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In fluid mechanics, a lot of authors have been executing their researches to obtain the analytical solutions
of Navier-Stokes equations. But there is an essential deficiency of non-stationary solutions indeed.
In our presentation, we proceed exploring the case of non-stationary helical flows of the Navier-Stokes

equations for incompressible fluids, with variable (spatially dependent) coefficient of proportionality a
between velocity and the curl field of flow.
The main motivation of the current research is the exploring the case when velocity field u is supposed

to be perpendicular to the vectorra. Conditions for the existence of the exact solution for the aforemen-
tioned type of flows are obtained, for which non-stationary helical flow with invariant Bernoulli-function
is considered.
The spatial part of the pressure field of the fluid flow should be determined via Bernoulli-function, if

components of the velocity of the flow are already obtained.
� 2018 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction, the Navier-Stokes system of equations in which the flow occurs and the boundary conditions, let us con-
In accordance with (Ladyzhenskaya, 1969; Landau and Lifshitz,
1987), the Navier-Stokes system of equations for incompressible
flow of Newtonian fluids should be presented in the Cartesian
coordinates as below (under the proper initial conditions):

r �~u ¼ 0; ð1Þ

@~u
@t

þ ð~u � rÞ~u ¼ �rp
q

þ m � r2~uþ~F; ð2Þ

where u is the flow velocity, a vector field; q is the fluid density, p is
the pressure, m is the kinematic viscosity, and F represents external
force (per unit of mass in a volume) acting on the fluid; notation u or
~u means a vector field.

Besides, we assume here external force F above to be the force,
which has a potential / represented by F = �r /. As for the domain
sider only the Cauchy problem in the whole space.
Let us search for solutions of the system (1) and (2) in a form of

helical or Beltrami flow below:

~Xðx; y; z; tÞ ¼ aðx; y; zÞ �~uðx; y; z; tÞ ð3Þ
here we denote the curl field X = (r � u), a pseudovector time-
dependent field (which means the vorticity of the fluid flow); a is
variable parameter (which differs from the case a = const, consid-
ered in (Ershkov, 2016)).

2. The originating system of PDE for helical non-stationary flow

Using the identity (u�r)u = (1/2)r(u2) – u � (r� u), we could
present the Navier-Stokes Eqs. (1) and (2) for incompressible
viscous flow u = {u1, u2, u3} as below (Saffman, 1995; Milne-
Thomson, 1950):

r �~u ¼ 0;

@~u
@t

¼~u� ~Xþ m � r2~u� 1
2
rð~u2Þ þ rp

q
þru

� � ð4Þ

where we will choose q = 1 for simplicity.
The continuity Eq. (1) let us obtain as below, using (3):

r�~u¼ 0 ) 1
a

� �
r�~X� ra

a2 � ða~uÞ
� �

¼ 0 ) ðra �~uÞ ¼ 0 ð5Þ
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@a
@x

� u1 þ @a
@y

� u2 þ @a
@z

� u3 ¼ 0 ð6Þ
Let us note that the obvious case ra = 0 in (5) was explored

properly in (Ershkov, 2016); so, the main motivation of the current
research is the obtaining a new solution: we wish to explore the case
when velocity field u is to be perpendicular to the vectorra - such
the idea belongs to Dr. G.B. Sizykh, MIPT, (personal communications).

3. The presentation of time-dependent solutions

Using Eqs. (1) and (3), each equations of the 2-nd vector equa-
tion of system (4) could be transformed as below

@~u
@t

¼ u
*�~Xþm �r2~u� 1

2
rð~u2Þþrpþru

� �
)

@~u
@t

¼ u
*�ða~uÞ�m �r�ða~uÞ�rB )

@~u
@t

¼�m � ðra�~uþaða~uÞÞ�rB ) @~u
@t

¼�m � ðra�~uþa2 �~uÞ�rB

ð7Þ
where Bernoulli-function B is given by expression below:

B ¼ 1
2
ð~u2Þ þ pþ /:

So, we obtain from (7):

@u1

@t
¼ �m � @a

@y
� u3 � @a

@z
� u2

� �
þ a2 � u1

� �
� @B

@x
;

@u2

@t
¼ �m � @a

@z
� u1 � @a

@x
� u3

� �
þ a2 � u2

� �
� @B

@y
;

@u3

@t
¼ �m � @a

@x
� u2 � @a

@y
� u1

� �
þ a2 � u3

� �
� @B

@z
:

8>>>>>>><
>>>>>>>:

ð8Þ

Three aforementioned equations of the system (8) with the
additional Eq. (6) should determine 3 time-dependent functions
{u1, u2, u3} with additional unknown time-dependent Bernoulli-
function B in regard to the time-parameter t.

Using (5), let us obtain the dot product of the components of
vector Eq. (7) on components of vector ra as below:

ra � @~u
@t

� �
¼ �m � ðra � ðra�~uÞÞ þ a2 � ðra �~uÞ� �� ðra � rBÞ

) m � ðra � ðra�~uÞÞ þ ðra � rBÞ ¼ 0 ð9Þ

) ðra � rBÞ ¼ 0; B ¼ 1
2
ðu2

1 þ u2
2 þ u2

3Þ þ pþ / ð10Þ

it means the existence of the restrictions at choosing of the form of
variable coefficient a (x, y, z) for given Bernoulli-function B.

Let us search for solutions {u, p} of the system of Eqs. (1) + (7)
which should conserve the Bernoulli-function to be the invariant
of the aforementioned system:

B ¼ 1
2
ð~u2Þ þ pþ / ¼ const ð11Þ

4. Solving ODE system for time-dependent components of
velocity field

Taking into account the basic assumption (11), system of Eq. (7)
should be transformed accordingly:
W ¼ �
@a
@x

� �
@a
@z

� � � U ) V ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðU 2ðt 0Þ þ V 2ðt 0Þ þ W 2ðt 0ÞÞ � ex

vuut

U 2 �
@ a
@ z

� � 2

@ a
@ x

� � 2 þ @ a
@ z

� � 2
� � � ðU 2ðt 0Þ þ V 2ðt 0Þ þ W 2ðt 0ÞÞ � expð� 2 m
@~u
@t

¼ m � ð~u�ðraÞ�a2 �~uÞ)

@U
@t

¼ m � ðV � ðraÞz�W � ðraÞyÞ�m �a2 �U;
@V
@t

¼ m � ðW � ðraÞx�U � ðraÞzÞ�m �a2 �V ;
@W
@t

¼ m � ðU � ðraÞy�V � ðraÞxÞ�m �a2 �W:

8>>>>>><
>>>>>>:

ð12Þ

Let us multiply the 1-st equation of system (12) on U, the 2-nd
Eq. on V, 3-rd on W

1
2
@ðU2Þ
@t

¼ m � ðUV � ðraÞz � UW � ðraÞyÞ � m � a2 � U2;

1
2
@ðV2Þ
@t

¼ m � ðVW � ðraÞx � UV � ðraÞzÞ � m � a2 � V2;

1
2
@ðW2Þ
@t

¼ m � ðUW � ðraÞy � VW � ðraÞxÞ � m � a2 �W2;

8>>>>>><
>>>>>>:
then if we sum all the resulting equations of the system above, we
should obtain the proper 1-st integral (invariant) of the system (12):

) 1
2
@ ðU 2 þ V 2 þ W 2Þ

@ t
¼ � m � a 2 � ðU 2 þ V 2 þ W 2Þ ;)

ln
U 2 þ V 2 þ W 2

U 2ðt 0Þ þ V 2ðt 0Þ þ W 2ðt 0Þ

 !
¼ � 2 m � a 2 � ðt � t 0Þ )

U 2 þ V 2 þ W 2 ¼ ðU 2ðt 0Þ þ V 2ðt 0Þ
þ W 2ðt 0ÞÞ � exp ð� 2 m � a 2 � ðt � t 0ÞÞ

ð13Þ

here {U (t₀), V(t₀), W(t₀)} are the functions, given by the initial
conditions.

For the further solving of the system (12), we could use invari-
ants (6) and (13); let us consider, for example, the 1-st equation of
system (12):

@U
@t

¼ V � m � @a
@z

� �
�W � m � @a

@y

� �� �
� m � a 2 � U; ð14Þ

Eq. (6) yields

@a
@y

� �
� V ¼ � @a

@x
� U þ @a

@z
�W

� �
;

then from Eq. (13) we obtain the quadratic equation regarding func-
tion W (depending on U, {(oa/ox), (oa/oy), (oa/oz)}, and the right
part of Eq. (13)):

A 1 �W 2 þ B 1 �W þ D 1 ¼ 0;

A 1 ¼ @a
@y

� � 2

þ @a
@z

� � 2
 !

; B 1 ¼ 2
@a
@x

� @a
@z

� U;

D 1 ¼ @a
@x

� � 2

þ @a
@y

� � 2
 !

� U 2 � ðU 2ðt0Þ þ V 2ðt0Þ

þ W 2ðt0ÞÞ � @a
@y

� � 2

� exp ð�2m � a 2 � ðt � t0ÞÞ

If we choose oa/oy = 0, then we should obtain from (6) and (13)
(oa/oz – 0):

In this case, Eq. (14) should be transformed to the ordinary
differential equation of the 1-st order, which describes the depen-
dence of the component of velocity U with respect to the time-
parameter t (oa/oy = 0):
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð� 2 m � a 2 � ðt � t 0ÞÞ � 1þ

@ a
@ x

� � 2

@ a
@ z

� � 2

 !
� U 2

� a 2 � ðt � t 0ÞÞ
ð15Þ
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dU
dt

¼ m � V � @a
@z

� �
� v � a 2 � U; ð16Þ

where the expression for V is given by the equality (15); as for the
functions, which depend on variables {x, y, z}, each of {x, y, z} could
be considered as variable parameter with respect to the time t.

Besides, Eq. (16) can be presented as below:
dU
dt

� � 2

þ 2f ðtÞ � dU
dt

� �
� U þ gðtÞ � U 2 ¼ �hðtÞ; f ¼ v � a2;

g ¼ v2 � a 4 þ @a
@z

� � 2

þ @a
@x

� � 2
 !

;

h ¼ �v 2 � @a
@z

� � 2

� ðU 2ðt0Þ þ V 2ðt0Þ
þ W 2ðt0ÞÞ � expð� 2m � a 2 � ðt � t0ÞÞ ð17Þ
U0 ¼ �h

1 þ 2f � kþ g � k 2

� � 1=2

; U ¼ k � �h

1 þ 2f � kþ g � k 2

� � 1=2

; )

k0 � �h

1 þ 2f � kþ g � k 2

� � 1=2

þ k
2
� �h

1 þ 2f � kþ g � k 2

� �� 1=2

� �h0 � ð1 þ 2f � kþ g � k 2Þ þ ð1 þ 2f � kþ g � k 2Þ0 � h
ð1 þ 2f � kþ g � k 2Þ 2

 !
¼

¼ �h

1 þ 2f � kþ g � k 2

� � 1=2

; ) k0 � k
2h

� �h0 þ ð1 þ 2f � kþ g � k 2Þ0

ð1 þ 2f � kþ g � k 2Þ � h
 !

¼ 1 ; )

2h � ð1 þ 2f � kþ g � k 2Þ � k0 � k � �h0 � ð1 þ 2f � kþ g � k 2Þ þ ð2f 0 � kþ 2f � k0 þ g0 � k 2 þ 2g � k � k0Þ � h� � ¼ 2h � ð1 þ 2f � kþ g � k 2Þ ¼
ðF 1 þ F 2 � kÞ � k0 ¼ F 3 � k 3 þ F 4 � k 2 þ F 5 � k þ F 6;

F 1 ¼ 2h; F 2 ¼ 2f � h; F 3 ¼ ðg0 � h� g � h0Þ; F 4 ¼ 2ðg � hþ f 0 � h� f � h0Þ; F 5 ¼ ð4f � h� h0Þ; F 6 ¼ 2h;

ð20Þ
where Eq. (17) could be reduced to the appropriate Abel ordinary
differential equation (see (Kamke, 1971), example 1.395). Indeed,
if for the solutions U(t) of Eq. (17) we assume k(t) = U(t)/U0(t)
(Ershkov, 2014a), then we could obtain:

U0 ¼ �h

1 þ2f � kþ g � k 2

� � 1=2

; U ¼ k � �h

1 þ2f � kþ g � k 2

� �1=2

:

The right part of the 1-st of the equalities above is proved to be
the proper derivative of the right part of the 2-nd equality (Kamke,
1971); it yields the appropriate Abel ordinary differential equation.

We should note that the spatial part of velocity of the flow is
determined by the invariant (6), which has been obtained by using
of continuity Eq. (1) and the chosen type of helical flow (3). The
spatial part of the pressure field of the flow should be determined
via Bernoulli-function (11), if components of the velocity of the
flow {U, V, W} are already obtained.

5. Final presentation of the solution (the helical flows)

Let us present the non-stationary solution {p, u} of helical flow
type (3) for Navier-Stokes Eqs. (1) and (2) in its final form (we con-
sider the case oa/oy = 0):
rp
q

¼ �ru � 1
2
r
n
~u 2
o
; ~u �

n
U; V ; W

o
;

W ¼ �
@ a
@ x

� �
@ a
@ z

� � � U;
V ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðU 2ðt 0Þ þ V 2ðt 0Þ þ W 2ðt 0ÞÞ � exp ð� 2 m � a 2 � ðt �

vuut
where q is the fluid density, / is the potential of external force, act-
ing on a fluid.

The dependence of the component of velocity U with
respect to the time-parameter t (oa/oy = 0) is described by
the expression (19) below via parameter k(t), which is the
solution of the Abel ordinary differential equation of the 1-st
order (20) with respect to the time-parameter t, as shown
below:

U ¼ Uðt 0Þ � exp
Z

1
k

� �
dt

� �
k ¼ U

U0

	 

ð19Þ
where the expressions for {f, g, h} are given in (17).

6. Discussion

The system of Navier-Stokes equations has already been inves-
tigated in many researches including its numerical and analytical
solutions (Drazin and Riley, 2006), even for 3D case of compressible
gas flow (Ershkov and Schennikov, 2001) or for 3D case of non-
stationary flow of incompressible fluid. However essential defi-
ciency exists in the studies of non-stationary solutions of the
Navier-Stokes equations.

We have explored here the case of non-stationary flows of
helical type for the incompressible Navier-Stokes equations with
constant Bernoulli-function (11) in the whole space (the Cauchy
problem). In this respect we should refer also to the modern
researches (Ershkov, 2015a,b, 2016a,b, 2020) (with the proper
examples of non-stationary solutions of Navier-Stokes equations
in case of constant Bernoulli-function) or, for example, we should
recall the results of comprehensive article (Stepanyants, 2015)
(which reports the alternative example of using the Bernoulli-
invariant to obtain analytical non-stationary solutions of the
Navier-Stokes system of equations). Also it would be useful for
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t 0ÞÞ � 1þ

@ a
@ x

� � 2

@ a
@ z

� � 2

 !
� U 2

ð18Þ



462 S.V. Ershkov et al. / Journal of King Saud University – Science 32 (2020) 459–467
common readers if we put explicitly why we consider a case where
Bernoulli function is constant (according to the suggestion of
esteemed Reviewer): let us opt to add an Appendix to demonstrate
that this is the case, see for example (https://math.stackexchange.
@
~X
a

� �
@ t

¼ � m � a 2 �
~X
a

 !
þra�

~X
a

 ! !
� 1

2
r

~X
a

 ! 2
0
@

1
A þrp

q
þ ru

0
@

1
A ; )

@ ~X
@ t

¼ � m � a 2 � ~Xþ a � ra�
~X
a

 ! ! !
� a � 1

2
r

~X
a

 ! 2
0
@

1
A þrp

q
þ ru

0
@

1
A

ð21Þ
com/questions/1641862/prove-bernoulli-function-is-constant-on-
streamline).

In addition to the results of aforementioned articles (Ershkov,
2015a,b, 2016a,b, 2020), we have obtained in this derivation the
analytical non-stationary helical solutions of the Navier-Stokes
equations for incompressible fluids, which should conserve the
Bernoulli-function for the flow; namely, in this paper we have
explored the case when velocity field u is perpendicular to the vec-
tor ra (5) for incompressible fluids by extending the case of
constant a to the case (3) where a depends on variables (x,y,z).

We have proved that the aforementioned solution exists, when
appropriate initial and boundary conditions are provided. More-
over, we suggest the appropriate form of the exact solution in case
of the constant Bernoulli-function (11).

According to our understanding, we could use such the mathe-
matical results as tools (for applying them to clarify the ambiguity
in open problem which takes place in fluid mechanics) and we
need to discuss accordingly such the application of results as
below.

So, the aforementioned open problem could be formulated as
follows: a well-known statement exists that solutions of the
Navier-Stokes momentum Eq. (2) (along with the continuity Eq.
(1)) could be obtained from solutions of the reduced curl-version
of Navier-Stokes momentum Eq. (2); moreover, one of the authors
(Sergey Ershkov) met specialists in fluid mechanics (Prof. V.Zhmur,
MIPT, personal communications) who assumed that if we take the
curl from both the sides of Navier-Stokes momentum Eq. (2), we
should obtain the equation which is equivalent to the Navier-
Stokes momentum Eq. (2) (in the sense of existence of solutions).
This is obviously wrong point of view which reduces variety of
the solutions of the Navier-Stokes momentum Eq. (2) to only the
curl solutions (excepting the irrotational or curl-free part of velocity
field). Let us recall that, in accordance to the Helmholtz fundamen-
tal theorem of vector calculus, velocity field is proved to be pre-
sented as the sum of irrotational (curl-free) part of the field of
flow velocity along with solenoidal (divergence-free) part of the field
of flow velocity.

Let us prove by using the properties of the new type of helical
flows, which has been constructed in the current research, the sug-
gestion above about the equivalence of the Navier-Stokes momen-
tum Eq. (2) to its reduced curl-version is not correct.

For the obtaining of the curl-version of the Navier-Stokes
momentum Eq. (2), we need take the curl from both the sides of
Navier-Stokes momentum Eq. (2). Let us consider non-stationary
helical flows (3), for which the Navier-Stokes momentum Eq. (2)
is proved to be simplified accordingly (see (7)):
@~u
@ t

¼ � m � ðra�~uþ a 2 �~uÞ � rB

Let us transform Eq. (7), by using of helical flow assumption (3)
as below:
As we can see from Eq. (21), it describes the correct dynamics of
the curl field X, which has been obtained from the Navier-Stokes
momentum Eq. (2) by the equivalent transformations. But it obvi-
ously differs from the case if we simply take the curl from both
the sides of the Eq. (7), indeed:

@ ~X
@ t

¼ � m � r � a2 �~uþra�~u
� � ð22Þ

For the helical flow with constant coefficient a = const, Eq. (21)
could be reduced as below:

@~X
@ t

¼ � m � a 2 �~X � a � r 1
2

~X
a

 ! 2

þ p
q
þ u

0
@

1
A ; ~X¼r�~u ;

) r 1
2

~X
a

 ! 2

þ p
q
þ u

0
@

1
A ¼ ~0 ;

Where the last equation above states the strong link between
spatial parts of the pressure field, the curl field X and coefficient
a (x, y, z). In case of variable coefficient a (x, y, z), the term
ra �X– 0 is the essential difference with respect to Eq. (21).

As for the relevance of this new solution, let us discuss the
essential details about the possible physical properties of the afore-
mentioned solution (18)–(20).

Eq. (20) is known to be an Abel ODE of the second kind, a
kind of generalization of the Riccati ODE. We also note that
due to the special character of the solutions of Riccati-type
ODEs (Kamke, 1971), there is the possibility for sudden jumping
in the magnitude of the solution at some time t₀ (Ershkov,
2017a, b, c) (with restriction on function U(t), which is given
in (15)).

In the physical sense, such the aforementioned jumping of
Riccati-type solutions of Eq. (20) could be associated with
the effect of a sudden acceleration/deceleration of the flow
velocity (the component U(t)) at a definite moment of para-
metric time t₀. This means that there exists a potential for a
kind of gradient catastrophe (Arnold, 1992), depending on the
initial conditions.

We have schematically imagined the Riccati-type solution
(Ershkov, 2016) of equations of a type (20) at Fig. 1 below which
demonstrates the possibility for sudden jumping in the magnitude
of the solution at some time t₀.

Mathematical procedure for reduction of the solution of a type
(20) to the appropriate simplifyed Riccati-type solution has been
moved to an Appendix.



Fig. 1. Schematically presented the Riccati-type solution of a type (20) (Ershkov, 2016), here we designate x = t just for the aim of presenting the plot of solution.
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7. Conclusion

The main motivation of the current research is the developing
of the investigation of the case of non-stationary helical flows for
incompressible Newtonian fluids, the 1st type of which (a = const)
was successfully investigated in (Ershkov, 2016).

While such a theoretical motivation is of course understood, let
us also add that helical flows is very important in some practical
problems, for example in wind turbine design etc.

Therefore, we should especially emphasize regarding the
significance of the aforementioned helical flows of 3D Navier-
Stokes equations: both theoretical motivation, and also practical
motivation. Indeed, helical flows are often found in the real engi-
neering problems of flows, which concern the fast rotating of
coaxial propellers or air-screws of various types of aircrafts. This
is a sound and useful applications of hydrodynamics theory,
which illuminate the fact of successive implementation of
theoretical developments in a real design of our life as modern
reality.

We begin from form of helical flows (3), distinguished by spatial
dependence of the coefficient of proportionality a (x, y, z) between
velocity and curl field of fluid flow.

The using such the spatially dependent coefficient in analysis of
the continuity Eq. (1) yields Eqs. (5) and (6). We should also note
that obvious case a = const in (5) was explored earlier in
(Ershkov, 2016); so, the main motivation of the current research
is the exploring the case when velocity field u is to be perpendic-
ular to the vector ra – such the idea belongs to Dr. G.B.Sizykh,
MIPT (personal communications).

Then we have obtained conditions (9), (10) to be valid from the
analysis of momentum Eq. (2) in a form (7), (8), which means that
gradient of the Bernoulli function rB should also be perpendicular
to the vector ra.

We assume for solutions {u, p} of the system of Eqs. (1) + (7)
that Bernoulli-function (11) should be invariant for the aforemen-
tioned system. Such an assumption simplifies momentum equa-
tion to the form (12), from which we obtain a first integral
(invariant) (13). For further solving of the system (12), we could
use invariants (6) and (13); then let us consider, for example, the
1-st equation of (12) in a form (14).
For the partial case oa/oy = 0, system (14) could be reduced via
presentation of the components V, W (15) to the ordinary differen-
tial equation of the 1-st order (16).

We should note that the spatial part of velocity of the flow is
determined by the invariant (6), which has been obtained by using
of continuity Eq. (1) and the chosen type of helical flows (3). The
spatial part of the pressure field of the fluid flow should be deter-
mined via Bernoulli-function (11), if components of the velocity of
the flow {U, V, W} are already obtained (which are determining via
the choosing of the special form of variable coefficient a (x, y, z)).

Also we should note that since the fluid is incompressible for
the development above, there is a strong link between initial con-
ditions and the solution inside.

Besides, final presentation of the components of velocity field as
well as pressure field is valid only under special conditions, which
restrict the choosing of the form of variable coefficient a (x, y, z).

As we know, ABC-ansatz (Ershkov, 2016; Arnold, 1965; Dombre,
1986) was published as a solution of the steady problem. In their
work, they never realized that its extension is possible also to
the non-stationary problem. It was extended for the first time in
1919 in (Trkal, 1994) to the non-stationary problem as a time-
kinematic viscosity decaying solution; also we should mention
the comprehensive article (Bogoyavlenskij and Fuchssteiner,
2005) in regard to the non-stationary helical flows with the special
kind of the spatial part for the velocity fields as well as the appro-
priate pressure gradient field.

It should be additionally noted that some mathematical solu-
tions don’t reflect physical phenomena and the equation for the
force, F, used in the analysis, is valid only for conservative forces
(Ershkov, 2015). The assumption that the body force F is conserva-
tive means its curl is zero which means it is incapable of generating
any vorticity. But vorticity, associated with the curl field, is
assumed to be arising due to the proper sources of vorticity in
the flow of fluids (Ershkov, 2016). For example, such the sources
could be associated with the solid surface or pressure gradient,
influence of viscous forces, Coriolis forces or the curving shock
fronts when speed is supersonic.

The stability of the presented solution is not considered. In this
respect we confine ourselves to mention the paper (Podvigina and
Pouquet, 1994), in which all the difficulties concerning the stability
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of the close-related ABC-flows are remarked. In (Podvigina and
Pouquet, 1994) the nonlinear regime was successfully investigated
by Podvigina and Pouquet, who found complicated switching
between nonlinear time-dependent ABC states.

The last but not least, we should especially mention the com-
prehensive modern researches (Moffat, 2014; Changchun, 1991;
Savas Can Selçuk, 2016), where a lot of unknown details concern-
ing the close-related area of helical flows are remarked.
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Appendix

Eq. (20) is known to be an Abel ODE of the second kind (Kamke,
1971), a kind of generalization of the Riccati ODE. Moreover, one
can obviously reduce (or simplify) this type of equation to the Ric-
cati type of ODE, if conditions below for the coefficients {f, g, h} in
(17) via appropriate coefficients in (20) are valid (for all variety of k
(t), at any moment of time t):

F 3 �k 3 þF 4 � k 2þF 5 �k þF 6 ¼ ðF 1 þF 2 �kÞ � ðI � k 2þF 7 �k þF 8Þ ;
ðF 1 þF 2 �kÞ � ðI �k 2þF 7 �k þF 8Þ ¼ I �F 2 � k 3þðF 1 � IþF 2 � F 7Þ � k 2�
þðF 1 � F 7þF 2 � F 8Þ �kþF 1 � F 8g

where I = (1 second)2; F₇, F₈ are proper coefficients which to be
determined as below
Let us simplify conditions (A.1) via the expressions for coeffi-
cients {f, g, h} in (17) accordingly:

ðg0 � h� g � h0Þ ¼ I � 2f � h ;

f4f � h� h0 � 2f � hg=2h ¼ f2g � hþ 2f 0 � h� 2f � h0 � I � 2hg=2f � h ;

(

As we can see from (A.3), each of Eqs. (A.2) and (A.3) has been
simplified to only one demand or restriction with respect to the
choosing of the form of parameter a (x, y, z):

@a
@ z

� � 2

þ @a
@ x

� � 2

þ a 4 � I
m 2 ¼ 0; ðA:4Þ

Thus, Eq. (20) has been reduced via additional assumptions
(A.1)–(A.4) from Abel to Riccati type of ODE:

k0 ¼ I � k 2 þ F 7 � k þ F 8;

F 7 ¼ 2m � a 2; F 8 ¼ 1
ðA:5Þ

but thanks to the fact that coefficients F₇, F₈ are to be indepen-
dent of time t (see (A.2) and (A.3)), Eq. (A.5) should be presented
as below
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dkðtÞ
ðI � k 2ðtÞ þ ð2m � a 2Þ � kðtÞ þ 1Þ ¼ dt ;

The left side of equation above could be transformed to the
proper quadrature (Ershkov, 2015) in regard to parameter k(t):Z

dkðtÞ
ðI �k 2ðtÞ þ ð2m � a 2Þ �kðtÞ þ 1Þ

¼
2ffiffiffi
D

p arctan 2I�kðtÞþ2m�a 2ffiffiffi
D

p
� �

; D>0

� 2ffiffiffiffiffi
�D

p Arth 2 I�kðtÞþ2m�a 2ffiffiffiffiffi
�D

p
� �

; D<0

8>><
>>: D ¼ 4 � ðI � m 2 � a 4Þ

ðA:6Þ
Fig. 2. Schematically presented the Riccati-type solution (A.8), here we

Fig. 3. Schematically presented component V of the flow velocity, which corresponds to
presenting the plot of solution).
Thus, by the proper obtaining of re-inverse dependence of a
solution from the time t (Ershkov, 2014b) we could present the
expression for parameter k(t) as below (just for simplicity, let us
choose the constants of the solution so that D = 2 in (A.6)):ffiffiffi
2

p
arctan ð

ffiffiffi
2

p
kðtÞ þ 1Þ ¼ ðt � t 0Þ ; m � a2 ¼ 1=

ffiffiffi
2

p� �
) kðtÞ ¼ 1ffiffiffi

2
p tan

t � t 0ffiffiffi
2

p
� �

� 1ffiffiffi
2

p ðA:7Þ

but we should especially note that solution in (A.6) may change its
type from D > 0 to D < 0 due to dependence of a on spatial coordi-
nates {x, y, z}.
designate x = t just for the aim of presenting the plot of solution.

the simplified case (A.8) of the solution (here we designate x = t just for the aim of



Fig. 4. Schematically presented pressure field p of the flow, which corresponds to the simplified case (A.8) of the solution (here we designate x = t just for the aim of
presenting the plot of solution).

U ¼ Uðt 0Þ � exp
ffiffiffi
2

p Z
1

tan t�t 0ffiffi
2

p
� �

� 1

0
@

1
Adt

0
@

1
A ; ) U ¼ Uðt 0Þ � exp �2 �

Z
d n

1� tan n

� �� �
; n ¼ t � t 0ffiffiffi

2
p

� �� �
Z

d n
1� tan n

� �
¼ 1

1þ 1

� �
� ð� ln j1� tan nj � ln j cos nj þ nÞ )

) U ¼ Uðt 0Þ � j1� tan n j � j cos n j � exp ð� nÞ n ¼ t � t 0ffiffiffi
2

p
� �� �

ðA:8Þ

466 S.V. Ershkov et al. / Journal of King Saud University – Science 32 (2020) 459–467
So, we obtain from (19) and (A.7) (see Fig. 2 below):
The components of the velocity of the flow {V, W} should be

determined via formulae (18) (where expression for U is given in
(A.8) above), see Fig. 3:

V ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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But the pressure field p should be determined via Bernoulli-
function (11) (once components of the velocity of the flow
{U, V, W} are calculated), for example as below (see Fig. 4):

p ¼ p ðt 0Þ � q � u þ 1
2
ðU 2ðtÞ þ V 2ðtÞ þ W 2ðtÞÞ

� �
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