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A B S T R A C T

In this study, we delve into the effectiveness of trapezoidal breakwaters in mitigating resonance phenomena.
The challenge at hand is to identify the optimal configuration capable of halting resonance. Employing
Shallow Water Equations with a friction term to encapsulate the breakwater’s roughness, we analytically
solve the model to determine the natural wave period. This period serves as the instigator of an unstoppable
harmonic oscillation. Numerically, we use the Finite Volume Method on a Staggered Grid to simulate the
model for several cases to pinpoint the infimum value of the natural wave period required to impede resonance
phenomena. This research holds significance for those involved in coastal protection design, particularly in the
context of trapezoidal breakwaters. The findings contribute to the effective reduction, rather than amplification,
of wave height, thereby enhancing the reliability of such coastal protection structures.
1. Introduction

Wave resonance in a certain basin is defined as a linear increase
in the amplitude of the natural oscillations occurring in that basin,
obtained when a wave enters the basin at a similar frequency as
the natural oscillations (Gluskin et al., 2013). The frequency in ques-
tion is called the natural (resonant) frequency (Rabinovich, 2009).
Assuming that the oscillatory system in the said basin is a lossless
system, it will absorb more and more energy under resonant excita-
tion, and a steady state is never reached, meaning that the amplitude
of the steady state is infinite at resonance (Gluskin et al., 2013).
In a real-life situation, the infinite increase of a wave’s amplitude
in a certain basin, such as a harbor, port, bay, or coastal area in
general, at resonance potentially causes extreme damage in the sur-
rounding area (Farhadzadeh, 2017). This will become more threatening
when the wave undergoes resonance and is an extreme wave (e.g., a
tsunami) (Yamazaki and Cheung, 2011) or when the general sea level
rises due to climate change or monsoons (Dong et al., 2023; Saengsu-
pavanich, 2017; Yun et al., 2023). Therefore, many mitigation efforts
have been put in place by installing many types of coastal protection
structures (Saengsupavanich, 2022; Saengsupavanich et al., 2023b). For
long-term use, many engineers have implemented several approaches
to protect coastal areas, such as revetments (Saengsupavanich and
Pranzini, 2023), breakwaters (Prukpitikul et al., 2019; Uda, 2022), or
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beach nourishment (Saengsupavanich et al., 2023a). However, these
approaches can be quite expensive and may create a lot of environ-
mental impacts (Pranzini et al., 2015; Sanitwong-Na-Ayutthaya et al.,
2023; Saengsupavanich et al., 2022). Hence, a thorough evaluation
is required prior to the installation of such a structure, especially to
estimate how effective the structure is in reducing the resonant wave’s
amplitude.

In the early years, resonances were commonly studied using an
experimental approach or field measurement. The studies conducted
using experimental approaches date back to the 1990’s, when Martinez
and Naverac (1988) carried out experiments, focusing on the effect
of the head loss entrance on the resonance. Not too long after, Giro-
lamo (1996) performed experiments to determine the differences in a
harbor’s response when a resonance is generated by incident regular
free long waves and by incident bound long waves for a narrow and
long bay. By conducting field measurements at Marina di Carrara,
Italy, Melito et al. (2007) discussed and compared the collected data
to numerical predictions using the finite element method. From a
mathematical point of view, analytical and numerical models were
used to study wave resonance phenomena. For example, analytical
and numerical approaches were used to estimate and examine natural
frequencies in basins with flat bottoms. Magdalena et al. (2020b)
used shallow water equations to investigate the natural frequencies
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on a said topography in a one-dimensional domain, while Magdalena
et al. (2022a) used the same model in a two-dimensional domain.
Slightly different, Tsao and Kinnas (2021) applied the New Viscous-
Inviscid Interaction (VII) Method to solve the Inviscid-flow problem
to address similar issue. In contrast to the three studies mentioned
previously, Disimile and Toy (2019) evaluated the behavior of waves
with a period that matches the natural frequency of a closed tank by
performing small-scale experiments. These studies were then extended
to consider basins with a constant slope. Regarding this specific shape
of basin, studies done by Wang et al. (2011) and Ezersky et al. (2013)
used an analytical approach and/or a previously generated numerical
method to investigate resonances, while Magdalena et al. (2021) used
both newly developed analytical and numerical approaches to study the
phenomena. Further, several researchers started to study resonances
on basins with parabolic (Magdalena et al., 2020a), hyperbolic (Wang
et al., 2014a), elliptic (Wang et al., 2014b), or exponential (Wang et al.,
2015) topography. Other shapes of basins that were not considered
regular were also addressed by several researchers, such as Cho and Lee
(2000), who examine resonances on a topography with a finite number
of steps as well as on a singly-sinusoidally and doubly-sinusoidally vary-
ing topography. Niu (2021) also studied a similar issue, but on the area
around a circular island instead of the coasts. Other studies, such as the
ones done by Cai et al. (2016) and Magdalena et al. (2022b), considered
the variations in the basin’s width when discussing the resonance
occurrences. In most of the mentioned studies, numerical approaches
were also used to simulate wave resonance in the corresponding shapes
of basins, evaluate the behavior of the waves under such occurrences,
and explore the impacts of certain parameters on resonance. However,
these studies only addressed the wave resonance and its behavior under
certain conditions, while the solutions to mitigate the damage caused
by resonances have not been discussed yet.

In the effort to find a solution to prevent resonance, several studies
have been conducted to investigate the effect of a certain type of
structure on the reduction of the resonant wave’s amplitude. One of
them is the study done by Magdalena et al. (2020b), who discussed
the use of an emergent porous medium to mitigate resonance. It was
found that the porosity and friction effects of a porous medium play a
significant role in reducing the resonant wave’s amplitude. However,
the resonance can only be avoided when the porosity and friction
factors are fixed at certain values. The same conclusions were reached
by Magdalena et al. (2022c, 2023b), Kalashni (2018), who studied
the effect of bottom friction on wave resonance. Bottom friction can
be a representation of any structure that is submerged and generates
a friction effect when it interacts with water but does not alter the
topography of the basin, such as coral reefs, rocks, and sediments.
Further, studies such as those conducted by Magdalena and Jonathan
(2022) and Magdalena et al. (2023a) examined the effect of a coastal
hard structure (e.g., breakwater) on wave resonance. The mentioned
studies collectively proved that, in addition to providing a friction
effect to the system, breakwaters also altered the basin’s topography.
Considering that the basin’s topography plays a significant role in the
natural frequency at which resonance occurs, installing a breakwater
in the basin can potentially prevent wave resonance from occurring.
In this case, a correct design is needed, such that the new natural
frequency of the basin (which includes breakwaters) will not match
the frequency of the typical wave entering the basin. In the case of
breakwater’s impact on reducing resonant wave amplitude, Magdalena
and Jonathan (2022) and Magdalena et al. (2023a) only addressed
rectangular breakwater, which is restricted in terms of the analytically
derived natural frequency of the basin.

In this study, we investigate the impact of a trapezoidal breakwater,
a more versatile shape compared to the rectangular counterpart, on
reducing the amplitude of resonant waves. The challenge in studying
the resonance of a trapezoidal breakwater arises from the incorporation
of a linear slope function, introducing additional complexity to the

problem. Additionally, we assess the correct design of the trapezoidal

2 
breakwater to entirely mitigate resonance. The governing equations
utilized in this study are the Linear Shallow Water Equations (LSWEs).
To achieve our goals, we initially derive the natural frequency of a
basin with a trapezoidal breakwater analytically by solving the gov-
erning equations. The resulting analytical solution is expressed in the
form of Bessel functions. Subsequently, this analytically derived natural
frequency is employed to validate the numerical scheme. The numerical
scheme developed using the finite volume method on a staggered grid
is then utilized to simulate resonance phenomena in a flat-bottomed
setting with a trapezoidal breakwater. This simulation allows us to
observe the reduction in the amplitude of resonant waves due to the
presence of the breakwater.

Furthermore, the validated numerical scheme is employed to ex-
plore the breakwater’s potential in preventing resonance. Multiple sim-
ulations were conducted with different breakwater designs, resulting in
the identification of design(s) capable of eliminating the occurrence of
wave resonance.

2. Model and method

The model employed to simulate wave resonance behavior over
time is established upon the foundation of the Linear Shallow Water
Equations (LSWEs). Subsequently, the governing equations were nu-
merically solved utilizing the Finite Volume Method on a Staggered
Grid. Further elaboration on both the governing equations and the
numerical scheme is provided in this section.

2.1. Governing equations

To encompass both scenarios, where the breakwater exhibits smooth
and rough characteristics, we adapt the LSWEs model proposed by Mag-
dalena and Jonathan (2022), Magdalena et al. (2023a) by introducing a
friction factor 𝐶𝑓 𝑢 within the momentum balance equation (Magdalena
et al., 2020a, 2022c, 2023b; Dean and Dalrymple, 1991). The friction
coefficient 𝐶𝑓 encapsulates the frictional effects arising from the rough-
ness of the structure. The modified LSWEs are presented as follows in
terms of the variables wave elevation 𝜂 and horizontal velocity 𝑢:

𝜂𝑡 + (ℎ𝑢)𝑥 = 0, (1)

𝑢𝑡 + 𝑔𝜂𝑥 + 𝐶𝑓 𝑢 = 0. (2)

As depicted in Fig. 1, the symbols 𝑏(𝑥) and ℎ(𝑥, 𝑡) represent the varying
idth and the total water depth of the basin, respectively. We assume

hat ℎ(𝑥, 𝑡) ≈ 𝑑(𝑥) due to the relatively small value of 𝜂(𝑥, 𝑡), compared
o the basin depth 𝑑(𝑥). Thus, ℎ(𝑥, 𝑡) is denoted as ℎ(𝑥). It is noteworthy
hat under the Shallow Water Equations framework, this assumption
s valid only when we consider a fully submerged domain within the
odel. For models encompassing both wet and dry domains, adjust-
ents to this assumption are necessary. In such cases, the formula for
(𝑥) is expressed as:

(𝑥) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

ℎ1 , 𝑥 ∈ 𝑅1,
ℎ3−ℎ1
𝐿2

𝑥 + ℎ3 , 𝑥 ∈ 𝑅2,

ℎ3 , 𝑥 ∈ 𝑅3,
ℎ1−ℎ3
𝐿4−𝐿3

𝑥 − ℎ1−ℎ3
𝐿4−𝐿3

𝐿3 + ℎ3 , 𝑥 ∈ 𝑅4,

ℎ1 , 𝑥 ∈ 𝑅5.

(3)

Employing both analytical and numerical methods, we intend to ad-
dress the aforementioned equations for semi-closed basins of triangular
and rectangular shapes with varying widths, utilizing the gravitational
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acceleration of 𝑔 = 9.81 m/s .
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Fig. 1. Model setup illustration.
Fig. 2. Illustration of finite volume method on a staggered grid.
2.2. Numerical method

In this section, we outline the discrete formulation of our mathe-
matical model. We employ a staggered finite volume method with an
average approach. The grid arrangement discussed herein is visually
represented in Fig. 2. The computational domain spans both spatial
and temporal domains, designated as 𝛺𝐿 = [0, 𝐿] and 𝛺𝑇 = [0, 𝑇 ],
respectively.

We partition 𝛺𝐿 into half and full grids, each with a step’s length of
𝛥𝑥, and discretize 𝛺𝑇 into finite time steps of 𝛥𝑡. Eq. (1) is computed
on cells centered at 𝑥𝑖, ensuring that the full-grid points exclusively
store information related to 𝜂, 𝑑, and ℎ. Simultaneously, Eq. (2) is
calculated on cells centered at 𝑥𝑖+1∕2, indicating that 𝑢(𝑥, 𝑡) is stored
solely in the half-grid points. This approach facilitates an effective
and accurate representation of the system dynamics within the defined
computational framework.

Implementing a Leapfrog Scheme, we have formulated the discrete
representations of Eqs. (1) and (2). These expressions are articulated
as:

𝜂𝑛+1𝑖 − 𝜂𝑛𝑖
𝛥𝑡

+
(∗ℎ𝑢)𝑛

𝑖+ 1
2

− (∗ℎ𝑢)𝑛
𝑖− 1

2

𝛥𝑥
= 0, (4)

𝑢𝑛+1
𝑖+ 1

2

− 𝑢𝑛
𝑖+ 1

2

𝛥𝑡
+ 𝑔

𝜂𝑛+1𝑖+1 − 𝜂𝑛+1𝑖

𝛥𝑥
+ 𝐶𝑓 (𝑢)𝑛+1𝑖+ 1

2

= 0. (5)

In these equations, subscripts denote spatial grid points, and su-
perscripts represent time grid points. Additionally, 𝜂 in Eq. (5) is
determined implicitly to ensure stability in the numerical scheme. To
address Eq. (4), an approximation of ℎ on half-grid points, denoted as
ℎ∗, is necessary. The notation ℎ∗ is estimated using the average value:

ℎ∗ 1 = 1 (ℎ𝑖 + ℎ𝑖+1).
𝑖+ 2 2
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It is important to highlight that the friction term in Eq. (5) is computed
implicitly, a strategic choice made to navigate limitations on numerical
stability. Consequently, the stability condition for this scheme remains
independent of the friction coefficient, as expressed by:
𝛥𝑡
𝛥𝑥

√

𝑔𝑑 ≤ 1.

3. Analytical solution for natural wave period

In this section, we determined the eigenvalue of our mathematical
model to obtain the natural period of waves, leading to the occurrence
of resonance phenomena. Analogous to the pendulum problem, we
unveil the phenomena of unimpeded oscillation and amplify the wave
amplitude. Initially, we assume that the initial force applied to our sys-
tem takes the form of monochromatic waves with a specific frequency
of 𝜔, such that

𝜂(𝑥, 𝑡) = 𝑊 (𝑥)𝑒−𝑖𝜔𝑡, (6)

𝑢(𝑥, 𝑡) = 𝑌 (𝑥)𝑒−𝑖𝜔𝑡. (7)

By substituting Eqs. (6) and (7) into Eqs. (1) and (2), we obtain the
following second-order differential equation:

(𝜔2 + 𝑖𝐶𝑓 )𝑊 (𝑥) + 𝑔𝑊𝑥(𝑥)ℎ𝑥 + ℎ𝑔𝑊𝑥𝑥(𝑥) = 0. (8)

Subsequently, we utilize Eq. (8) to derive solutions in each domain
of 𝑅1, 𝑅2, 𝑅3, 𝑅4, and 𝑅5, expressed as 𝜂(𝑥, 𝑡) = 𝑊 (𝑥)𝑒−𝑖𝜔𝑡, with 𝑊 (𝑥) in
every domain given by:

𝑊1(𝑥) = 𝐴 sin

(

𝜔𝑥
√

𝑔ℎ1

)

+ 𝐵 cos

(

𝜔𝑥
√

𝑔ℎ1

)

, (9)

𝑊2(𝑥) = 𝐶𝐽0

(

2
√

𝜔(𝑖𝐶𝑓2 + 𝜔)𝐿2

√

(𝐿2 + 𝑥)ℎ3 − 𝑥ℎ1
2

)

𝑔(−ℎ3 + ℎ1)
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+𝐷𝑌0

(

2
√

𝜔(𝑖𝐶𝑓2 + 𝜔)𝐿2

√

(𝐿2 + 𝑥)ℎ3 − 𝑥ℎ1
𝑔(−ℎ3 + ℎ1)2

)

, (10)

𝑊3(𝑥) = 𝐸 sin

(
√

𝜔(𝑖𝐶𝑓3 + 𝜔), 𝑥
√

𝑔ℎ3

)

+ 𝐹 cos

(
√

𝜔(𝑖𝐶𝑓3 + 𝜔), 𝑥
√

𝑔ℎ3

)

, (11)

𝑊4(𝑥) =, 𝐺𝐽0

(

2
√

𝜔(𝑖𝐶𝑓4 + 𝜔)(𝐿3 − 𝐿4)

√

(𝐿3 − 𝑥)ℎ1 + ℎ3(𝑥 − 𝐿4)
𝑔(−ℎ3 + ℎ1)2

)

+𝐻𝑌0

(

2
√

𝜔(𝑖𝐶𝑓4 + 𝜔)(𝐿3 − 𝐿4)

√

(𝐿3 − 𝑥)ℎ1 + ℎ3(𝑥 − 𝐿4)

(𝑔(−ℎ3 + ℎ1))
2

)

,

(12)

𝑊5(𝑥) = 𝐼 sin

(

𝜔𝑥
√

𝑔ℎ1

)

+ 𝐽 cos

(

𝜔𝑥
√

𝑔ℎ1

)

. (13)

Here, 𝐴,𝐵, 𝐶,𝐷,𝐸, 𝐹 ,𝐺,𝐻, 𝐼, 𝐽 are all unknown constants, while 𝐽0
nd 𝑌0 represent the zero-th order of the first and the second Bessel
unctions, respectively. To simplify the calculations, we introduce new
ariables: ℎ1 = 𝜁ℎ3, 𝐿1 = 𝛼𝐿2, 𝐿3 = 𝛽𝐿2, 𝐿4 = 𝛾𝐿2, 𝐿5 = 𝛿𝐿2. To
btain the natural wave period, we apply continuity conditions for
ave elevations and fluxes at the discontinuous points:

(−𝐿−
2 , 𝑡) = 𝜂(−𝐿+

2 , 𝑡) ⟹ 𝑊1(−𝐿2) = 𝑊2(−𝐿2), (14)

𝜂(0−, 𝑡) = 𝜂(0+, 𝑡) ⟹ 𝑊2(0) = 𝑊3(0), (15)

𝜂(𝐿−
3 , 𝑡) = 𝜂(𝐿+

3 , 𝑡) ⟹ 𝑊3(𝐿3) = 𝑊4(𝐿3), (16)

𝜂(𝐿−
4 , 𝑡) = 𝜂(𝐿+

4 , 𝑡) ⟹ 𝑊4(𝐿4) = 𝑊5(𝐿4). (17)

𝑑𝑀1
𝑑𝑡

|

|

|

|

𝑥 = −𝐿2 =
𝑑𝑀2
𝑑𝑡

|

|

|

|

𝑥 = −𝐿2 ⟹ 𝑊 1𝑥(−𝐿2) = 𝑊2𝑥(−𝐿2), (18)

𝑑𝑀2
𝑑𝑡

|

|

|

|

𝑥 = 0 = 𝑑𝑀3
𝑑𝑡

|

|

|

|

𝑥 = 0 ⟹ 𝑊 2𝑥(0) = 𝑊3𝑥(0), (19)

𝑑𝑀3
𝑑𝑡

|

|

|

|

𝑥 = 𝐿3 =
𝑑𝑀4
𝑑𝑡

|

|

|

|

𝑥 = 𝐿3 ⟹ 𝑊 3𝑥(𝐿3) = 𝑊4𝑥(𝐿3), (20)

𝑑𝑀4
𝑑𝑡

|

|

|

|

𝑥 = 𝐿4 =
𝑑𝑀5
𝑑𝑡

|

|

|

|

𝑥 = 𝐿4 ⟹ 𝑊 4𝑥(𝐿4) = 𝑊5𝑥(𝐿4). (21)

By performing elimination and applying the following two boundary
conditions for the hard wall at 𝑥 = −𝐿1 and the minimum condition for
(𝜂 = 0) at 𝑥 = 𝐿5, we arrive at:

cos(𝛽𝑋𝜈3)
[{

𝑍2𝐽0

(

2𝑋𝜈2
𝜁 − 1

)

+ 𝑌0

(

2𝑋𝜈2
𝜁 − 1

)}

×
{

𝑍1𝐽1

(

2𝑋𝜈4(𝛽 − 𝛾)
𝜁 − 1

)

+ 𝑌1

(

2𝑋𝜈4(𝛽 − 𝛾)
𝜁 − 1

)}

−
{

𝑍2𝐽1

(

2𝑋𝜈2
𝜁 − 1

)

+ 𝑌1

(

2𝑋𝜈2
𝜁 − 1

)}

×
{

𝑍1𝐽0

(

2𝑋𝜈4(𝛽 − 𝛾)
𝜁 − 1

)

+ 𝑌0

(

2𝑋𝜈4(𝛽 − 𝛾)
𝜁 − 1

)}]

sin(𝛽𝑋𝜈3)
[{

𝑍2𝐽1

(

2𝑋𝜈2
𝜁 − 1

)

+ 𝑌1

(

2𝑋𝜈2
𝜁 − 1

)}

×
{

𝑍1𝐽1

(

2𝑋𝜈4(𝛽 − 𝛾)
𝜁 − 1

)

+ 𝑌1

(

2𝑋𝜈4(𝛽 − 𝛾)
𝜁 − 1

)}

+
{

𝑍2𝐽0

(

2𝑋𝜈2
𝜁 − 1

)

− 𝑌0

(

2𝑋𝜈2
𝜁 − 1

)}

×
{

𝑍1𝐽0

(

2𝑋𝜈4(𝛽 − 𝛾)
𝜁 − 1

)

+ 𝑌0

(

2𝑋𝜈4(𝛽 − 𝛾)
𝜁 − 1

)}]

= 0,

(22)

with

𝑋 =
𝜔𝐿2
√

𝑔ℎ3
, 𝜈2 =

√

1 +
𝑖𝐶𝑓2

𝜔
, 𝜈3 =

√

1 +
𝑖𝐶𝑓3

𝜔
, 𝜈4 =

√

1 +
𝑖𝐶𝑓4

𝜔
.

We use this equation to determine the natural wave period 𝑇 for the
studied basin.
4 
Table 1
Comparisons between the natural periods produced by Magdalena et al. (2020b) and
by the developed formula in Eq. (22).
𝛼 𝛽 𝛾 𝛿 𝐿 (m) ℎ1 (m) 𝑇 1

1 (s) 𝑇 2
1 (s) error (%)

5 4 5 10 150 5 9.5190 9.5119 0.0750
3 4 5 7 50 7 1.3199 1.3017 1.3789

4. Results

Having formulated the discrete version of our model, we are poised
to apply our numerical scheme to explore the manifestation of wave
resonance phenomena and to observe whether a trapezoidal breakwater
is able to reduce the resonant wave’s amplitude or not. Further, several
simulations were performed to find the breakwater’s design that could
prevent the resonance from occurring. For all of the computational
simulations, the wave is entering from the left-hand side of the spatial
domain, and a hard-wall boundary condition (𝑢(𝑥, 0) = 0) is applied at
the right-hand side of the domain. The initial wave entering the basin
is defined as 𝜂(0, 𝑡) = 𝐴 sin𝜔0𝑡, where 𝐴 is the initial amplitude, 𝜔0
is the natural frequency of the basin, and 𝑡 is the time variable. The
initial condition of the simulations is 𝜂(𝑥, 0) = 𝑢(𝑥, 0) = 0, representing
a calm water condition. Unless stated otherwise, the parameters used
in the simulations are the same, which are 𝐿2 = 5 m, ℎ3 = 1.25
m, 𝑔 = 9.81 m∕𝑠2, 𝐴 = 0.1 m, 𝑇 = 200 s, 𝛥𝑥 = 0.1 m, and 𝛥𝑡 =
𝛥𝑥∕

√

𝑔ℎ1 s. In the next subsections, the analytical formula is used to
reproduce the natural frequency of a rectangular (flat bottom) smooth
basin, which then compared to the results produced by Magdalena
et al. (2020b). Then, the numerical scheme is used to simulate wave
resonance in a basin with a trapezoidal breakwater of smooth and
rough material. Sensitivity analyses are then conducted to observe the
impact of certain parameters on wave resonance. All the numerical
simulations are conducted in MATLAB.

4.1. Resonance over a flat bottom

Here, the formulated analytical formula is used to reproduce the
natural period in a case where the seafloor is flat and no structure is
involved. The resulted natural periods for several scenarios are then
compared to the ones generated by Magdalena et al. (2020b) to validate
the newly derived formula. The analytical formula for flat bottom that
is formulated by Magdalena et al. (2020b) is written as 𝑇1 = 4𝐿

√

𝑔ℎ1
,

where 𝐿 is the length of the observed domain. In order to compare both
formulas, a few adjustments in the values of 𝛼, 𝛽, 𝛾, and 𝛿 in Eq. (22)
are needed. Table 1 listed two scenarios evaluated in the comparisons
between the natural periods produced by Magdalena et al. (2020b)
and by Eq. (22). Note that 𝑇 1

1 denotes the natural period produced
by the formula from Magdalena et al. (2020b) while 𝑇 2

1 denotes the
ones calculated from Eq. (22). The errors presented in Table 1 were the
relative errors calculated using the formula: Error(%) =

|𝑇 2
1 −𝑇

1
1 |

𝑇 1
1

× 100.
It is evident in Table 1 that the errors are all less than 2%, which
is considered to be quite small. This outcome shows that the newly
derived formula for determining the natural frequencies of a basin
with a trapezoidal breakwater may, in fact, be applied to more generic
scenarios, such as a flat-bottom basin without a breakwater or with a
rectangular breakwater (since the slopes can be adjusted).

4.2. Resonance phenomena induced by the trapezoidal breakwater

In this case, we consider a trapezoidal breakwater being placed
in a rectangular basin (flat topography). Both the sea floor and the
breakwater are considered smooth, which means that the friction effect
is neglected or that 𝐶𝑓 = 0 in the whole domain. The parameters
used in these simulations are ℎ = 5 m, 𝜁 = 2, 𝛼 = 2, 𝛽 = 2, 𝛾 =
3
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Fig. 3. The increase in wave elevation over time, computed after it passes over a smooth trapezoidal breakwater, indicates the occurrence of resonance phenomena.
Fig. 4. The decrease in the resonant wave’s maximum amplitude, due to the increase in friction coefficient (𝐶𝑓 ) which represents the presence of a trapezoidal breakwater with
a rough crest and smooth slopes.
3, 𝛿 = 4, and 𝑇 = 100 s. The frequency of the initial wave used is the
natural frequency (natural period) obtained analytically. In this case,
the natural frequency is 1.311387 s−1 (or 𝑇1 ≈ 4.7913 s). The other
parameters are the same as the ones defined previously. The resulted
wave evolution near the wall can be seen in Fig. 3.

4.3. The influence of a rough trapezoidal breakwater on resonance wave
phenomena

Here, the friction effect is considered present only on the crest of
the trapezoidal breakwater (domain 𝑅3), while the structure’s slopes
and the seafloor are still smooth. In each simulation, the parameters
related to the breakwater’s configuration are fixed at ℎ3 = 5 m, 𝜁 = 2,
𝛼 = 2, 𝛽 = 2, 𝛾 = 3, and 𝛿 = 4. The simulations were observed for
𝑇 = 100 s. The results of the simulations are presented in Fig. 4 with
several different values of 𝐶𝑓 .

We now see how wave resonance responds to the change in friction
coefficient if the friction-affected domain is much bigger. We consider
the friction factor to impact the whole trapezoidal breakwater, in-
cluding its crest and its two slopes (𝑅2, 𝑅3, 𝑅4), while the seafloor is
still considered smooth. The parameters are now ℎ3 = 5 m, 𝜁 = 2,
𝛼 = 2, 𝛽 = 2, 𝛾 = 3, 𝛿 = 4, and 𝑇 = 100 s, where the values of 𝐶𝑓
are again varied. The generated wave evolution for each case is shown
in Fig. 5.
5 
4.4. Sensitivity analysis

In this subsection, several parameters are analyzed to observe each
parameter’s impact on the wave’s evolution, including the wave’s pe-
riod and maximum amplitude. Those parameters are 𝛼 which represents
the changes in the distance between the breakwater and the wall,
𝐿2 which represents the length of the breakwater’s slopes, 𝛽 which
represents the changes in the length of the breakwater’s crest, and 𝜁
which represents the changes in the breakwater’s height. For all of the
simulations conducted in this subsection, the trapezoidal breakwater is
considered rough, which means that the friction factor is considered
to exist in subdomains 𝑅2, 𝑅3, and 𝑅4, with a fixed friction coefficient
𝐶𝑓 = 0.01.

The first set of simulations to be conducted is the one consider-
ing the changes in the breakwater’s distance from the wall (𝛼). The
breakwater’s distance from the wall itself is represented by the term
𝛼𝐿2, where the value of 𝐿2 is fixed at 𝐿2 = 5 m and the value of
𝛼 is varied. The other parameters are set to be ℎ3 = 5 m, 𝜁 = 2,
𝛽 = 2, 𝛾 = 3, 𝛿 = 4, and 𝑇 = 100 s. Fig. 6 shows how the changes
in breakwater’s distance from the wall affect the wave behavior over
time.

The next parameter to be discussed is 𝐿2 which represents the
length of the breakwater’s slope. Therefore, several simulations were
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Fig. 5. The decrease in the resonant wave’s maximum amplitude, due to the increase in friction coefficient (𝐶𝑓 ) which represents the presence of a trapezoidal breakwater with
rough crest and slopes.
Fig. 6. The decrease in the resonant wave’s maximum amplitude, following the increase in the values of 𝛼 which represents the trapezoidal breakwater’s distance from the wall.
Fig. 7. The decrease in the resonant wave’s maximum amplitude, following the increase in the values of 𝐿2 which represents the length of the trapezoidal breakwater’s slopes.
done with variations of 𝐿2. Even though 𝐿2 only represents the length
of the front-slope of the breakwater in the setup, in the computation, it
also rules the breakwater’s back-slope. Hence, changing 𝐿2 will change
both slopes simultaneously. As usual, we set the parameters to be ℎ3 = 5
m, 𝜁 = 2, 𝛽 = 2, 𝛾 = 3, 𝛿 = 4, and 𝑇 = 100 s. The value of 𝛼 is also
6 
varied following 𝛼 = 10∕𝐿2 to make the distance between the wall and
the breakwater fix at 10 m. The results of the simulations for several
values of 𝐿2 are presented in Fig. 7.

Now, we are examining the effect of another parameter, which is
the length of the breakwater’s crest, on the wave maximum amplitude
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Fig. 8. The decrease in the resonant wave’s maximum amplitude, following the increase in the values of 𝛽 which represents the length of the trapezoidal breakwater’s crest.
Fig. 9. The decrease in the resonant wave’s maximum amplitude, following the increase in the values of ℎ3 which represents the water depth on the trapezoidal breakwater’s
crest.
and wave period. This characteristic is represented by 𝛽. For fixed
breakwater’s slopes, varying 𝛽 means varying 𝛾 as well. In this case, we
set 𝛾 = 𝛽 + 1. However, for a fixed length of the observation domain,
the variation of 𝛽 is limited to be less than 2, while 𝛿 = 4 is required.
Other than that, ℎ3 = 5 m, 𝜁 = 2, 𝛼 = 2, 𝐿2 = 5 m, 𝛿 = 4, and 𝑇 = 100 s
are still used. The computational results are shown in Fig. 8.

The last parameter to be examined is the breakwater’s height,
represented by the water depth on the crest (ℎ3). In this case, the
maximum water depth is fixed at 10 m, such that the parameter 𝜁 also
varies following 𝜁 = 10∕ℎ3. The rest of the parameters are the same,
which are 𝛼 = 2, 𝐿2 = 5 m, 𝛽 = 2, 𝛾 = 3, 𝛿 = 4, and 𝑇 = 100 s. Fig. 9
shows the simulation results of several breakwater’s heights.

5. Discussion

In Fig. 3, it is evident that the surface elevation near the wall
progressively increases throughout the observation time, meeting the
criteria for wave resonance phenomena as defined by Gluskin et al.
(2013). This indicates that despite the presence of a trapezoidal break-
water in the basin, wave resonance may still occur for a specific set of
parameters, particularly if both the seafloor and the breakwater exhibit
smooth characteristics. In the subsequent subsections, we delve into
the conditions that are essential for preventing resonance, considering
factors such as breakwater’s design, position, friction coefficient, and
bottom friction.
7 
5.1. Resonant wave’s response to different cases of breakwater’s roughness

The cases depicted in Fig. 4 include friction coefficients of 𝐶𝑓 = 0,
0.05, 0.125, and 0.2. These values were selected to illustrate how
changes in the friction coefficient impact the evolution of resonant
waves and which value can effectively halt resonance. Upon closer
examination of Fig. 4, it was observed that despite the consistent
increase in the value of 𝐶𝑓 in the last three cases (where 𝐶𝑓 increases
by 0.075), each case had a distinct effect on the maximum amplitude
of the resonant wave.

In particular, the third case (𝐶𝑓 = 0.125) demonstrated a reduction
of approximately 37% in the maximum amplitude compared to the
second case (𝐶𝑓 = 0.05). Conversely, the fourth case (𝐶𝑓 = 0.2)
achieved a reduction of only about 31% from the third case. These
findings indicate that as 𝐶𝑓 increases, its impact on diminishing the
maximum amplitude of the resonant wave becomes less significant.
Nonetheless, this parameter remains influential in significantly reduc-
ing the maximum resonant wave amplitude, with an average reduction
of approximately 4.9% for every increase of 0.01 in 𝐶𝑓 .

The second piece of information that can be obtained from Fig. 4
is the value of 𝐶𝑓 that can stop resonance. A certain set of parameters
is considered to be able to stop the resonance if the generated wave
amplitude is not increasing infinitely, which means that the last am-
plitude remains the same or decreases from the previous one. These
resonance-stopping parameters were found through a trial-and-error
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approach. In this case, the resonance is stopped when 𝐶𝑓 = 0.125,
which can be seen in Fig. 4 by looking in more detail at the last two
amplitudes, which have similar values. This characteristic could not
be found in cases where 𝐶𝑓 = 0 or 𝐶𝑓 = 0.05, since the amplitude
keeps on increasing, even with different growth rates. At 𝐶𝑓 ≈ 0.2, the
generated wave even seems like a standing wave, where the amplitude
is maintained the same throughout the observation time, which means
that the resonance barely exists. This result is confirmed by Magdalena
et al. (2022c) who stated that at certain values of friction coefficient, a
wave resonance is possible to prevent. However, the friction coefficient
that is able to prevent resonance in this study is much bigger than the
ones generated in Magdalena et al. (2022c) due to the difference in the
portion of the water body affected by the friction factor. This difference
also impacted the generated natural periods, which are similar for all
values of 𝐶𝑓 (𝑇1 ≈ 4.79), compared to the ones addressed by Magdalena
et al. (2022c), which are varied each time the friction coefficient is
changed, since Magdalena et al. (2022c) considered friction factor on
the whole observed domain, not just a certain subdomain.

We observed similar results from Fig. 5, where an increase in 𝐶𝑓
generates a decrease in the wave’s maximum amplitude. In this case,
the values of friction coefficients are 𝐶𝑓 = 0, 0.03, 0.065, and 0.1. It was
found from the simulations that the average reduction generated by an
increase of 𝐶𝑓 by 0.01 is about 10.2%. This value is larger than the
previous case, which makes sense as the portion of the basin’s domain
affected by the friction factor was larger in this case compared to the
previous one. This means that in this case, the change in 𝐶𝑓 affects
the wave’s maximum amplitude more significantly than it did in the
previous case. Another difference is that in this case, the resonance is
able to be stopped at 𝐶𝑓 = 0.065, which is almost two times smaller than
the previous case. This is again due to the portion of the basin’s domain
affected by the friction factor, which was larger in this case. However,
the findings regarding wave period are also applied in this case, where
the changes in the friction coefficient barely affect the generated wave
period since 𝑇1 ≈ 4.79 in all cases.

5.2. Resonant wave’s response to different configurations of trapezoidal
breakwater

In Fig. 6, the cases are presented with values of 𝛼 being 𝛼 =
2, 2.5, and 3, with resonance being halted at 𝛼 = 2.5. This value
was determined through a trial-and-error method. Although not clearly
depicted in the figure, the wave for 𝛼 = 2.5 exhibited constant os-
cillations, evidenced by the similarity in its last few amplitudes. A
more distinct comparison can be made with the case where 𝛼 = 2,
where the wave amplitude infinitely increases. Furthermore, Fig. 6
provides insights into how the breakwater’s location influences the
resonant wave’s maximum amplitude and period. It is evident that as
the value of 𝛼 increases (indicating a farther breakwater location from
the wall), the wave’s maximum amplitude decreases. An increase of
𝛼 by 0.5 (shifting the breakwater 2.5 m further into the ocean from
the original position) resulted in a reduction of approximately 43.95%
in the maximum amplitude. In other words, each 1 m movement of
the breakwater towards the ocean led to a reduction of about 17.58%
in the maximum amplitude. However, this finding does not extend
to the wave period, as simulations showed fluctuations for different
𝛼 values. The wave periods for 𝛼 = 2, 2.5, and 3 were found to be
𝑇1 = 4.7913, 5.0577, and 3.2401 s, respectively.

Through a trial-and-error method with various 𝐿2 values, three
were chosen to represent the effect of changes in the breakwater’s
slope: 𝐿2 = 5, 5.38, and 5.7. The case of 𝐿2 = 5 signifies wave
resonance with an infinitely increasing amplitude. When 𝐿2 = 5.38,
resonance is completely stopped, evident by the reduction in wave
amplitude after approximately 𝑡 = 50 s. Unlike previous cases, the
transition from resonance to non-resonance in this scenario is abrupt
when 𝐿2 increases by 0.01 from the resonance state (with resonance

still present at 𝐿2 = 5.37). Furthermore, for 𝐿2 > 5.38 (including a

8 
𝐿2 = 5.7), the wave is entirely free from resonance. The wave reduction
rate due to the change in 𝐿2 showed that an increase of 0.1 m in
𝐿2 resulted in an average reduction of approximately 14.05% in the
wave’s maximum amplitude. In practical terms, this implies that a
gentler breakwater slope is more effective at reducing resonant wave
amplitude and ultimately preventing resonance. Similar to the 𝛼 cases,
the resulting wave periods fluctuated for a certain range of 𝐿2, with
𝑇1 = 4.7913, 3.1424, and 3.3293 s for 𝐿2 = 5, 5.38, and 5.7, respectively.

Fig. 8 displays resonant wave evolution for three different values
of 𝛽: 𝛽 = 2, 1.65, and 1.4. The breakwater’s crest length is defined
by 𝛽𝐿2, meaning a smaller 𝛽 corresponds to a shorter breakwater
crest. The simulations revealed that resonance could be stopped by
implementing a breakwater with a crest length of 8.25 m (𝛽 = 1.65).
urthermore, a decrease in 𝛽 by 0.1 from resonance (𝛽 = 2) to non-
esonance resulted in an approximately 8.06% reduction in maximum
mplitude. Conversely, when 𝛽 > 1.65, the same decrease in 𝛽 led to
more significant reduction (approximately 34.21%). A decrease in 𝛽

lso resulted in a decrease in the wave period, with a more pronounced
eduction observed when 𝛽 > 1.65. The wave periods for 𝛽 = 2, 1.65, and
.4 were 𝑇1 = 4.7913, 4.7462, and 3.2878 s, respectively.

In these simulations, larger ℎ3 corresponds to a shorter breakwater,
nd vice versa. The results differ slightly from previous cases in terms
f the parameter value at which resonance is stopped. Instead of a
inimum (as seen in the cases of friction coefficient, 𝛼, and 𝐿2) or
aximum (as observed in the case of 𝛽) value stopping resonance,

here are several ranges of values where resonance does not occur.
ig. 9 illustrates that resonance does not occur when ℎ3 ≈ 5.45 m,
ven though it still occurs when ℎ3 ≈ 5.44 m. Similar to the case of
2, the transition from resonance to non-resonance is abrupt. However,

n this case, resonance also abruptly reappears when ℎ3 ≈ 6.48 m,
ith even larger wave amplitudes. This suggests a non-resonance range

or ℎ3 of 5.45 m ≤ ℎ3 ≤ 6.47 m. However, this is not the sole non-
esonance range for the breakwater’s height parameter. Within the
bserved domain of 0 < ℎ3 ≤ 10 m, a non-resonance state was also
bserved when 3.27 m < ℎ3 < 4.48 m and 7.06 m < ℎ3 < 7.97 m. It is
ssential to consider the feasibility of constructing the breakwater, as
hen 3.27 m < ℎ3 < 4.48 m, the breakwater would be 5.52 m to 6.73 m

all, requiring more material and, consequently, increasing construction
osts. On the other hand, the range of 7.06 m < ℎ3 < 7.97 m may be
eemed suitable for design, as the breakwater would not be excessively
all, although the maximum wave amplitude (𝜂𝑚𝑎𝑥 ≈ 1.39 m) is larger
han for 5.45 m ≤ ℎ3 ≤ 6.47 m (𝜂𝑚𝑎𝑥 ≈ 0.28 m). Therefore, constructing
he breakwater with a height within the range 5.45 m ≤ ℎ3 ≤ 6.47 m is
ecommended.

. Conclusion

In conclusion, this study developed a mathematical model based
n the shallow water equations to simulate resonant wave generation
nd evolution in a rectangular basin with a submerged trapezoidal
reakwater. The model also accounts for the structure’s roughness. In
ddition, a numerical scheme was formulated using the finite volume
ethod on a staggered grid to solve the model. The validation process,

omparing results with a previous study in the absence of a breakwater,
emonstrated excellent agreement with errors below 2%. Two scenarios
ere considered regarding the breakwater’s roughness: roughness only
n the crest and roughness on the entire structure. The latter case
ignificantly reduced the wave maximum amplitude compared to the
ormer, aligning with expectations. Increasing the friction factor by
.01 resulted in a 4.9% reduction in wave maximum amplitude for
he first case and a more substantial 10.2% reduction for the second
ase, over twice that of the first case. Exploring conditions to halt wave
esonance under specific predefined setups revealed critical parameters.
o prevent resonance, the breakwater should be positioned at least
.5 times its slope length away from the wall, with both slopes (front

nd back) requiring a minimum length of 5.38 m. The maximum
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length of the breakwater’s crest should be approximately 1.65 times the
slope’s length. Considering construction cost, a recommended breakwa-
ter height range is 5.45m ≤ ℎ3 ≤ 6.47m, showing the largest reduction
ate within the examined height range. In light of these findings,
e anticipate that this study will contribute valuable insights to the
evelopment of coastal protection structures, particularly in preventing
ave resonance.
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