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Abstract We implemented homotopy analysis method for approximating the solution to the non-

linear dispersive K(m,p,1) type equations. By using this scheme, the explicit exact solution is calcu-

lated in the form of a quickly convergent series with easily computable components. To illustrate

the application of this method, numerical results are derived by using the calculated components

of the homotopy analysis series.
ª 2010 King Saud University. All rights reserved.
1. Introduction

The HAM is developed in 1992 by Liao (1992, 1995, 1997,
1999, 2003a,b, 2004), Liao and Campo (2002). This method

has been successfully applied to solve many types of nonlinear
problems in science and engineering by many authors Ayub
et al. (2003), Hayat et al. (2004a,b), Abbasbandy (2007a,b,c),
Bataineh et al., in press, and references therein. By the present

method, numerical results can be obtained with using a few
iterations. The HAM contains the auxiliary parameter �h,
which provides us with a simple way to adjust and control

the convergence region of solution series for large values of
5151290.
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t. Unlike, other numerical methods are given low degree of

accuracy for large values of t. Therefore, the HAM handles lin-
ear and nonlinear problems without any assumption and
restriction.

In the past decades, directly seeking for exact solutions of

nonlinear partial differential equations has become one of
the central themes of perpetual interest in Mathematical Phys-
ics. Nonlinear wave phenomena appear in many fields, such as

fluid mechanics, plasma physics, biology, hydrodynamics, so-
lid state physics, and optical fibers. These nonlinear phenom-
ena are often related to nonlinear wave equations. In order

to understand better these phenomena as well as further apply
them in the practical life, it is important to seek their exact
solutions. Many powerful methods had been developed such
as Backlund transformation (Ablowitz and Clarkson, 1991;

Miura, 1978), Darboux transformation (Gu, 1999), the inverse
scattering transformation (Hirota, 1974), the bilinear method
(Hirota, 1973), the tanh method (Malfliet, 1992; Inc and

Fan, 2005), the sine–cosine method (Yan and Zhang, 1999;
Inc and Evans, 2004), the homogeneous balance method
(Wang, 1996), the Riccati method (Yan and Zhang, 2001),

the Jacobi elliptic function method (Fu et al., 2001), the
extended Jacobi elliptic function method (Yan, 2003), etc.

mailto:syedtauseefs@hotmail.com
http://dx.doi.org/10.1016/j.jksus.2010.05.011
http://www.sciencedirect.com/science/journal/10183647


270 S.T. Mohyud-Din, A. Yıldırım
In the well-known Korteweg–de Vries (KdV) equation

ut � auux þ uxxx ¼ 0; ð1Þ

the nonlinear term uux causes the steepening of the wave form.
On the other hand, the dispersion term uxxx in this equation
makes the wave form to spread. Due to the balance between

this weak nonlinearity and dispersion, solitons exist (Wazwaz
and Helal, 2004).

Rosenau and Hyman (1993) presented a class of compac-
tons of nonlinear K(m,n) equation as follows:

ut þ aðumÞx þ ðunÞxxx ¼ 0; m; n > 1 ð2Þ

In Eq. (2), if we take a = 1 then this equation is referred to as
the focusing (+) branch. This focusing (+) branch exhibits
compacton solutions (Wazwaz and Helal, 2004). In Eq. (1),

if we take a = �1 then the equation is referred to as the defo-
cusing (�) branch. This defocusing (�) branch exhibits solitary
pattern solutions (Wazwaz, 2001). Compacton is a soliton

solution which has finite wavelength or is free of exponential
wings. Unlike solitons that narrow as the amplitude increases,
the compacton’s width is independent of its amplitude. Com-

pacton solutions have been used in many fields of scientific
applications such as in super-deformed nuclei, phonon, pho-
ton, in the fission of liquid drops (nuclear physics), pre-forma-

tion of cluster in hydrodynamic models, and inertial fusion as
was also indicated by Wazwaz and Helal (2004) and Wazwaz
(2001).

Reecntly, there are also some researchers studying the

numerical solutions of the nonlinear dispersive K(m,p,1) equa-
tions. Zhu et al. (2007) obtained some numerical solutions of
the nonlinear dispersive K(m,p,1) equation by using Adomian

decomposition method. Also Inc (2008) used Variational iter-
ation method for solving the nonlinear dispersive K(m,p,1)
equations.

The aim of this paper is to extend the homotopy analysis
method to derive the numerical and exact compacton solutions
to the nonlinear dispersive K(m,p,1) equation subject to the
initial condition:

ut þ ðumÞx � ðupÞxxx þ u5x ¼ 0; m > 1; 1 6 p 6 3; ð3aÞ
uðx; 0Þ ¼ fðxÞ: ð3bÞ

Particularly, we have found some new special exact solu-
tions to K(2,2,1) and K(3,3,1) equations by this scheme.
2. The homotopy analysis method (HAM)

We apply the HAM (Liao, 1992, 1995, 1997, 1999, 2003a,b,

2004; Liao and Campo, 2002) to the nonlinear dispersive
K(m,p,1) Eqs. (3a–b). We consider the following differential
equation

N½uðx; tÞ� ¼ 0; ð4Þ

where N is a nonlinear operator for this problem, x and t de-
note an independent variables, u(x,t) is an unknown function.

In the frame of HAM (Liao, 1992, 1995, 1997, 1999,
2003a,b, 2004; Liao and Campo, 2002), we can construct the

following zeroth-order deformation:

ð1� qÞLðUðx; t; qÞ � u0ðx; tÞÞ ¼ q�hHðx; tÞNðUðx; t; qÞÞ; ð5Þ

where q 2 [0,1] is the embedding parameter, �h „ 0 is an auxil-
iary parameter, H(x,t) „ 0 is an auxiliary function, L is an aux-
iliary linear operator, u0(x,t) is an initial guess of u(x,t) and

U(x,t;q) is an unknown function on the independent variables
x, t and q.

Obviously, when q= 0 and q = 1, it holds

Uðx; t; 0Þ ¼ u0ðx; tÞ; Uðx; t; 1Þ ¼ uðx; tÞ; ð6Þ

respectively. Using the parameter q, we expand U(x,t;q) in
Taylor series as follows:

Uðx; t; qÞ ¼ u0ðx; tÞ þ
X1
m¼1

umðx; tÞqm; ð7Þ

where

um ¼
1

m!

@mUðx; t; qÞ
@mq

����
q¼0
: ð8Þ

Assume that the auxiliary linear operator, the initial guess, the
auxiliary parameter �h and the auxiliary function H(x,t) are se-
lected such that the series (7) is convergent at q = 1, then due

to (6) we have

uðx; tÞ ¼ u0ðx; tÞ þ
X1
m¼1

umðx; tÞ: ð9Þ

Let us define the vector

~unðx; tÞ ¼ fu0ðx; tÞ; u1ðx; tÞ; . . . ; unðx; tÞg: ð10Þ

Differentiating (5) m times with respect to the embedding
parameter q, then setting q = 0 and finally dividing them by
m!, we have the so-called mth-order deformation equation

L½umðx; tÞ � vmum�1ðx; tÞ� ¼ �hHðx; tÞRmð~um�1Þ; ð11Þ

where

Rmð~um�1Þ ¼
1

ðm� 1Þ!
@m�1NðUðx; t; qÞÞ

@m�1q

����
q¼0
; ð12Þ

and

vm ¼
0 m 6 1;

1 m > 1:

�
ð13Þ

Finally, for the purpose of computation, we will approximate

the HAM solution (9) by the following truncated series:

/mðx; tÞ ¼
Xm�1
k¼0

ukðx; tÞ: ð14Þ
3. Applications

3.1. The K(2,2,1) equation

We first consider the following initial value problem of the

K(2,2,1) equation (Zhu et al., 2007):

ut þ ðu2Þx � ðu2Þxxx þ u5x ¼ 0; ð15aÞ

uðx; 0Þ ¼ 16c� 1

12
cosh2 1

4
x

� �
; ð15bÞ

where c is an arbitrary constant.
According to (5), the zeroth-order deformation can be

given by

ð1� qÞLðUðx; t; qÞ � u0ðx; tÞÞ ¼ q�hHðx; tÞðUt þ ðU2Þx
� ðU2Þxxx þU5xÞ: ð16Þ
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We can start with an initial approximation u0ðx; tÞ ¼
16c�1
12

cosh2 1
4
x

� �
, and we choose the auxiliary linear operator

LðUðx; t; qÞÞ ¼ @Uðx; t; qÞ
@t

;

with the property

LðCÞ ¼ 0;

where C is an integral constant. We also choose the auxiliary
function to be

Hðx; tÞ ¼ 1:

Hence, the mth-order deformation can be given by

L½umðx; tÞ � vmum�1ðx; tÞ� ¼ �hHðx; tÞRmð~um�1Þ;

where

Rmð~um�1Þ ¼
@ðum�1Þ
@t

þ @

@x

Xm�1
i¼0

uium�1�i

 !

� @3

@x3

Xm�1
i¼0

uium�1�i

 !
þ @

5ðum�1Þ
@x5

: ð17Þ

Now the solution of the mth-order deformation Eq. (17) for

m P 1 become

umðx; tÞ ¼ vmum�1ðx; tÞ þ �hL�1½Rmð~um�1Þ�: ð18Þ

Consequently, the first few terms of the HAM series solution
are as follows:

u0ðx; tÞ ¼
16c� 1

12
cosh2 1

4
x

� �
;

u1ðx; tÞ ¼
�hcð16c� 1Þt

24
sinh

x

2

� 	
;

u2ðx; tÞ ¼
�hcð16c� 1Þt

24
sinh

x

2

� 	
þ �h2cð16c� 1Þt

24
sinh

x

2

� 	

þ �h2c3t2

12
� �h2c2t2

192

� �
cosh

x

2

� 	
;

and so on. Hence, the HAM series solution (for �h = �1) is

uðx; tÞ ¼ u0ðx; tÞ þ u1ðx; tÞ þ u2ðx; tÞ þ u3ðx; tÞ þ . . .

¼ 16c� 1

12
cosh2 1

4
x

� �
� cð16c� 1Þt

24
sinh

x

2

� 	

þ c3t2

12
� c2t2

192

� �
cosh

x

2

� 	
þ c3t3

1152
sinh

x

2

� 	

� c4t3

72
sinh

x

2

� 	
þ . . . ð19Þ

Using Taylor series into (19), we find the closed form solution

uðx; tÞ ¼ 16c� 1

12
cosh2 ct� x

4

� 	
; ð20Þ

which is an exact solitary solution for the nonlinear K(2,2,1)
equation.

We now consider another initial condition as

uðx; 0Þ ¼ Ae

�
1�16c

4

�
xþx0
3j j þ c0; ð21Þ

where A, x0 and c0 are arbitrary constants. We can then obtain
the solution u(x, t) in a closed form as

uðx; tÞ ¼ Ae

�
1�16c

4

�
xþx0�ct

3j j þ c0: ð22Þ
Thus, we can obtain a new solitary solution called peakon

solitary pattern solution which can be written in the form

uðx; tÞ ¼ Asignðx� ctÞe
�
1�16c

4

�
xþx0�ct

3j j þ c0: ð23Þ

In the same manner, we get another peakon solitary pattern
solution to Eq. (15a):

uðx; tÞ ¼ signðx� ctÞ Ae

�
1�16c

4

���x�ct
4

��
þ Be

ffiffiffiffiffiffiffi
81c�1
54

p x� ct

3

��� ���� �
þ c0;

ð24Þ

where A, B and c0 are arbitrary constants. We assume that the

K(2,2,1) equation has the solution of the form

uðx; tÞ ¼ 16c� 1

12
Mcosh2 ct� x

4

� 	
þNsinh2 ct� x

4

� 	h i
; ð25Þ

where M and N are constants to be determined. Substituting

(25) into (15a), it is easy to see that if M and N satisfy

M ¼ N and M ¼ 1�N; ð26Þ

then (25) is a solution to the K(2,2,1) equation. Figs. 1–4

3.2. The K(3,3,1) equation

We now consider the initial value problem in the following

form (Zhu et al., 2007):

ut þ ðu3Þx � ðu3Þxxx þ u5x ¼ 0; ð27aÞ

uðx; 0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
81c� 1

54

r
cosh

1

3
x

� �
; ð27bÞ

where c is an arbitrary constant.
According to (5), the zeroth-order deformation can be gi-

ven by

ð1� qÞLðUðx; t; qÞ � u0ðx; tÞÞ
¼ q�hHðx; tÞðUt þ ðU3Þx � ðU3Þxxx þU5xÞ: ð28Þ

We can start with an initial approximation u0ðx; tÞ ¼ffiffiffiffiffiffiffiffiffi
81c�1
54

q
cosh 1

3
x

� �
, and we choose the auxiliary linear operator

LðUðx; t; qÞÞ ¼ @Uðx; t; qÞ
@t

;

with the property

LðCÞ ¼ 0;

where C is an integral constant. We also choose the auxiliary

function to be

Hðx; tÞ ¼ 1:

Hence, the mth-order deformation can be given by

L½umðx; tÞ � vmum�1ðx; tÞ� ¼ �hHðx; tÞRmð~um�1Þ;

where

Rmð~um�1Þ ¼
@ðum�1Þ
@t

þ @

@x

Xm�1
i¼0

ui
Xm�1�i
k¼0

ukum�1�i�k

 ! !

� @3

@x3

Xm�1
i¼0

ui
Xm�1�i
k¼0

ukum�1�i�k

 ! !

þ @
5ðum�1Þ
@x5

: ð29Þ



Figure 1 The surface shows the solution u(x, t) for Eqs. (15a and b): (a) exact solution for c = 1, and (b) exact solution for c = 2.

Figure 2 The surface shows the peakon pattern solution to Eq. (23) with fixed values: (a) A = c= �1, x0 = 0 and c0 = 1, and (b)

A= c = 1, x0 = 0 and c0 = 1.

Figure 3 The surface shows the solution u(x, t) for Eqs. (27a and b): (a) exact solution for c = 1, and (b) exact solution for c = 2.

Figure 4 The surface shows the peakon pattern solution to Eq. (32) with fixed values: (a) A= �1, c = 1, x0 = 0 and c0 = 1, and (b)

A= 1, c = 1/2, x0 = 0 and c0 = 1.
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Now the solution of the mth-order deformation Eq. (29) for

m P 1 become

umðx; tÞ ¼ vmum�1ðx; tÞ þ �hL�1½Rmð~um�1Þ�: ð30Þ

Consequently, the first few terms of the HAM series solution
are as follows:

u0ðx; tÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
81c� 1

54

r
cosh

1

3
x

� �
;

u1ðx; tÞ ¼
1

54
�hct

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
486c� 6
p

sinh
1

3
x

� �
;

u2ðx; tÞ ¼
1

54
�hct

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
486c� 6
p

sinh
1

3
x

� �
þ 1

54
�h2ct

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
486c� 6
p

sinh
1

3
x

� �

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
486c� 6
p

324
�h2c2t2 cosh

1

3
x

� �
;

and so on. Hence, the HAM series solution (for �h = �1) is

uðx; tÞ ¼ u0ðx; tÞ þ u1ðx; tÞ þ u2ðx; tÞ þ u3ðx; tÞ þ . . .

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
81c� 1

54

r
cosh

1

3
x

� �
� 1

54
ct

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
486c� 6
p

� sinh
1

3
x

� �
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
486c� 6
p

324
c2t2 cosh

1

3
x

� �

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
486c� 6
p

2916
c3t3 sinh

1

3
x

� �
þ . . . ð31Þ

Using Taylor series into (31), we find the closed form solution

uðx; tÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
81c� 1

54

r
cosh

ct� x

3

� 	
; ð32Þ

which is an exact solitary solution for the nonlinear K(3,3,1)
equation.

We now consider another initial condition as

uðx; 0Þ ¼ Ae
ffiffiffiffiffiffiffi
81c�1
54

p
jxþx0 j þ c0; ð33Þ

where A, x0 and c0 are arbitrary constants. We can then obtain

the solution u(x, t) in a closed form as

uðx; tÞ ¼ Ae
ffiffiffiffiffiffiffi
81c�1
54

p
jxþx0�ctj þ c0: ð34Þ

Thus, we can obtain a new solitary solution called peakon sol-
itary pattern solution which can be written in the form

uðx; tÞ ¼ Asignðx� ctÞe
ffiffiffiffiffiffiffi
81c�1
54

p
jxþx0�ctj þ c0; ð35Þ

In the same manner, we get another peakon solitary pattern

solution to the Eq. (27a):

uðx; tÞ ¼ signðx� ctÞ Ae�
ffiffiffiffiffiffiffi
81c�1
54

p ��x�ct
3
þx0
��
þ Be

ffiffiffiffiffiffiffi
81c�1
54

p
x�ct
3 þx0j j

� �
þ c0; ð36Þ

where A, B and c0 are arbitrary constants. We assume that the
K(3,3,1) equation has the solution of the form

uðx; tÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
81c� 1

54

r
A cosh

ct� x

3

� 	
þ B sinh

ct� x

3

� 	h i
; ð37Þ

where A and B are constants to be determined. Substituting
(37) into (27a), it is easy to see that if A and B satisfy

A ¼ B; A ¼ 1þ B; A ¼ B� 1; ð38Þ

then (37) is a solitary pattern solution to the K(3,3,1)
equation.
Eqs. (25) and (35) can be used to exhibit other solutions to

the K(2,2,1) and K(3,3,1) equations, respectively, by adding a
phase shift, thus we obtain

uðx; tÞ ¼ 16c� 1

12
Mcosh2 ct�x

4
þ rp

� 	
þNsinh2 ct�x

4
þ rp

� 	h i
;

ð39Þ

uðx; tÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
81c� 1

54

r
Acosh

ct�x

3
þ rp

� 	
þB sinh

ct�x

3
þ rp

� 	h i
;

ð40Þ

where r is an arbitrary constant.

4. Conclusion

In this paper, we have presented a scheme used to obtain exact
solitary pattern solutions to the nonlinear dispersive K(2,2,1)
and K(3,3,1) equations with initial conditions using the

homotopy analysis method. The results show that the present
method is a powerful mathematical tool for finding other sol-
itary pattern solutions to many nonlinear dispersive equations

with initial conditions. HAM does not require discretization of
the variables, i.e. time and space, it is not affected by compu-
tational round-off errors and one is not faced with the neces-

sity of large computer memory and time. It is worth noting
that unlike the traditional numerical techniques, the solution
here is given in a closed form and by using the initial condition
only. An important advantage of the HAM is that it attacks

the problem directly in a straightforward manner without
any need for transformation formulae or restrictions on
boundary conditions. In closing HAM avoids the difficulties

and massive computational work by determining the analytic
solutions. The efficiency of the variational iteration scheme
gives it much wider applicability.

References

Abbasbandy, S., 2007a. Homotopy analysis method for heat radiation

equations. Int. Commun. Heat Mass Transfer 34, 380–387.

Abbasbandy, S., 2007b. The application of homotopy analysis method

to solve a generalized Hirota–Satsuma coupled KdV equation.

Phys. Lett. A 361, 478–483.

Abbasbandy, S., 2007. Approximate solution for the nonlinear model

of diffusion and reaction in porous catalysts by means of the

homotopy analysis method. Chem. Eng. J. doi:10.1016/

j.cej.2007.03.022.

Ablowitz, M.J., Clarkson, P.A., 1991. Solitons: Nonlinear Evolution

Equations and Inverse Scattering. Cambridge University Press,

Cambridge.

Ayub, M., Rasheed, A., Hayat, T., 2003. Exact flow of a third grade

fluid past a porous plate using homotopy analysis method. Int. J.

Eng. Sci. 41, 091–103.

Bataineh, A.S., Noorani, M.S.M., Hashim, I., in press. Solving systems

of ODEs by homotopy analysis method. Commun. Nonlinear Sci.

Numer. Simul. doi:10.1016/j.cnsns.2007.05.026.

Fu, Z., Liu, S., Liu, S., Zhao, Q., 2001. New Jacobi elliptic function

expansion and new periodic solutions of nonlinear wave equations.

Phys. Lett. A 290, 72.

Gu, C.H. et al., 1999. Darboux Transformation in Solitons Theory

and Geometry Applications. Shangai Science Technology Press,

Shanghai.

Hayat, T., Khan, M., Asghar, S., 2004a. Homotopy analysis of MHD

flows of an Oldroyd 8 – constant fluid. Acta Mech. 168, 213–232.

http://dx.doi.org/10.1016/j.cej.2007.03.022
http://dx.doi.org/10.1016/j.cej.2007.03.022
http://dx.doi.org/10.1016/j.cnsns.2007.05.026


274 S.T. Mohyud-Din, A. Yıldırım
Hayat, T., Khan,M., Asghar, S., 2004b.Magnetohydrodynamic flow of

an Oldroyd 6 – constant fluid. Appl. Math. Comput. 155, 417–425.

Hirota, R., 1973. Exact N-soliton solutions of the wave equation of

long waves in shallow-water and in nonlinear lattices. J. Math.

Phys. 14, 810.

Hirota,R., 1974.Anew formofBacklundtransformationsand its relation

to the inverse scattering problem. Progr. Theor. Phys. 52, 1498.

Inc, M., 2008. Exact special solutions to the nonlinear dispersive

K(2,2,1) and K(3,3,1) equations by He’s variational iteration

method. Nonlinear Anal. 69, 624–631.

Inc, M., Evans, D.J., 2004. A study for obtaining more solitary pattern

solutions of fifth-order KdV-like equations. Int. J. Comput. Math.

81, 473.

Inc, M., Fan, E.G., 2005. Extended tanh-function method for finding

travelling wave solutions of some nonlinear partial differential

equations. Z. Naturf. 60a, 7.

Liao, S.J., 1992. The Proposed Homotopy Analysis Technique for the

Solution of Nonlinear Problems. Ph.D Thesis, Shanghai Jiao Tong

University.

Liao, S.J., 1995. An approximate solution technique which does not

depend upon small parameters: a special example. Int. J. Nonlinear

Mech. 30, 371–380.

Liao, S.J., 1997. An approximate solution technique which does not

depend upon small parameters (II): an application in fluid

mechanics. Int. J. Nonlinear Mech. 32, 815–822.

Liao, S.J., 1999. An explicit totally analytic approximation of Blasius

viscous flow problems. Int. J. Nonlinear Mech. 34 (4), 759–778.

Liao, S.J., 2003a. Beyond Perturbation: Introduction to the Homotopy

Analysis Method. Chapman & Hall, CRC Press, Boca Raton.

Liao, S.J., 2003b. On the analytic solution of magnetohydrodynamic

flows of non-Newtonian fluids over a stretching sheet. J. Fluid

Mech. 488, 189–212.
Liao, S.J., 2004. On the homotopy analysis method for nonlinear

problems. Appl. Math. Comput. 147, 499–513.

Liao, S.J., Campo, A., 2002. Analytic solutions of the temperature

distribution in Blasius viscous flow problems. J. Fluid Mech. 453,

411–425.

Malfliet, W., 1992. Solitary wave solutions of nonlinear wave

equations. Amer. J. Phys. 60, 659.

Miura, M.R., 1978. Backlund Transformation. Springer Verlag,

Berlin.

Rosenau, P., Hyman, J.M., 1993. Phys. Rev. Lett. 70, 564.

Wang, M.L., 1996. Exact solutions for a compound KdV–Burgers

equation. Phys. Lett. A 215, 279.

Wazwaz, A.M., 2001. A study of nonlinear dispersive equations with

solitary-wave solutions having compact support. Math. Comput.

Simul. 56, 269–276.

Wazwaz, A.M., Helal, M.A., 2004. Chaos Solitons Fractals 21,

579.

Wazwaz, A.M., Helal, M.A., 2004. Variants of the generalized fifth-

order KdV equation with compact and noncompact structures.

Chaos Solitons Fractals 21, 579.

Yan, Z., 2003. The extended Jacobian elliptic function expansion

method and its application in the generalized Hirota–Satsuma

coupled KdV system. Chaos Solitons Fractals 15, 575.

Yan, Z., Zhang, H.Q., 1999. New explicit and exact travelling wave

solutions for a system of variant Boussinesq equations in mathe-

matical physics. Phys. Lett. A 252, 291.

Yan, Z., Zhang, H.Q., 2001. New explicit solitary wave solutions and

periodic wave solutions for Whitham–Broer–Kaup equation in

shallow water. Phys. Lett. A 285, 355.

Zhu, Y., Tong, K., Chaolu, T., 2007. New exact solitary-wave

solutions for the K(2,2,1) and K(3,3,1) equations. Chaos Solitons

Fractals 33, 1411.


	Exact solitary-wave solutions for the nonlinear dispersive  K(2,2,1) and K(3,3,1) equations
	Introduction
	The homotopy analysis method (HAM)
	Applications
	The K(2,2,1) equation
	The K(3,3,1) equation

	Conclusion
	References


