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This paper develops the correlation between fuzzy numbers and order of differential equations and over-
comes the limitation in the existence of fractional order in the formulation of equation. In the view of
fractional calculus, a new logic called fuzzy order by generalizing the meaning of derivatives and integrals
of any order as fuzzy-order derivatives and fuzzy-order integral. We discuss Da, where Da is derivative of
order a and a may be a triangular fuzzy number or trapezoidal fuzzy number, and propose to rewrite
DayðxÞ ¼ g x; yðxÞð Þ, when a ¼ A;B;Cð Þ and A;B and C 2 N (where N is the set of natural numbers) and
rewrite Riemann-Liouville integral, Riemann-Liouville derivative and Caputo fractional derivatives with
respect to this new logic of fuzzy order. The proposed approach also covers multi cases, where the order
is either integer or fractional. At the end, three numerical examples are presented to demonstrate the
application of new logic, when the order of derivatives and integrals are given as triangular fuzzy num-
bers. These include time fractional heat equation represented as a time fuzzy-order heat equation and the
time-fractional diffusion wave equation represented as a time-fuzzy-order diffusion wave equation.
� 2017 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

In this modern evolving world especially in the field of applied
sciences and engineering, many continuous changes are observed
and such changes require a thorough understanding of the nature
and characteristics of the situation where undeniably certainty as
well uncertainty prevail. Handling the issue of uncertainty in our
daily lives is not just a matter of choosing a method or providing
an answer to a question, but it is closely linked to the accuracy
of the question itself and the consequences brought about by the
question. These consequences could be the performance of a device
or a machine, or it might be the efficiency of the daily instrument
that surrounds us, be it natural or man-made. The consequences
might be interrelated such as the evolution of global climate
change and health consequence in pollution issues where there is
a need of some form of appropriate questions to be raised so as to
bring about mathematical formulas to explain them.

Questions are often raised as the results of suspicious knowl-
edge or ignorance. An example of great importance was the inci-
dent of a falling apple which raised the question that inspired
Newton to learn and reveal the concept of gravity and achieve a
breakthrough through the discovery of the laws of gravity in
1966 (Ahmad, 2015; Riggs et al., 2015). The question regarding
the falling apple has led to many other discoveries and concepts
which in turn has played the role of eliminating doubts on further
logical questions.

In 1695, an important question was raised by Leibniz in his let-
ter to L’Hospital:

‘‘Can the meaning of derivatives with integer order be generalized
to derivatives with non-integer orders?‘‘
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L’Hospital was said to be somewhat curious about the question
and replied by another simple question to Leibniz:

‘‘What if the order will be 1
2?”

Leibniz in a letter dated September 30, 1695, replied as follows:
‘‘It will lead to a paradox, from which one day useful consequences
will be drawn.”

It is well known that this famous question by Leibniz has
opened doors to numerous types of research in new areas in the
field of differential equations (Selvam et al., 2015; Bernardis
et al., 2016; Patil et al., 2015; Area et al., 2016; Yunquan and
Chunfang, 2015). Although he himself did not really provide the
answer to his own question, after 300 years, this particular ques-
tion and the subsequent research work, which have led to a
tremendous amount of applications in numerous areas such as
science, engineering, astronomical science and in the interpreta-
tion of natural phenomena, have coined a new science which is
known as the science of fractional differential equations (Li,
2015; Miller and Ross, 1993; Machado et al., 2014). The most pop-
ular definitions in relation to the question by Leibniz were formu-
lated by Riemann, Liouville and Caputo where the definitions have
been used in many theoretical and application studies.

Fractional differential equation can be defined as a differential
equation which has non-integer order, and the following general
formula can be considered:

DayðtÞ ¼ g t; yðtÞð Þ ð1Þ
Eq. (1) was derived from the question by Leibniz in 1695, which was
in the form of a statement directed to L’Hospital about the order of
differential equations with questions that includes condition and
possibility of having equations with a non-integer order raised
through: ‘‘What if the order will be a ¼ 0:5?” (Agarwal et al.,
2015; Leibniz, 1849; Carpinteri, 2014). Since the emergence of this
question about the possibility of a fractional order, many successive
studies on fractional derivatives have been carried out where such
studies include the major ones were made in 1772 by Lagrange
(West, 2014), in 1812 by Laplace (Zhou, 2014), Lacroix (Araci
et al., 2015) in 1819 and in 1822 by Fourier (1822). In 1974, Diaz
and Osler defined the fractional difference through a natural
approach by allowing the index of differencing in a standard
expression, either in real or complex numbers (Cafagna, 2007). It
is apparently clear that a well-phrased question plays an important
part in the evolution of a concept.

Fuzzy set theory was pioneered by Zadeh in 1965 (Zadeh, 1965).
Zadeh stated that uncertainty and probability terms that have been
earlier introduced in mathematics in theory as well as in applica-
tions are inadequate since the probability theory was limited
(Zadeh, 1965). In light of this limitation and also the motivating
question of how to explain uncertainty, Zadeh explored new con-
cepts (Zadeh, 1966) with applicable rules of possibilities. These
new concepts opened many paths to a new breakthrough in the
field of scientific research, and thus providing answers to many
ambiguous issues. He was questioning on how to mathematically
define classes of objects where he himself has succeeded in provid-
ing the answer to the question. This new finding has been known
as the fuzzy set theory. Goguen (Jalab and Ibrahim, 2015) began
to relate and expanded Zadeh’s findings to a bigger scope. Zadeh
then continued to prove his previous work through a new study
in the field of probability measures, while Chang (1968) made a
study on fuzzy topological spaces. Among other applications, fuzzy
set theory has also been used in decision-making (Chang and
Zadeh, 1972). The fuzzy set theory became the language of redefin-
ing concepts through practical concepts and rules.

In relation of fuzzy set theory to the field of differential equa-
tions, the actual extension of fuzzy logic in differential equations
was observed in the study of Chang and Zadeh in 1972 (Chang
and Zadeh, 1972). In 1982, Dubois and Prade (1982) wrote about
the fuzzy sets related to many applications such as differential
equations and used the phrase ‘fuzzy differential equation’. Fur-
thermore, the authors (Dubois and Prade, 1982) introduced new
applications in the fuzzy logic field specifically, in the integration
of fuzzy mappings. Kaleva (1987) and Wang and Wu (1987) made
applications of fuzzy in differential equations. Kaleva further
worked on Cauchy problem for fuzzy differential equations
(Kaleva, 1990). Kloeden (1991) wrote remarks on Peano-like theo-
rems of fuzzy differential equations; Buckley and Qu (1991) solved
the first-order fuzzy differential equations. The expansion of the
fuzzy concept in numerical methods for solving differential equa-
tion has been studied (Friedman et al., 1999). Solution methods
include Taylor methods (Abbasbandy and Viranloo, 2002), by
Runge-Kutta method (Abbasbandy et al., 2004), predictor–correc-
tor method (Allahviranloo et al., 2007), Nystrom method
(Khastan and Ivaz, 2009), differential transformation method
(Allahviranloo and Salahshour, 2011) and Laplace transforms (De
Oliveira and Machado, 2013).

It is clear that the field of fuzzy differential equation has been
expanding day by day. However, these studies were focused on
the concept of fuzzy only within the scope of the initial values or
the boundary values and such formulation may not represent the
entire problem at hand. The current practice assumes the existence
of certainty in the order of the equation. The concept of fuzzy was
not taken into consideration in the order of the differential equa-
tion. Thus, the whole formulation is limiting andmay not represent
the entire problem at hand.

Therefore, we propose to raise a new question by restating the
question posed by Leibniz in 1695 as follows:

‘‘Can the meaning of derivatives and integrals of any order
be generalized to fuzzy-order derivatives and fuzzy-order
integrals?”

To be more specific, we propose to raise the following subse-
quent question which is parallel to L’Hospital reply to Leibniz:

‘‘What if the order will be fuzzy number?”

We propose to view fractional calculus with a new logic which
is a new order called fuzzy order. The proposition is to generalize
the meaning of derivatives and integrals of any order as Fuzzy-
order Derivatives and Fuzzy-order Integrals.

The rest of the paper is organized as follows. Section 2 includes
some basic definitions in fractional calculus, followed by some
main definitions in fuzzy set theory in Section 3. Section 4 presents
equations with respect to the fuzzy order and provide new defini-
tion of differential calculus related to the new order. To employ the
new logic, three numerical examples are given in Section 5. The
paper concludes in Section 6.

2. Riemann-Liouville and Caputo definitions in fractional
calculus

Fractional definitions, which have been originally formulated by
Riemann and Caputo are given as follows.

Definition 1. (Salgado and Aguirre, 2016; Almeida, 2017; Momani
and Odibat, 2007; Salahshour et al., 2012) (Riemann-Liouville
integral)

The left and the right fractional integrals for Riemann-Liouville
are defined as:

IaR;ayðtÞ ¼
1

CðaÞ
Z t

a
ðt � fÞa�1yðfÞdf ð2Þ

and
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Iab;RyðtÞ ¼
1

CðaÞ
Z b

t
ðf� tÞa�1yðfÞdf ð3Þ

respectively, where n� 1 < a < n; and a; b are the terminal points
of the interval ½a; b�.
Definition 2. (Salgado and Aguirre, 2016; Almeida, 2017; Momani
and Odibat, 2007; Salahshour et al., 2012) (Riemann-Liouville
derivative)

The left and the right fractional derivatives for Riemann-
Liouvilleare defined as:

Da
R;ayðtÞ ¼

1
Cðn� aÞ

dn

dtn

Z t

a
ðt � fÞn�a�1yðfÞdf ð4Þ

and

Da
R;tyðtÞ ¼

ð�1Þn
Cðn� aÞ

dn

dtn

Z b

t
ðf� tÞn�a�1yðfÞdf ð5Þ

respectively, where n� 1 6 a < n; and a; b are the terminal points
of the interval ½a; b�.
Definition 3. (Salgado and Aguirre, 2016; Almeida, 2017; Momani
and Odibat, 2007; Salahshour et al., 2012; Zhang, 2014) (Caputo
fractional derivatives)

The left and the right Caputo fractional derivatives are defined
as:

Da
c;ayðtÞ ¼

1
Cðn� aÞ

Z t

a
ðt � fÞn�a�1yðnÞðfÞdf; ð6Þ

and

Da
c;byðzÞ ¼

ð�1Þn
Cðn� aÞ

Z b

t
ðf� tÞn�a�1yðnÞðfÞdf; ð7Þ

respectively, where yðnÞf ¼ dynðfÞ
dfn and n� 1 6 a < n;n 2 Zþ.
3. Some important definitions in fuzzy theory

Definition 4. (Dubois and Prade, 1980). The Triangular fuzzy
numbers ðTRFNÞ are defined as follows:

TRFNðtÞ ¼

0; t < A
t�A
B�A ; A 6 t 6 B
C�t
C�B ; B 6 t 6 C

0; t > C

8>>><
>>>:

ð8Þ

where TRFNðtÞ 2 RF , and its r-cut is defined as follows:

TRFNðtÞ½ �r ¼ Aþ rðB� AÞ;C � rðC � BÞ½ �; for r 2 ½0;1� ð9Þ
Definition 5. (Dubois and Prade, 1980). The Trapezoidal fuzzy
numbers ðTLFNÞ are defined as follows:

TLFNðtÞ ¼

0; t < A
t�A
B�A ; A 6 t 6 B
1; B 6 t 6 C
D�t
D�C ; C 6 t 6 D

0; t > D

8>>>>>><
>>>>>>:

ð10Þ

where TLFNðtÞ 2 RF , and its r-cut is defined as follows:

TLFðtÞ½ �r ¼ Aþ rðB� AÞ;D� rðD� CÞ½ �; for r 2 ½0;1� ð11Þ
If C ¼ B TLFN � FRFN.
4. The new concept of fuzzy order

In this section, we discuss differential equations with respect to
fuzzy order and provide new definition of differential calculus
related to the new order.

4.1. Fuzzy-order differential equation

By the logic of the question posed by Leibniz, rephrasing the
Eq. (1) by redefining a as a fuzzy number as follows:

Da
c yðtÞ ¼ gðt; yðtÞÞ; t > 0; a ¼ TRFN: ð12Þ
By Definition 4 and Eq. (8), the new form of Eq. (12) yields:

DðA;B;CÞ
c yðtÞ

h ir
¼ gðt; yðtÞÞ ¼ DAþrðB�AÞ

c yðtÞ;DC�rðC�BÞ
c yðtÞ

h i
¼ gðt; yðtÞÞ; t > 0 ð13Þ
4.2. Fuzzy-order definitions

When we defined a as TRFN , then Eq. (2) is converted to the fol-
lowing form:

ITRFNR;a yðtÞ ¼ 1
C TRFNð Þ

Z t

a
ðt � fÞTRFN�1yðfÞdf: ð14Þ

where n� 1 6 TRFN < n; and a; b are the terminal points of the
interval ½a; b�.

Using the r-cut definition in Eqs. (8) and (9), Eq. (12) is con-
verted to the following form:

ITRFR;a yðtÞ
h ir

¼ 1
CðTRFÞ

Z t

a
ðt � fÞTRFN�1yfdf

� �r

¼ 1
Cð½TRFN�rÞ

Z t

a
ðt � fÞ½TRFN�r�1yðfÞdf

� � ð15Þ

By similar logic in Eqs. (12)–(15), we can rewrite the definitions
in Eqs. (2)–(7) as follows:

Definition 6. The left Riemann-Liouville fuzzy-order integral
ITRFNR;a yðtÞ is given by:

1
CðAþ rðB� AÞÞ

Z t

a
ðt � fÞ AþrðB�AÞ½ ��1yðfÞdf;

�
1

C C � rðC � BÞð Þ
Z t

a
ðt � fÞ C�rðC�BÞ½ ��1yðfÞdf

�
; ð16Þ

where A < Aþ rðB� AÞ < B;B < C � rðC � BÞ < Cand a is the left
terminal point of the interval ½a; b�.
Definition 7. The right Riemann-Liouville fuzzy-order integral
ITRFNb;R yðtÞ is given by:

1
CðAþ rðB� AÞÞ

Z b

t
ðf� tÞ½AþrðB�AÞ��1yðfÞdf;

"

1
CðC � rðC � BÞÞ

Z b

t
ðf� tÞ½C�rðC�BÞ��1yðfÞdf

#
; ð17Þ

where A < Aþ rðB� AÞ < B;B < C � rðC � BÞ < Cand b is the
right terminal point of the interval ½a; b�:

The definition of the left and right Riemann-Liouville fuzzy-
order derivatives are as follows.
Definition 8. The left Riemann-Liouville fuzzy-order derivative
DTRFN

R;a yðtÞ is given by:
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1
C B�ðAþrðB�AÞÞð Þ

dB

dtB

Z t

a
ðt � fÞB�ðAþrðB�AÞÞ�1yðfÞdf;

1
C C�ðC�rðC�BÞÞð Þ

dC

dtC

Z t

a
ðt � fÞC�ðC�rðC�BÞÞ�1yðfÞdf

2
6664

3
7775; ð18Þ

where A 6 Aþ rðB� AÞ < B;B 6 C � rðC � BÞ < Cand a is the left
terminal point of the interval ½a; b�:
Definition 9. The right Riemann-Liouville fuzzy-order derivative
DTRFN

b;R yðtÞ can given by:

ð�1ÞB
CðB�ðAþrðB�AÞÞÞ

dB

dtB

Z b

t
ðf� tÞB�ðAþrðB�AÞÞ�1yðfÞdf;

ð�1ÞC
CðC�ðC�rðC�BÞÞÞ

dC

dtC

Z b

t
ðf� tÞC�ðC�rðC�BÞÞ�1yðfÞdf

2
6664

3
7775; ð19Þ

where A 6 Aþ rðB� AÞ < B;B 6 C � rðC � BÞ < C; and b is the right
terminal point of the interval ½a; b�:

The definition of left and right fuzzy-order derivatives in the
Caputo sense are as follows.
Definition 10. The left Caputo fuzzy-order derivative is given by:

<ref10=>
CðB�ðAþrðB�AÞÞÞ

Z t

a
t � fB�a�1yðBÞðfÞdf;

<ref11=>
CðC�ðC�rðC�BÞÞÞ

Z t

a
ðt � fÞC�a�1yðCÞðfÞdf

2
6664

3
7775; ð20Þ

where yðBÞðfÞ ¼ dyBðfÞ
dfB

; yðCÞðfÞ ¼ dyC ðfÞ
dfC ;A 6 Aþ rðB� AÞ < B;B 6

C � rðC � BÞ < C:
Definition 11. The right Caputo fuzzy-order derivative is given by:

ð�1ÞB
CðB�ðAþrðB�AÞÞÞ

Z b

t
ðf� tÞB�ðAþrðB�AÞÞ�1yðBÞðfÞdf;

ð�1ÞC
CðC�ðC�rðC�BÞÞÞ

Z b

t
ðf� tÞC�ðC�rðC�BÞÞ�1yðCÞðfÞdf

2
6664

3
7775; ð21Þ

where yðBÞðfÞ ¼ dyBðfÞ
dfB

; yCðfÞ ¼ dyC ðfÞ
dfC

;A 6 Aþ rðB� AÞ < B;B 6
C � rðC � BÞ < C:

The previous definitions from (6)–(11) can be rewritten with
the same procedure if a is given as TLFN in Eq. (12).
5. Numerical examples

In this section, three numerical examples are provided to vali-
date the proposed logic and new definitions.

Example 1. The time fractional heat equation (Koch and Brady,
1988) is given by:

DayðtÞ ¼ aDT; ð22Þ
where a is thermal diffusivity, T is the temperature and a is a pos-
itive real number. In the original problem, there is a wide range of
choices for a and different values for the fractional order a give dif-
ferent heat conduction property, where in diffusion theory, it is
called subdiffusion for 0 < a < 1 (Koch and Brady, 1988) and
superdiffusion for 1 < a < 2 (Koch and Brady, 1988). The solutions
in the original study are given for a ¼ 0:6 and 1.6, where this means
the numerical solution for this equation requires two levels of order
of derivatives with 0.6 located in first order fractional differential
equation followed by 1.6 located in the second order fractional dif-
ferential equation.
Using the new proposed logic, when a is defined as a TRFN
where a ¼ ð0;1;2Þ , the equation with this fuzzy order is able to
cover all situations in diffusion theory. In this example, we have
shown that the meaning of derivatives of any order can be
generalized to fuzzy-order derivatives. Therefore, we can reformu-
late Eq. (22) by Eq. (8) as:

Da¼TRFNyðtÞ ¼ aDT; ð23Þ
where a is thermal diffusivity, T is temperature and a is a fuzzy
triangular number, based on Eq. (9) we can write the following
formula for Eq. (23) as:

DðA;B;CÞ
c yðtÞ

h ir
¼ gðt; yðtÞÞ

¼ Da1yðtÞ;Da2yðtÞ� �
DAþrðB�AÞ

c yðtÞ;DC�rðC�BÞ
c yðtÞ

h i
; t > 0

ð24Þ
Clearly, Eq. (24) gives different heat conduction property when

a ¼ ðA;B;CÞ ¼ ð0;1;2Þ, where this new formulation gives different
ranges for heat conduction property between subdiffusion and
superdiffusion. The proposed fuzzy order is more suitable to
describe the order of the fractional differential equation in this
example. Using the new logic, we can observe the two diffusion sit-
uations for all r 2 ½0;1�. This can be illustrated by the new formula
of Eq. (22) as follows:

Da¼TRFNyðtÞ ¼ Subdiffusion; a1 ¼ Aþ rðB� AÞ; r 2 ½0;1�
Superdiffusion; a2 ¼ C � rðC � BÞ; r 2 ½0;1�:

�
ð25Þ

It is clear that the time fractional heat equation can be repre-
sented as a time fuzzy-order heat equation.
Example 2. For the equations in diffusion wave between subdiffu-
sion and ballistic diffusion, such as time-fractional diffusion wave
equation (Ott et al., 1990; Metzler and Klafter, 2000), where the
time-fractional diffusion wave equation is obtained from the clas-
sical wave equation, which continues to the diffusion equation
when a! 1 and to the wave equation when a ! 2.

In typical diffusion a is 1, while other phenomena are called
anomalous, where for a > 1;a < 1 and a ¼ 2 , the phenomena are
called superdiffusion, subdiffusion and ballistic diffusion,
respectively.

By Definition 4, we can use the new logic by positioning the
order given by fuzzy triangular numbers a ¼ ð0;1;2Þ that leads to
cover cases of subdiffusion (weak diffusion) and normal diffusion
for the first and second order differential equations, respectively as
well as the cases of superdiffusion (strong diffusion) and ballistic
diffusion for first level and second level for fractional differential
equations, respectively. Hence, the time-fractional diffusion wave
equation can be represented by the Time-fuzzy-order diffusion
wave equation.
Example 3. By new logic presented in this paper, let us assumed
the following equation:

Da
c yðtÞ ¼ gðt; yðt0ÞÞ; yðba1cÞðt0Þ ¼ k; yðba2cÞðt0Þ ¼ q and a ¼ ð0;1;2Þ;

ð26Þ
where k and q are the initial conditions of problem and baic
denote the smallest and largest integer numbers nearest to
ai; i ¼ 1;2, respectively and () denote to the derivative of y:

From Eqs. (8) and (9), we can rewrite Eq. (26) as the follow:

Da¼TRFNyðtÞ¼ Da1
c yðtÞ; a1 ¼ r;r 2 ½0;1�; yðt0Þ¼ k;

Da2
c yðtÞ; a2 ¼2� r;r 2 ½0;1�;yðt0Þ¼ k and yð1Þðt0Þ¼ q:

(

ð27Þ



Fig. 1. Approximate solution of yðtÞ when a1 ¼ r with different values of r.

Fig. 2. Approximate solution of yðtÞ when a2 ¼ 2� r with different values of r.
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Now, by using the methods in Albzeirat et al. (2017, 2018), we
can solve Eq. (27) when a ¼ r and a ¼ 2� r: Figs. 1 and 2 illustrate
the approximate solution of Eq. (26) when with different value of r.
6. Conclusion

This paper rephrased a renowned question by Liebnizin 1695
with respect to the proposed new logic called fuzzy-order and
extended the fuzzy logic in order of differential equations. New
fuzzy-order definitions have been introduced through the refor-
mulation of the main definitions of fractional derivatives and inte-
grals for Riemann-Liouville and Caputo. This work generalized the
meaning of derivatives and integrals of any order to fuzzy-order
derivatives and fuzzy-order integrals. The proposed new logic is
employed for the generalization of time fractional heat equation
and time fractional diffusion wave equation to time fuzzy-order
heat equation and time-fuzzy-order diffusion wave equation,
respectively as examples. It is noticeable that the actual applica-
tion of this new logic presented here is still in early stages and
could be investigated further in the future.
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