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1. Introduction

Integral equations have been intensively used in modeling var-
ious processes in physics, biology, environmental sciences, engi-
neering, economics, and operations research (Ahmed and Teo,
1981; Brokate, 1985; Boucekkine et al., 1997; Corduneanu, 1991;
Hritonenko and Yatsenko, 1996; Jovanovic and Tse, 2010;
Volterra, 1959). An integral dynamic model with delay was pro-
posed by Boltzman in 1874 to describe elastic persistence in phy-
sics. Vito Volterra developed Boltzman theory and introduced
integral models with delay to population ecology in 1900. Sharpe
and Lotka (1911) derived the integral renewal equation for age-
structured human populations, which remains a backbone of mod-
ern demography. Integral models of economic-technological
growth, known as vintage capital models, were suggested in the
1960’s to describe technological renovation of economic systems
(Solow et al., 1966).
The motivation of this paper is to highlight recent develop-
ments in the contemporary theory of integral models and their
applications. It explores models of dynamic systems with hetero-
geneous components that depend on certain structural parameters
(Corduneanu, 1991; Kato et al., 2007; Webb, 1985; Hritonenko and
Yatsenko, 2013a). Those parameters have various interpretations,
such as the age or size of individuals in population models or a
starting point of technological renovation in economic-
environmental problems. The models under consideration include
two-dimensional controls and nonlinearities and delays in the sys-
tem inputs. Another related goal of this paper is to demonstrate the
versatility of integral equations and how similar models are used
to describe different applied phenomena that seem to be unrelated
at the first sight.

The study of integral models enhances other areas. For instance,
operations research studies equipment replacement problems,
which are usually considered in discrete settings as integer pro-
gramming problems (Hartman and Tan, 2014). Similar problems
are also studied by integral vintage capital models. Establishing
relevant links between two modeling tools, continuous and dis-
crete replacement models, helps to overcome challenges of dis-
crete analysis and address open issues in operations research.
Thus, time-continuous vintage models (Yatsenko and Hritonenko,
2005, 2009) explain a paradox in equipment replacement under
technological improvement raised in (Cheevaprawatdomrong and
Smith, 2003).

Partial differential equations (PDEs) are an alternative modeling
tool for heterogeneous dynamic systems with delay. Both integral
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and PDE models have been applied to age-structured biological
populations for centuries (Sharpe and Lotka, 1911; McKendrick,
1926; Brokate, 1985; Clark, 1976; Webb, 1985; Greenhalgh,
1987) and to size-structured populations since 1980’s (Metz and
Diekmann, 1986; Calsina and Saldaña, 1995; De Roos and
Persson, 2001; Kato et al., 2007; Goetz et al., 2010, 2013). The inte-
gral equations have been used to study age-structured systems in
economics since 1960’s (Solow et al., 1966; Malcomson, 1975;
Hritonenko and Yatsenko, 1995, 1996; Boucekkine et al., 1997),
and more recently the PDEs joined this pool (Jovanovic and
Yatsenko, 2012; Hritonenko and Yatsenko, 2010; Hritonenko
et al., 2017). The advantage of integral models is they are more
general and flexible and often allow for deeper research results
compared to differential models. Connections between integral
and PDE models in various applications are discussed in this paper.

Growing applications of integral models raise new questions
and require their investigation. Optimal control is a major tool in
applying integral models to practical problems. Optimality condi-
tions lead to dual integral equations that bring new analytic chal-
lenges. Optimization problems in some models require solving
nonlinear integral equations with unknowns in the lower (equa-
tions with delays) and upper (equations with leads) limits of inte-
gration. The paper offers a systematic survey of modeling
outcomes, such as structure and asymptotics of optimal trajecto-
ries, turnpike properties, solution irregularities, and so on
(Hritonenko and Yatsenko, 2013a).

The paper is organized as follows. Section 2 describes the inte-
gral dynamic models with delays, their applied interpretation, con-
nection to PDE models, and challenges of their analysis. Section 3
presents the integral models with endogenous delays as a special
case of general models of Section 2 and discusses their major
investigation techniques and applications. Section 4 compares
and summarizes advantages of integral and differential models.

2. Integral models with distributed controls and their
applications

The nonlinear integral model

xðs; tÞ ¼
Z t

0
K s; t;uð/ðs; t; sÞ; sÞð Þxð/ðs; t; sÞ; sÞdsþ f ðs; t;uðs; tÞÞ;

smin � s � smax; 0 � t � 1; ð1Þ
describes a deterministic dynamic system with heterogeneous ele-
ments, whose performance depends on the current time t and a cer-
tain structural parameter s. The kernel matrix K(s,t,u,s), function
/(s,t,s), and n-vector f(s,t,u) are given, while some or all compo-
nents of the n-vector x(s,t) and l-vector u(s,t) are unknown
(Volterra, 1959; Barnett, 1975; Ljung, 1987). The model (1) consid-
ers the distributed delay (after effect, or hereditary effect) in dynamic
systems, when a continuous sequence of past states of the system
affects its future evolution.

The structural parameter s is often referred to as a size, and the
given function s ¼ /ðs0; t; t0Þ describes the change of the size s over
time t starting with the initial size s0 ¼ sðt0Þ. An example of nonlin-
ear /ðs0; t; t0Þ is provided in Section 2.2.

If the size s of system elements linearly depends on their age
z = t � t0, then /ðs0; t; t0Þ ¼ k � ðt � t0Þ þ s0; where k is a constant,
and the size-structured model (1) can be transformed to the age-
structured model (De Roos and Persson, 2001; Kato, 2004;
Hritonenko and Yatsenko, 2013a):

xðz; tÞ ¼
Z t

0
K
�
t; s;uðz; sÞÞxðz; sÞdsþ f

�
ðz; t;uðz; tÞÞ;

�1 < z � t; 0 � t < 1 ð2Þ
in which the performance of elements depends on their age z.
In the control theory (Barnett, 1975; Ahmed and Teo, 1981;
Caputo, 2005; Hritonenko and Yatsenko, 2013a), the input vector
x manages the use of various system resources. The inputs of
heterogeneous resources produce a certain aggregate output y(t).
This process is nonlinear, involves additional delays, and is deter-
mined by various physical, economic, and environmental factors.
The corresponding output balance can be written as

yðtÞ ¼ G
Z amax

amin

G1 z; t; x t; zð Þð Þdz
 !

;

0 � amin < amax < 1; 0 � t < 1; ð3Þ
where G and G1 are given nonlinear functions.

The rational control of the dynamic system (2) and (3) is often
described by an optimization objective

min
y;x;z;u

Z T

t0

F t; yðtÞ;
Z amax

amin

F1ðz; t; xðz; tÞ;uðz; tÞÞdzÞ
 !

dt; T � 1;

ð4Þ
subject to different constraints and initial conditions. A similar
objective makes sense for the size-structured model (1) as well.

Special cases of the age-structured model (2)–(4) and size-
structured model (1) are widely used in applications. They are
written as PDE-based or integral optimal control problems. Con-
nections and comparative advantages of these two different mod-
elling tools are discussed below.

2.1. Population biology and demography

Modern age-structured models of population dynamics are
mostly versions of the PDE-based Lotka-McKendrik or Gurtin-
MacCamy population models (McKendrick, 1926; Clark, 1976;
Brokate, 1985; Webb, 1985; Barbu and Iannelli, 1999; Anita,
2000; Fister and Lenhart, 2004). Harvesting is among classic appli-
cations of such models. In particular, rational harvesting of a fully
manageable biological population can be described by the follow-
ing optimization problem (Hritonenko and Yatsenko, 2010, 2012):

Find U(t), u(z,t), and x(z,t), z 2 [0,A], t 2 [0,T], that maximizeZ T

0

Z A

0
gðz; t; xðz; tÞ;uðz; tÞÞdzþ /ðUðtÞ; tÞ

� �
dt ! max

U;u;x
ð5Þ

subject to

@xðz; tÞ
@t

þ @xðz; tÞ
@z

¼ uðz; tÞ � dðzÞxðz; tÞ; t 2 0; T½ �; z 2 0;A½ �; ð6Þ

with the initial and boundary conditions

x 0; tð Þ ¼ U tð Þ; t 2 0; T½ �; x z;0ð Þ ¼ x0 zð Þ; z 2 0;A½ �; ð7Þ

�umin � u z; tð Þ � umax; 0 � U tð Þ � Umax;

x z; tð Þ � 0; z 2 0;A½ �; t 2 0; T½ �; ð8Þ
where x(z,t) is the unknown population density of individuals of age
z at time t, d(z) is the age-specific mortality rate, A is the maximum
age, and x0(z) is the initial age-distribution of individuals at t = 0.
The control variables are the inflow U(t) of newborns and the num-
ber of individuals u(z,t) of age z brought to (u(z,t) > 0) or taken from
(u(z,t) < 0) the population at time t.

It is important to recognize, that in harvesting models (Clark,
1976; Murphy and Smith, 1990; Hritonenko and Yatsenko, 2012,
2013a), the control u(z,t) can be introduced as the harvesting rate
(density) as in (6) or as the harvesting effort (then, the PDE (6) con-
tains the product u(z,t)x(z,t) instead of u(z,t)).

The model (5)–(8) has been employed to find optimal harvest-
ing strategies and explore sustainable development. It can be
used as a demographic block to analyze the dependence of human
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lifespan onmedical expenditures (Hritonenko and Yatsenko, 2010),
explore links between technological progress and endogenous
retirement age and other problems in demographic and biomedical
sciences.

Mathematical investigation of the problem (5)–(8) includes
optimality conditions, steady-state analysis, convergence of opti-
mal trajectories to the steady state, closed-form solutions, a long-
term balanced growth and transition dynamics, just to name a
few. A simple transformation (Hritonenko and Yatsenko, 2013a,
pp. 151–153) shows that the linear age-structured PDE model
(6)–(8) is a special case of the linear integral model (2)–(4), known
as the Lotka model (Sharpe and Lotka, 1911). The advantage of PDE
models is that they are easier to solve.

2.2. Environmental protection and natural resources

Carbon and other pollutants contaminate the environment and
negatively impact human well-being. Environmental protection is
among important global issues (Bréchet et al. 2013, Kharrazi
et al. 2013). Biological, chemical, and engineering techniques have
been developed to reduce the environmental pollution. Ocean and
forest are major biological means to decrease pollutions and clean
the environment. Forest sequestrates a great amount of carbon
dioxide and provides valuable timber. Here we consider a forestry
model used in environmental applications (Hritonenko et al., 2009;
Goetz et al., 2013).

As established by forest scientists, the link between the size and
age of a tree is weak and corresponding mathematical models
should use the tree size rather than its age as a structured param-
eter. First size-structured forestry models were introduced in the
80’s (Metz and Diekmann, 1986; Calsina and Saldaña, 1995; De
Roos and Persson, 2001; Kato et al., 2007). The carbon sequestra-
tion in timber was added later. The following problem determines
the optimal planting/logging regime that maximizes the joint ben-
efits from timber production and carbon sequestration
(Hritonenko et al., 2009):

max
u;U;x;b;s

J¼
Z T

0
e�rt

Z lm

l0

Bðxðl;tÞ;uðl;tÞÞdlþB2ðtÞ dbðtÞ
dt

þdcðtÞ
dt

� �
�B3ðtÞUðtÞ

( )
dt

ð9Þ

under restrictions

@xðl; tÞ
@t

þ @½gðl; EðtÞÞxðl; tÞ�
@l

¼ �lðl; EðtÞÞxðl; tÞ � uðl; tÞ;
t 2 ½0; TÞ; l 2 l0; lm½ �; ð10Þ

dsðtÞ
dt

¼ h
dVðtÞ
dt

; cðtÞ
� �

; EðtÞ ¼ v
Z lm

l0

l2xðl; tÞdl;

bðtÞ ¼ c0
Z lm

l0

vðlÞlbxðl; tÞdl; ð11Þ

s 0ð Þ ¼ s0; v 0 lð Þ > 0; 0 � u l; tð Þ � umax l; tð Þ; 0 � p tð Þ � pmax tð Þ;
ð12Þ

x l;0ð Þ ¼ x0 lð Þ; l 2 l0; lm½ �; x l0; tð Þ ¼ U tð Þ; t 2 ½0; TÞ; ð13Þ
where l is a tree diameter, l 2 [l0, lm], x(l,t) is the density of trees, u(l,
t) is the flux of logged trees, U(t) is the flux of new trees planted at t
with the diameter l0, g(l,E(t)) is their growth rate, m(l,E(t)) is a mor-
tality rate, E(t) reflects the intra-species competition, b(t) and c(t)
are the amount of carbon sequestered in timber and soil. The Eq.
(11) describes the dynamics of carbon in timber and soil. The con-
dition v’(l) > 0 in (12) means that the carbon sequestered in the long
run is higher for larger trees. The given positive parameters v, b,
and c0 are specific for tree species and are estimated from empirical
data.

The model (9)–(13) is a special case of the integral model (1),
(3), (4). To illustrate that, let us define characteristic curves of
the Eq. (10). For any continuous E(t), t 2 [0,T), the characteristic
curve uE(t; l1, t1) through a point (l1, t1) 2 (0,1)x[0,T) is the solution
of the differential equation

u0 tð Þ ¼ gðu tð Þ; E tð ÞÞ; u t1ð Þ ¼ l1: ð14Þ
For a given E, the function uE(t;l1,t1) describes the tree size u (t)

reached at time t if u (t1) = l1. For clarity, let us choose a commonly
accepted nonlinear growth rate

gðl; EÞ ¼ ð�l� lÞbgðEÞ; bgðEÞ > 0; ð15Þ
which means that a tree cannot grow indefinitely and asymptoti-
cally reaches its maximal size �l. Solving the initial value problem
(14) under the growth law (15), we obtain the characteristic curve

uE t; l1; t1ð Þ ¼ �l� �l� l1
� �

e
�
R t

t1
bg ðEðsÞÞds

; t 2 0; T½ �: ð16Þ
At a constant E(t) = E, the characteristic uEðt; l1; t1Þ ¼

�l� ð�l� l1Þe�ĝðEÞðt�t1Þ depends only on the difference between the
initial time t1 and current time t.

Using (15) and (16), the PDE (10) can be rewritten as the non-
linear integral equation

xðl; tÞ ¼ f ðl; tÞ �
Z t

0
l
�ðuEðf; l; tÞ; EðfÞ; ÞxðuEðf; l; tÞ; fÞdf;

0 < l < lm; 0 < t < 1; ð17Þ
where the function f also depends on p, E, or x0, and

l
�ðuEðf; l; tÞ; EðfÞÞ ¼ lðuEðf; l; tÞ; EðfÞÞ þ uðuEðf; l; tÞ; fÞ

þ @g
@l

ðuEðf; l; tÞ; EðfÞÞ ð18Þ

(Kato, 2004). The integral Eq. (17) is of the form (1). Qualitative and
numeric analysis of the model (9)–(13) for various tree species
under different climate scenarios helps to estimate changes in the
forest caused by the environment and produce recommendations
for sustainable forest management under climate change
(Hritonenko et al., 2012; Goetz et al., 2013). The major advantage
of size-structured models compared to age-structured models (5)
and (6) is that they better describe real processes in forestry and
fishery. A drawback is in increased analytic and computational
complexity.

2.3. Technological innovations and equipment replacement

Equipment ranging from computers to industrial machines is
among key production inputs of any business, but it ages with time
and should be periodically replaced before it becomes obsolete
because new better equipment appears on market (Hartman and
Tan, 2014; Yatsenko and Hritonenko, 2017). Finding the optimal
replacement time in multi-disciplinary settings involves not only
financial and technological, but also social and environmental
aspects (contamination and protection, shortage of energy and nat-
ural resources). Alongside with new equipment, the old one is still
on market because of its lower prices, increased performance
(learning-by-doing), and limited substitutability of vintages.

From a mathematical viewpoint, any production system is a
system with memory implemented in technological structures
and, as such, can be described by the model (2)–(4). The memory
is implemented in the existing structure of productive equipment.
Economic applications of models (2)–(4) are known as the vintage
capital models and describe the optimal renovation of heteroge-
neous assets under technological progress (Solow et al., 1966;
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Malcomson, 1975; Hritonenko and Yatsenko, 1995, 2005;
Boucekkine et al., 1997; Boucekkine and Pommeret, 2004;
Jovanovic and Tse, 2010). They describe the equipment (capital
assets) as a collection of heterogeneous vintages that differ by their
age and installation time.

The vintage model with investments into new and old vintages
(Jovanovic and Yatsenko, 2012) considers rational capital manage-
ment in a firm that faces the integral production function

yðtÞ ¼
Z t

�1
Aðt � zÞnbðzÞxbðz; tÞdz

� �a=b

; ð19Þ

where x(z,t) is the amount of vintage z at time t, n(z) is the unit effi-
ciency of vintage z, A(t�z) is the age-dependent ‘‘learning curve”,
t 2 [0,1), z 2 (�1,t], the parameter 0 < a � 1 describes returns to
scale, and b < 1 reflects limited substitutability among different vin-
tages. Let U(t) denote the investment in the new vintage t, u(z,t) be
the investment in the old vintage z < t (of the age t�z), and d > 0 be
the rate of physical depreciation. The law of motion of vintages x is
described by the PDE population model

@xðz; tÞ
@t

þ @xðz; tÞ
@z

¼ �dxðz; tÞ þ uðz; tÞ; x 0; tð Þ ¼ U tð Þ; ð20Þ

with a given initial distribution x(v,0) = x0(v) of existing vintages,
v 2 (�1,0]. The firm aims to maximize the discounted profit on
the infinite horizon:

max
u;U;x;y

Z 1

0
e�rt yðtÞ � UðtÞ �

Z t

�1
uðz; tÞdv

� �
dz; x � 0; u � 0;

ð21Þ
subject to (19) and (20) and initial conditions. The unknown control
variables are U and u, while the state variables x and y are deter-
mined from (20) and (19). Similarly to Section 2.2, the PDE model
(20) and (21) is a special case of the integral model (2)–(4).

Complete dynamics of such models combines a long-term bal-
anced growth (a steady-state solution, turnpike trajectory) and
short-term transition dynamics before a solution reaches balanced
growth (Boucekkine et al., 1997; Hritonenko and Yatsenko, 2008,
2013a). The balance growth in (19)–(21) is studied by Jovanovic
and Yatsenko (2012), who explore how learning affects buying
older technologies. Qualitative properties of the model (19)–(21)
and conditions for the convergence of its optimal trajectories to
the balanced growth are obtained in (Hritonenko et al., 2017).

3. Integral models with controlled memory

Integral dynamic models can contain a special type of nonlin-
earities that arise when certain obsolete elements of a dynamic
system are abruptly removed from the system. It leads to the
appearance of specific nonlinear controls that can be introduced
in the general age-structured dynamic model (2). Let us consider
its linear version:

xðtÞ ¼
Z t

�1
K s; tð ÞAðs; tÞxðsÞdsþ f ðtÞ; �1 � s < t; 0 � t < 1;

ð22Þ
where x is an n-vector of inputs, the given nxn matrix K(s,t) defines
possible positive and negative feedbacks among different inputs,
the n � l matrix A controls the feedback intensities, and n-vector
function f reflects external impacts on the system.

The new features of the model (22) compared to (2) are that:

	 the infinite delay over (�1,0] is necessary to depict existing
structure of inputs at the initial instant t = 0,
	 the inputs x(t) of the age-structured model (22) are not differ-
entiated by their age, which occurs when x(t) contain only the
system elements of age zero, such as newborns in biology or
newest technologies in industry.

Those features make the model (22) suitable to technological
applications. In control theory, the matrix function A(s,t) is a flex-
ible two-dimensional control that changes the intensities of input-
output channels (Hritonenko and Yatsenko, 2005, 2013a). It can
take more specific forms in some applications. In particular, pro-
duction systems under improving technology (at oK(s,t)/os > 0)
acquire only the newest and most efficient equipment vintages
and scrap only the oldest obsolete vintages. The scrapping process
is described by the special form of the control A:

Aijðs; tÞ ¼
1; zjðtÞ � s � t;

0; s < zjðtÞ;
�

i; j ¼ 1; :::;n; ð23Þ

which is now determined by the one-dimensional delay control zj(t)
that describes the instant when a vintage should be removed from
service. Then, substituting (23) into the model (2)–(4), (22) leads to
the following integral model with endogenous (controlled) delays:

Maximize I ¼
Z T

t0

Uðx; z;tÞdt; t0 < T � 1; ð24Þ

subject to xiðtÞ ¼
Pn

j¼1

R t
zjðtÞKijðs; t; x1:::; xnÞxjðsÞdsþ f iðtÞ;

i ¼ 1; :::m;

xi tð Þ � 0; zj tð Þ < t; zj tð Þ � 0; t 2 ½t0; TÞ; j ¼ 1; . . . ;n;
0 < m � n; T � 1;

xðsÞ ¼ x0ðsÞ; s 2 s0; t0½ �; s0 ¼ inf
t2½t0 ; TÞ;j¼1; n

zj tð Þ

The unknown lower limits zj(t) of integration in (25) reflect
delays in a dynamic system and describe the unknown lifetimes
t-zj(t) of system elements. In (24) and (25), some or all components
of functions x(t) = {xi(t), i = 1,. . .,n}, and z(t) = {zi(t), i = 1,. . .,n}, t 2
[t0,T), are unknown. The functions Kij(s,t,x) � 0 and fi(t) � 0,
i = 1,. . .,m, j = 1,. . .,n, s 2 [s0, T), t 2 [t0, T), and the initial vector
x0(s), s 2 [s0, t0], are given.

Compared to the model (22), the benefit of the integral model
(24) with controlled delay is that it decreases the dimension of a
control problem from two to one. However, its drawback is that
it creates a new essential nonlinearity which leads to increased
analytic complexity. Indeed, the integral equations with unknown
delays are always nonlinear even if all other model functions are
given. Moreover, the problem (24) and (25) involves the state-
dependent delays x(z(t)) and the state constraints (25) on the
derivative of the unknown zj(t). Challenges of state-dependent
delays are well known in the modeling theory, e.g., (Carl et al.,
2007, Desch and Turi, 1996; Domoshnitsky et al., 2002; Dmitruk
and Vdovina, 2017). Furthermore, the integral equations with
unknown upper integration limits (leads) appear in corresponding
dual problems (Hritonenko and Yatsenko, 2009; Motamedi et al.,
2014; Yatsenko 1995, Yatsenko, 2004). Finally, a finite interval
[t0,T], T <1, causes solution irregularities compared to the infinite
case T =1. To illustrate features of such models, we consider two
special cases of (24) and (25) below.

3.1. Technological and industrial models

The optimal control problem

max
x;y;z

I ¼
Z T

t0

qðtÞ½yðtÞ � pðtÞxðtÞ�dt; T � 1; ð26Þ
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under the constraints

yðtÞ ¼
Z t

zðtÞ
bðs; tÞxðsÞds; RðtÞ ¼

Z t

zðtÞ
xðsÞds; ð27Þ

p tð Þx tð Þ� yðtÞ; z tð Þ � t; z0 tð Þ�0; x tð Þ�0; t2 ½t0;TÞ; ð28Þ
and the initial conditions

z t0ð Þ ¼ z0 < t0; xðsÞ ¼ x0ðsÞ � 0; s 2 ½z0; t0� ð29Þ
with the unknown x, y, z describes the rational replacement of obso-
lete equipment under improving technology and a constrained
resource R. The efficiency function b (s,t) is the output of product
y produced by one vintage, that is, by one unit of equipment created
at time s. It increases in s due to the embodied technological change:
newer vintages are more efficient because of technological
improvements. The endogenous variables are the scrapping time z
(t) of obsolete vintages and the number x(t) of new vintages placed
in service. The discount rate q, efficiency b, cost p, resource R, and
initial state x0 are positive and given.

The problem (26)–(29) has been intensively studied.
Hritonenko and Yatsenko (2005, 2008) developed a technique to
overcome state constraints (28) on z and z0, obtained the necessary
and sufficient condition for an extremum, and found asymptotic
(turnpike) properties and exact structure of solutions to (26)–
(29). In particular, the optimal control x at T <1 is affected by
two groups of irregularities caused by replacement echoes and
anticipation echoes (Boucekkine et al., 1997; Hritonenko and
Yatsenko, 1996, 2005, 2008). The first group of echoes is dissemi-
nated from left to right and the second one from right to left. The
cumulative effect of two echoes leads to a sophisticated behavior
of the optimal control x. Such investment echoes have been
observed in real economies (Jovanovich and Tse, 2010).

Some other integral models with one scalar endogenous delay
have been investigated in (Malcomson, 1975; Hritonenko and
Yatsenko, 1995; Boucekkine et al., 1997), and others. The model
(26)–(29) has been extended to consider sustainable management
of energy and natural resources, physical and human capital, envi-
ronmental quotas and restrictions (Boucekkine and Pommeret,
2004; Boucekkine et al., 2014; Hritonenko and Yatsenko, 2013b;
Hritonenko et al., 2015). Hritonenko and Yatsenko (2013c) study
nonlinear integral Eq. (24) with several endogenous delays. A prin-
cipal drawback of vintage models with endogenous delays com-
pared to the vintage model (19)–(21) is that they cannot describe
investments into older vintages.

3.2. Biological models

Integral models with delays of type (24) and (25) can be effec-
tively used to describe controlled harvesting of biological popula-
tions (Brokate, 1985; Kato et al., 2007; Sharpe and Lotka, 1911;
Webb, 1985). Hritonenko and Yatsenko (2006) describe the
dynamics of a harvested population by the integral dynamic model
with controlled delay

xðtÞ ¼
Z t

t�zðtÞ
Kðu; t;xÞhðu; tÞxðuÞduþ

Z t

t�T
Kðu; t;xÞð1�hðu; tÞÞxðuÞdu;

ð30Þ
where z is the unknown harvesting age, h is the unknown harvest-
ing intensity, x is the birth intensity of individuals, T is their maxi-
mal lifespan, and K reflects given population productivity (fertility).
A major difference between integral models (22)–(25) in economics
and biology is that biological populations reproduce themselves,
while the economy is fully managed (all new elements are intro-
duced into the system). As in PDE-based population models of Sec-
tion 2, the objective is to maximize harvesting profit. The advantage
of the integral model (30) is that the state variable x is one-
dimensional compared to the two-dimensional population density
x in the analogous PDE model (6), which simplifies analysis
(Hritonenko and Yatsenko, 2010, 2007).

4. Conclusion

The choice of differential or integral equations as a modeling
tool is ambiguous. In some situations, researchers transform orig-
inal integral models to their differential analogues (ODEs or PDEs),
and vice versa. A crucial benefit of differential equations is that
they are easier to solve, so, the transition to them is natural in
many cases. However, the major advantage of integral equations
is that they are more general and can describe global situations
that cannot be modeled by the differential equations. Indeed,
although the derived equations of motion are often differential,
the original general physical laws usually have an integral form.
Even a slight modification of an applied problemmay often require
going back to an integral form of the model. Examples include
problems of viscoelasticity, creep theory, super fluidity, aeroelas-
ticity, coagulation and meteorology, electromagnetism, radiation
transfer, radio physics, electronic lithography, and so on
(Hritonenko and Yatsenko, 2013a). In principle, all differential
models can be described with integral equations.
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