x) are the approximate iterations for both functions
obtained by TAM.

Moreover, it can be seen clearly from Tables 1 and 2 the
absolute errors obtained by ATM are less than those obtained
by RK4 and the values of absolute errors in the columns
become less and less by increasing the number of iterations.
This indicates that the ATM converges faster with high
accuracy.

Now the evidence of the high performance of TAM has
been achieved, therefore, the TAM will be implemented to
the main two problems which are the main goal and contribu-
tion of the current work.

L T
1x107" F ™

sx1078 F N

1x1078 |
sx1079F

MERI

1x1079F
sx10710F

1x107 10}

Figure 3  Logarithmic plots of MER, ,, against n is 1 through 4 and m = 35.
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Figure 5 Logarithmic plots of MER, ,, against  is 1 through 4.

108

MER;

108

10-10

Figure 6 Logarithmic plots of MER, , against # is 1 through 4.

7.1. Numerical simulations of the system of condensations of
CO; and PGE

In this section, we compute the error remainders and the max-
imal error remainders to assess the convergence of TAM for
the system of condensations of CO, and PGE, and we will take
the values of the parameters as: oy =1, op =2, f;, =1 and

0%

MER3 5

1071

10-13 . i
10 15 2.0 25 3.0 35 40

o
Figure 7 Logarithmic plots of MER; , against n is 1 through 4.

Table 9 Comparison between the ADM, the VIM and TAM
of MER .

n MER;, by the MER3, by the MER;3, by the
HPM VIM TAM

I 9.x1077 9.x 1077 9.x 1077

2 891023 x 1077 8.98287 x 10~ 8.98287 x 10~°

3 8.95302 x 107° 2.98904 x 107! 2.98904 x 10!

4 469428 x 107! 7.4733 x 10714 7.4733 x 10714

f, =3 as given in Duan et al. (2015), AL-Jawary and Radhi
(2015).

In Tables 3 and 4 below, the values of MER;, and MER,,
which are obtained by TAM are compared with those resulted
by ADM and VIM (Duan et al., 2015; AL-Jawary and Radhi,
2015). It can be observed that the maximal error remainder
values obtained from the TAM are lower than of those
obtained from ADM and VIM (Duan et al, 2015; AL-
Jawary and Radhi, 2015) which mean better accuracy is
achieved, and we note that the increase in the number of iter-
ations n from 1 to 4 leads to the decrease in the values of
MER,, and MER;, as follows:
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In the Figs. 1 and 2 below, we can show the analysis of the
logarithmic plots of error remainders of TAM for both
MER,, and MER,,.

It is necessary to mention here, the accuracy will be increas-
ing by increase of the denominator of the initial conditions (%\)
also the error will be decreasing. Moreover, we can note that as
shown in Tables 4 and 5 and Figs. 3 and 4, when we increase
the iteration (n from 1 to 4) we obtain a best accuracy. It can
be clearly seen that the points lay on straight lines which
means an exponential rate of convergence is achieved (see
Table 06).

7.2. Numerical simulations of the system of chemical kinetics

In this section, we also compute the error remainders and the
maximal error remainders (MER, ), (MER,,) and MER;, to
assess the convergence of TAM for the system of chemical
kinetics problems. We suppose the values of the three reaction
rates are: ¢; =0.1, ¢; =0.02 and ¢; =0.009, as given in
Aminikhah (2011).

In Tables 7-9 below, the values of MER,,, MER,, and
MER;, which are obtained by TAM are compared with those
resulted by VIM and HPM (Aminikhah, 2011; Ganji et al.,
2007). The results demonstrate that the method has many mer-
its such as, overcoming the difficulty arising in calculating
Adomian polynomials to handle the nonlinear terms in
ADM. It does not require to calculate Lagrange multiplier
as in VIM (which is time consuming) and does not need to con-
struct a homotopy and solve the corresponding algebraic equa-
tions as in HPM.

We can note that in Tables 7-9 below, the increase in the
values of n from 1 to 4 leads to the decrease in the values of
MER, ,, MER,, and MER;, as follows:

Furthermore, we can show the analysis of the maximal
error remainders for MER, ,, MER,, and MER;,, respec-
tively, through the Figs. 5-7, where the points lay on a straight
line which means we achieved an exponential rate of
convergence.

8. Conclusion

In the present paper, the semi-analytical iterative technique
(TAM) is implemented for solving the two systems of chemical
problems which are represented by systems of nonlinear ordi-
nary differential equations. We have presented the conver-
gence and accuracy of the method (TAM) for the systems of
nonlinear equations by theorems and numerical results.
Through the figures and tables, it can be seen clearly that the
maximal error remainders decreased when the number of iter-
ations are increased. Numerical results showed that for both
systems of chemical problems the TAM is able to generate
accurate solutions with exponential rate of the convergence.
Motivation of current work is achieved by comparing the
Runge—Kutta method (RK4) with TAM for an example in
which the exact solution is available. Numerical experiments
demonstrated that the suggested method possesses the high-
order accuracy in comparison of RK4 with some other existing
technique. Also, the main goal of the current paper is achieved
by solving the two systems of chemical problems accurately
with reliable results.

Furthermore, in comparison with the some existing meth-
ods such as ADM, HPM and VIM results, it is observed in
general that the approximate solutions obtained by the TAM
converge faster without any restricted assumptions.
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Appendix A. MATHEMATICA code for applying the RK4 for
the system given in Eq. (51)

ClearAll[“Global* *”]

ClassicalRungeKuttaCoefficients[4, prec_] := With[{amat

= {{1/2},{0,1/2},{0,0,1}}, bvec
={1/6,1/3,1/3,1/6},cvec
={1/2,1/2,1}}, N[{amat, bvec, cvec}, prec]|

{wlf,w2f} = {wl, w2} /.First@NDSolve

{wl"[t) == t+w2'[f] —wl[f] + £ =252 + 6 %1,

w2l == —txwl'[f] —wl[] s w2[] + £ —* + 2% + 7 — 1 +2,

wl[0] == 0, wl[1] == 0,w2[0] == 0,w2[l] == 0},

{wl,w2},{t,0,0.1}, Method — {“Explicit Runge Kutta”,
“DifferenceOrder” — 4, “Coefficients” —

Classical Runge Kutta Coefficients}, Starting Step Size — 0.01];

wliff = MapThread[Append,{w1f[“Grid”], w1f[“ValuesOnGrid”]}]

w2ff = MapThread[Append,{w2f[“Grid”], w2f[“ValuesOnGrid”|}]
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