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A B S T R A C T

Diagnosing Autism Spectrum Disorder (ASD) presents a multifaceted challenge, demanding accurate and effi-
cient screening methods. Applying machine learning techniques offers a promising avenue for enhancing diag-
nostic accuracy and efficiency. This research investigates the efficiency of machine learning in distinguishing 
individuals with ASD from those without, utilizing a comprehensive dataset comprising screening questions, 
demographic factors, and ASD related diagnostic classifications. We applied chi-square feature selection tech-
nique and also tested Random Forest, Logistic Regression, Gradient Boosting Classifier, and Extra Trees Classifier. 
Each model showed optimal performance and exhibit high precision, recall, and F1-score for both ASD-positive 
and ASD-negative instances. Additionally, AUROC curves further validated the models’ exceptional discrimi-
natory abilities, with exceptional results. Our findings highlight the potential of machine learning algorithms for 
enhancing ASD diagnosis accuracy and efficiency in clinical settings. Further research and validation on larger 
datasets are required to understand the importance of machine learning methods in ASD diagnosis.

1. Introduction

Autism spectrum disorder (ASD) is a neurological and developmental 
disorder that has an impact on the social and cognitive skills of children 
causing social interaction and communication challenges, repetitive 
behaviors, sensory issues and restricted interests (Midouhas et al., 
2013). Autism is described as a “developmental disorder” because 
symptoms generally appear in the first 2 years of life (Lanyi et al., 2022; 
Menezes et al., 2021). Autism is also known as a “spectrum” disorder it 
encompasses a diverse range of conditions and varying severity of 
symptoms experienced by individuals (Brown, 2024; Dickinson et al., 
2024). The spectrum is not measured on scale from less autistic to more 
severe autistic; rather, it denotes how individuals with autism function 
across various areas, as described in Fig. 1. Although ASD can be a 

lifelong disorder however, treatments and services have the potential to 
improve a person’s symptoms and daily functioning (Bedford et al., 
2024). Diagnosing ASD in adults is often more difficult than in children 
because some ASD symptoms can overlap with symptoms of other 
mental health disorders, such as anxiety disorder or attention-deficit/ 
hyperactivity disorder (ADHD) (Murphy et al., 2024; Zwaigenbaum 
and Penner, 2018). Research findings indicate that approximately 2 in 
100 children receive a diagnosis of ASD when examining prevalence 
(Campisi et al., 2018). However, reported prevalence rates vary signif-
icantly between studies due to differences in diagnostic criteria, research 
methodologies, and the demographics of the populations studied (Kogan 
et al., 2018). This variability emphasizes the importance of careful 
interpretation when assessing ASD prevalence, considering factors such 
as geographical location, access to healthcare, and cultural perspectives 
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on autism (Goel et al., 2018). Addressing the complexities of ASD in-
volves navigating a multifaceted landscape of challenges that in-
dividuals with ASD and their caregivers confront daily (Lord et al., 
2018). Alarmingly, statistics reveal that approximately 40 % of in-
dividuals with autism are nonverbal, exacerbating the challenges they 
encounter in communication and expression (Erkan and Thanh, 2020). 
Moreover, the presence of intellectual disabilities further compounds 
the situation, with 31 % of children grappling with significant chal-
lenges in daily functioning, and another 25 % falling within the 
borderline range of intellectual abilities (Rasul et al., 2024; Thabtah, 
2017). Furthermore, the prevalence of self-injurious behaviors among 
individuals with ASD, such as head banging and skin scratching, un-
derscores the urgency of addressing the complex needs and vulnerabil-
ities within this population (Andrews et al., 2019). Perhaps most 
distressing is the sobering reality that drowning remains a leading cause 

of death for children with autism, accounting for approximately 90 % of 
fatalities associated with wandering or bolting among those aged 14 and 
younger (Christensen et al., 2019). These statistics underscore the 
imperative to develop effective interventions and support systems that 
can mitigate risks and enhance the quality of life for individuals with 
ASD and their families (Hirota and King, 2023). To expedite the diag-
nostic process and minimize formal evaluations, machine learning ASD 
tools have been developed (Rahman et al., 2020). These machine 
learning techniques offer quick and accurate assessment of ASD risk, 
facilitating faster access to critical therapies for families (Alkahtani 
et al., 2023). However, as machine learning advances ASD diagnosis and 
treatment, ethical implementation, and privacy considerations remain 
paramount. (Fig. 2 and Table 1).

2. Related work

The diagnosis and intervention of ASD have become pressing issues 
due to the increasing prevalence of the condition. Over the years, re-
searchers have made significant strides in leveraging machine learning 
(ML) and deep learning (DL) techniques to enhance the detection and 
understanding of ASD. Bone et al. (2014) demonstrated the potential of 
ML in enhancing diagnostic and intervention research by analyzing 
large behavioral ASD datasets, leading to insights into the heteroge-
neous nature of ASD and the customization of interventions to individ-
ual needs (Bone et al., 2015). Maenner et al. (2021) furthered this 
progress by developing a ML approach for classifying case status in 
Autism and Developmental Disabilities Monitoring (ADDM), using lan-
guage features from children’s evaluations (Maenner et al., 2021) 
(Maenner et al., 2021). Alves et al. (2023) diagnosis the ASD based on 
functional brain networks and machine learning approaches, which 
provides medical interpretability and can be used on other fMRI and 
EEG data, including small data sets (Alves et al., 2023). Building upon 
these foundations, Tariq et al. (2018) developed a mobile detection 
system for ASD using ML on home videos, offering a potential solution to 
accelerate diagnosis and reach underserved populations (Tariq et al., 
2018). Subsequent studies by Jacob et al. (2019) explored the com-
plexities of ASD diagnosis, leveraging supervised and unsupervised ML 
models, as well as deep learning networks, to enhance classification 
accuracy (Jacob et al., 2019). Raj and Masood (2020) demonstrated the 
superior performance of CNN-based prediction models in ASD detection, 

Fig. 1. Diagnostic Framework for Autism Spectrum Disorder (ASD).

Fig. 2. Methodological Approach for the Development of ASD Diagnostic Model.

R. Ayub et al.                                                                                                                                                                                                                                    Journal of King Saud University - Science 36 (2024) 103468 

2 



particularly in handling missing values (Raj and Masood, 2020). In 
parallel, Okoye et al. (2023) developed predictive models for early ASD 
detection, highlighting logistic regression’s accuracy among the evalu-
ated models (Okoye et al., 2023). Eslami et al. (2021) further expanded 
the scope by exploring ML and DL techniques for diagnosing both ASD 
and ADHD, addressing challenges such as overfitting and data distri-
bution (Eslami et al., 2021). These collective efforts underscore the 
transformative potential of ML and DL in enhancing ASD diagnosis and 
understanding.

In recent studies, Elshoky et al. (2022) explored the application of 
ML techniques for creating predictive models using facial images of 
children (Elshoky et al., 2022), while Moridian et al. (2022) conducted a 
comprehensive review of automated ASD detection methods using 
Magnetic resonance imaging (MRI) neuroimaging and AI (Moridian 
et al., 2022). Bahathiq et al. (2022) provided a comprehensive review 
emphasizing the ongoing need for advancements in ASD diagnosis using 
ML, addressing challenges such as limited sample sizes and highlighting 
trends like leveraging big data and advanced imaging techniques 
(Bahathiq et al., 2022). Meanwhile, Shinde and Patil (2023) proposed 
methods to improve ASD diagnosis through a multi-classifier recom-
mender model, underscoring the importance of dataset size in enhancing 
accuracy (Shinde and Patil, 2023). Collectively, these studies contribute 
to advancing ASD detection and diagnosis, offering new insights and 
methodologies for early intervention. Additionally, Alkahtani et al 
(2023) developed an expert system for ASD identification based on 
facial landmarks of children, furthering the capabilities of computer 
vision in ASD detection, thus addressing critical needs in healthcare 
(Alkahtani et al., 2023). These studies underscore the value of ML in 

advancing our understanding of ASD and suggest promising avenues for 
collaborative research at the intersection of computational and behav-
ioral science.

3. Methodological approach

This research methodology presents a thorough framework for 
diagnosing ASD. The dataset utilized is sourced from the UC Irvine 
Machine Learning Repository (Thabtah, 2017). The missing values 
within the dataset are represented by ‘?’ and to address them we applied 
imputation techniques substituting missing values with the mean, me-
dian, or mode of the corresponding attribute. Furthermore, encoded 
techniques such as one-hot encoding are applied to transform categor-
ical variables into numerical representations, enabling machine learning 
algorithms to process the data effectively. These systematic procedures 
contribute to the refinement and uniformity of the dataset, thereby 
fostering precise analysis.

Further, we applied the chi-square feature selection test to check a 
significant association between categorical variables (Semary et al., 
2024). We then employed a range of machine learning algorithms, such 
as linear regression, random forest, gradient boosting classifier and extra 
tree classifier chosen for their suitability in classification tasks and 
ability to handle diverse data types in our dataset. The ASD model was 
developed on 80 % of the training dataset and tested on the remaining 
20 %. To validate the model, we conducted both cross-validation and 
external validation. Cross-validation was performed using 10-fold 
stratified sampling to ensure robustness and generalizability across 
multiple folds. Additionally, external validation with an independent 
dataset and clinical validation confirmed the efficacy of the model in 
diagnosing ASD, providing a more reliable estimate of its real-world 
performance.

4. Dataset description

In this study, we leverage a dataset (as described in table 1) tailored 
for screening ASD in children, sourced from the UC Irvine Machine 
Learning Repository, a reputable platform housing dataset curated for 
machine learning research (Thabtah, 2017). Comprising a range of at-
tributes pertinent to ASD diagnosis, the dataset includes scores for ten 
screening questions (A1 to A10), as well as information on age, gender, 
ethnicity, history of jaundice, family history of autism, country of resi-
dence, prior use of ASD screening applications, and final diagnostic 
classification (Mahmoud et al., 2023). These attributes offer valuable 
insights into factors influencing ASD and its early detection.

The chosen features hold significance due to their relevance to ASD 
screening and diagnosis. The ten screening questions reflect behavioral 
patterns commonly associated with ASD. Age, gender, and ethnicity can 
shape the presentation of ASD symptoms, informing our understanding 
of its prevalence and manifestation across diverse demographic groups. 
Details such as jaundice history, family autism history, and prior 
screening application usage provide additional context on potential risk 
factors and previous diagnostic attempts. Lastly, the diagnostic classi-
fication acts as the outcome variable, facilitating the assessment of the 
screening tool’s efficacy in identifying children with ASD.

5. Feature selection and performance measures in ASD diagnosis

5.1. Simplifying ASD analysis with Chi-Square test

The chi-square test is a statistical method used to determine the 
presence of a significant association between two categorical variables 
by comparing observed frequencies with expected frequencies, 
assuming no connection between the variables. It evaluates the null 
hypothesis (H0) which imagines that no relationship exists between the 
categorical variables in the data, implying they are independent, while 
the alternative hypothesis (H1) suggests an association between the 

Table 1 
Illustrating the description of the ASD dataset features utilized in our research.

Attribute Type Description

Age Number Years
Gender String Male or Female
Ethnicity String List of common ethnicities in text format
Born with 

jaundice
Boolean (yes 
or no)

Whether the case was born with jaundice

Family member 
with PDD

Boolean (yes 
or no)

Whether any immediate family member has a 
PDD

Who is 
completing the 
test

String Parent, self, caregiver, medical staff, 
clinician, etc.

Country of 
residence

String List of countries in text format

Used app before Boolean (yes 
or no)

Whether the user has used a screening app

Screening Method 
Type

Integer 
(0,1,2,3)

The type of screening methods chosen based 
on age category (0 = toddler, 1 = child, 2 =
adolescent, 3 = adult)

Question 1 
Answer

Binary (0, 1) The answer code of the question based on the 
screening method used

Question 2 
Answer

Binary (0, 1) The answer code of the question based on the 
screening method used

Question 3 
Answer

Binary (0, 1) The answer code of the question based on the 
screening method used

Question 4 
Answer

Binary (0, 1) The answer code of the question based on the 
screening method used

Question 5 
Answer

Binary (0, 1) The answer code of the question based on the 
screening method used

Question 6 
Answer

Binary (0, 1) The answer code of the question based on the 
screening method used

Question 7 
Answer

Binary (0, 1) The answer code of the question based on the 
screening method used

Question 8 
Answer

Binary (0, 1) The answer code of the question based on the 
screening method used

Question 9 
Answer

Binary (0, 1) The answer code of the question based on the 
screening method used

Question 10 
Answer

Binary (0, 1) The answer code of the question based on the 
screening method used

Screening Score Integer The final score obtained based on the scoring 
algorithm of the screening method used. This 
was computed in an automated manner
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variables. In this research, we used chi-square test in the opposite di-
rection, where significance level of p < 0.05 indicates a rejection of the 
null hypothesis, implying a dependency between the variables. Essen-
tially, a lower probability threshold (p < 0.05) is chosen to detect any 
significant associations between the categorical variables.

In this research, variables like gender and used_app_before were 
excluded from further analysis based on chi-square test results. For 
instance, the chi-square value for gender was low (0.004), with a cor-
responding p-value of 0.943, significantly higher than 0.05, indicating 
no statistically significant association with autism. Similarly, the chi- 
square statistic for “used_app_before” was moderate (1.05), and its p- 
value (0.300) exceeded 0.05, affirming no statistically significant asso-
ciation between this variable and autism (Table 2 & Table 3).

In this case, since the p-values for all variables are significantly less 
than 0.05, it indicates that there is a highly significant association be-
tween each of these variables (A1_Score, A2_Score, A3_Score, A4_Score, 
A5_Score, A6_Score, A7_Score, A8_Score, A9_Score) and the outcome 
variable. This suggests that these variables are important predictors or 
indicators of the outcome to autism in the dataset being analyzed.

5.2. Model evaluation measures

We used various performance measures to ensure that developed 
ASD diagnostic model works effectively. These measures collectively 
guide us in refining and optimizing the model for accurate and reliable 
diagnosis.

a. True Positive (TP): TP, also known as sensitivity, represents the 
cases where the model correctly predicts individuals with ASD. A True 
Positive indicates that the model correctly identifies individuals who 
have ASD, enabling timely intervention and support (Ahmed et al., 
2022). 

Sensitivity = TP/(TP + FN) (1) 

b. True Negative (TN): TN, also known as specificity, represents the 
cases where the model correctly predicts individuals without ASD. A 
true negative suggests that the model accurately identifies individuals 
who do not have ASD, avoiding unnecessary interventions and treat-
ments (Ahmad Fayaz et al., 2023). 

Specificity = TN/(TN + FP) (2) 

c. False Positive (FP): These are cases where the model incorrectly 
predicts individuals as having ASD when they do not have. A false 
positive may lead to unnecessary stress and concern for individuals and 
their families, as well as potential misallocation of resources for in-
terventions (Maenner et al. 2020). 

FP = No.of instances predicted as positive − TN (3) 

d. False Negative (FN): These are cases where the model incorrectly 
predicts individuals as not having ASD when they actually have. False 
negatives are concerning because they may result in missed opportu-
nities for early intervention and support, delaying diagnosis and treat-
ment for individuals with ASD. 

FN = No.ofactualpositiveinstances − No.ofinstancespredictedasnegative
(4) 

e. Positive Predictive Value (Precision): Precision measures the 
proportion of individuals predicted to have ASD who actually have the 

disorder. High precision ensures that individuals identified as having 
ASD are more likely to truly have the disorder, reducing the risk of over 
diagnosis (Atlam et al., 2024). 

Precision = TP/(TP + FP) (5) 

f. Negative Predictive Value (NPV): NPV measures the proportion 
of individuals predicted not to have ASD who truly do not have the 
disorder. NPV reflects the model’s ability to rule out ASD for individuals 
without the disorder, complementing the information provided by 
sensitivity and specificity. 

NPV = TN/(TN + FN) (6) 

g. Area under the Receiver Operating Characteristic curve 
(AUROC): AUROC evaluates the model’s ability to distinguish between 
individuals with and without ASD across different decision thresholds. A 
higher AUROC value indicates better discrimination ability, with 1 
representing perfect discrimination and 0.5 representing random 
chance.

6. ASD diagnosis advancement through machine learning 
models

In our research on ASD disease diagnosis, we divided the dataset into 
a training set comprising 80 % of the data and a testing set containing 20 
% of the data. Due to the limited number of instances in the dataset, we 
applied 10-fold cross-validation on the training set. This method in-
volves dividing the data into k equal-sized folds, training the model on k- 
1 folds, and validating it on the remaining fold. This process is repeated 
k times, ensuring robust performance evaluation through averaging the 
results.

6.1. Random Forest model

Random forest is an ensemble learning technique that consists of 
multiple decision trees. Each tree is trained on a random subset of the 
training data and a random subset of features. Through a voting 
mechanism, predictions from individual trees are aggregated, resulting 
in a final prediction. This ensemble approach enhances prediction ac-
curacy and robustness (Abdelwahab et al., 2024). We applied Random 
Forest to our ASD dataset and obtained the results described in Table 4. 
The developed random forest model’s performance is measured using 
various evaluation metrics. These metrics provide valuable insights into 
the model’s effectiveness in distinguishing between instances of 
“absence of ASD” and “presence of ASD.”.

Table 2 
Chi-Square Test Results for Different ASD Features.

Category Chi-Square p-value P < 0.05

0 Gender 0.004985 8.9568808e-01 False
1 Jaundice 11.978454 5.875686e-04 True
2 Autism 84.527867 1.526148e-20 True
3 used_app_before 1.042585 3.001534e-01 False

Table 3 
Chi-Square Test Results for A-Score Categories of ASD.

Category Chi-Square p-value P < 0.05

0 A1_Score 31.780269 1.726377e-08 True
1 A2_Score 52.239554 4.912658e-13 True
2 A3_Score 93.479438 4.104424e-22 True
3 A4_Score 117.490026 2.242249e-27 True
4 A5_Score 103.205602 3.021106e-24 True
5 A6_Score 164.237125 1.342643e-37 True
6 A7_Score 98.621908 3.056194e-23 True
7 A8_Score 38.351519 5.908208e-10 True
8 A9_Score 86.734950 1.240845e-20 True

Table 4 
Random Forest Model Performance Metrics.

Class Precision Recall F1-Score Support

0 0.96 0.98 0.97 179
1 0.98 0.96 0.97 200
Accuracy   0.97 379
Macro Avg. 0.97 0.97 0.97 379
Weighted Avg. 0.97 0.97 0.97 379
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• Precision Analysis: Our analysis revealed a precision of 0.96 for the 
class “absence of ASD,” indicating that 96 % of instances predicted as 
not having ASD were indeed true negatives. Conversely, the preci-
sion for the class “presence of ASD” was 0.98, demonstrating that 98 
% of instances predicted as having ASD were true positives.

• Recall Assessment: In terms of recall, the model achieved a recall of 
0.98 for the class “absence of ASD,” correctly identifying 98 % of all 
instances not associated with ASD. For the class “presence of ASD,” 
the recall was 0.96, indicating that 96 % of all actual ASD instances 
were correctly identified by the model.

• F1-Score Evaluation: The F1-score, a balanced measure of precision 
and recall, yielded scores of 0.97 for both classes. This highlights the 
model’s ability to minimize both false positives and false negatives in 
ASD diagnosis, contributing to its overall effectiveness.

• Support Analysis: Examining the support values revealed 179 in-
stances of “absence of ASD” and 200 instances of “presence of ASD” 
within the dataset. These support values provide insights into the 
distribution of data and the prevalence of each class.

• Accuracy Examination: Our model achieved an overall accuracy of 
97 %, indicating its high level of correctness in predicting both 
classes collectively. This underscores the model’s reliability in 
accurately diagnosing ASD across the dataset.

• Average Metrics Interpretation: Additionally, both macro and 
weighted averages yielded consistent scores of 0.97, reflecting the 
model’s consistent performance across all classes. These average 
metrics provide a comprehensive overview of the model’s effec-
tiveness in ASD diagnosis.

We also conducted an assessment of the AUROC curve to evaluate the 
performance of the random forest model in the context of ASD diagnosis 
(Fig. 3a-d). The AUROC curve, with an AUC = 1.00, underscores the 
model’s exceptional capability to accurately differentiate between in-
dividuals with ASD and those without ASD across various thresholds of 
discrimination. This perfect AUC value signifies the model’s ability to 
achieve a true positive rate of 1 (sensitivity) and a false positive rate of 
0 (specificity), thereby ensuring precise predictions for all instances in 
the dataset. In practical terms, the flawless performance of the Random 
Forest model in identifying individuals with ASD while minimizing 
misclassifications of non-ASD cases highlights its robust reliability and 
efficacy for ASD diagnosis.

Overall, these findings demonstrate the strong performance of the 
random forest machine learning model in accurately diagnosing ASD. 
With high precision, recall, F1-score, support, accuracy, and average 
metrics the model showcases promising potential for ASD diagnosis in 
clinical settings.

6.2. Logistic regression model

Logistic regression is a linear binary classification model which gives 
the probability that an instance belongs to a particular class using a 
logistic (sigmoid) function. Logistic regression estimates the coefficients 
for each feature, which represent the impact of that feature on the log- 
odds of the target class. Logistic Regression could be used to model 
the probability of a child having ASD based on the given features 
(Ansarullah et al., 2024). We applied logistic regression to our ASD 
dataset and obtained the results described in Table 5.

Fig. 3. AUROC curve for ASD classification using (a) random forest, (b) logistic regression, (c) gradient boosting, (d) extra tree classifier.
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• Precision: The precision metric reflects the proportion of true posi-
tive predictions out of all positive predictions made by the model. 
For class 0 (indicating the absence of ASD), the precision is 0.96, 
indicating that 96 % of instances predicted as not having ASD were 
indeed true negatives. Similarly, for class 1 (indicating the presence 
of ASD), the precision is also 0.96, demonstrating that 96 % of in-
stances predicted as having ASD were true positives.

• Recall: Recall, also known as sensitivity, measures the model’s 
ability to correctly identify actual positive instances. With a recall of 
0.96 for both class 0 and class 1, the model accurately identified 96 % 
of all instances not associated with ASD and 96 % of all actual ASD 
instances, respectively.

• F1-Score: The F1-score, a harmonic mean of precision and recall, 
provides a balanced measure of the model’s accuracy. Both class 
0 and class 1 exhibit F1-scores of 0.96, indicating a high level of 
precision and recall for both classes.

• Support: Support denotes the number of actual occurrences of each 
class in the dataset. In this case, there are 179 instances of class 0 and 
200 instances of class 1, contributing to a total of 379 instances.

• Accuracy: Accuracy measures the overall correctness of the model’s 
predictions. With an accuracy of 0.96, the model achieved a high 
level of correctness in predicting both classes collectively.

• Macro and Weighted Averages: Both macro and weighted averages 
yield consistent scores of 0.96 for precision, recall, and F1-score, 
reflecting the model’s consistent performance across all classes.

We also conducted an assessment of the AUROC curve to evaluate the 
performance of the logistic regression model in the context of ASD 
diagnosis (Fig. 3b). The AUROC curve plots the true positive rate 
(sensitivity) against the false positive rate (1 − specificity) for different 
threshold values. The AUC = 0.99 implies that the logistic regression 
model performed remarkably well in correctly identifying individuals 
with ASD while minimizing misclassifications of non-ASD cases. The 
high AUC value underscores the model’s reliability and effectiveness in 
ASD diagnosis, making it a valuable tool for clinical decision-making 
and patient care.

6.3. Gradient Boosting Classifier

The Boosting Classifier is a machine learning algorithm belonging to 
the ensemble learning methods. It operates by sequentially combining 
multiple weak learners, typically decision trees with shallow depth, in a 
sequential manner to create a strong predictive model. In this method, 
each weak learner is trained to rectify errors made by preceding ones. 
This is accomplished by fitting each new model to the residual errors of 
the ensemble, progressively diminishing the overall prediction error. 
The algorithm iteratively minimizes a loss function using gradient 
descent optimization, thereby adjusting the parameters of each weak 
learner to enhance the model’s performance (Ansarullah et al., 2022). 
We applied gradient boosting classifier to our ASD dataset and obtained 
the results described in Table 6.

• Precision: For class 0 (representing the absence of ASD), the preci-
sion was 0.97, indicating that 97 % of instances predicted as not 
having ASD were indeed true negatives. Conversely, for class 1 

(indicating the presence of ASD), the precision was 0.98, signifying 
that 98 % of instances predicted as having ASD were true positives.

• Recall: The recall for class 0 was 0.98, suggesting that 98 % of all 
instances not associated with ASD were correctly identified by the 
model. For class 1, the recall was 0.97, indicating that 97 % of all 
actual ASD instances were accurately identified by the model.

• F1-Score: The F1-score, a harmonic mean of precision and recall, 
yielded scores of 0.98 for both class 0 and class 1. This balanced 
measure reflects the model’s ability to minimize both false positives 
and false negatives in ASD diagnosis.

• Support: The dataset comprised 179 instances of class 0 and 200 
instances of class 1, providing insights into the distribution of data 
and the prevalence of each class.

• Accuracy: The model achieved an overall accuracy of 98 %, 
demonstrating its high level of correctness in predicting both classes 
collectively.

• Macro and Weighted Averages: Both macro and weighted averages 
yielded consistent scores of 0.98 for precision, recall, and F1-score, 
indicating the model’s consistent performance across all classes.

In our analysis utilizing the Gradient Boosting Classifier on the ASD 
dataset, we generated an AUROC with an exceptional AUC value of 1.00 
which demonstrates the model’s remarkable ability to accurately 
distinguish between individuals with ASD and those without ASD 
(Fig. 3c). In summary, the AUROC curve with an AUC value of 1.00 
generated by the Gradient Boosting Classifier underscores the model’s 
exceptional reliability and accuracy in ASD diagnosis, making it a highly 
promising tool for clinical applications.

6.4. Extra Trees Classifier

The Extra Trees Classifier, short for Extremely Randomized Trees 
Classifier, is a machine learning algorithm that belongs to the ensemble 
learning family. In Extra Trees Classifier, rather than selecting the best 
split among a subset of features, as in Random Forest, it randomly selects 
candidate splits for each feature. This randomness during the tree 
building process leads to extra diversity among the trees in the 
ensemble, hence the name “Extra Trees.” By introducing more 
randomness into the tree construction process, Extra Trees Classifier 
reduces the variance of the model at the expense of a slight increase in 
bias. This can sometimes lead to improved generalization performance, 
especially when dealing with noisy or high-dimensional datasets (Syed 
Immamul Ansarullah, 2019). This research applied the Extra Trees 
Classifier model to analyse the ASD dataset, from which we derived the 
following results as described in Table 7.

Table 5 
Logistic Regression Model Performance Metrics.

Class Precision Recall F1-Score Support

0 0.96 0.96 0.96 179
1 0.96 0.96 0.96 200
Accuracy   0.96 379
Macro Avg. 0.96 0.96 0.96 379
Weighted Avg. 0.96 0.96 0.96 379

Table 6 
Gradient boosting model performance metrics.

Class Precision Recall F1-Score Support

0 0.97 0.98 0.98 179
1 0.98 0.97 0.98 200
Accuracy   0.98 379
Macro Avg. 0.98 0.98 0.98 379
Weighted Avg. 0.98 0.98 0.98 379

Table 7 
Extra Tree Model Performance Metrics.

Class Precision Recall F1-Score Support

0 0.97 0.98 0.98 179
1 0.98 0.97 0.98 200
Accuracy   0.98 379
Macro Avg. 0.98 0.98 0.98 379
Weighted Avg. 0.98 0.98 0.98 379
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• Precision: The precision metric indicates the proportion of true 
positive predictions out of all positive predictions made by the 
model. For class 0 (representing the absence of ASD), the precision is 
0.97, suggesting that 97 % of instances predicted as not having ASD 
were indeed true negatives. Similarly, for class 1 (indicating the 
presence of ASD), the precision is 0.98, indicating that 98 % of in-
stances predicted as having ASD were true positives.

• Recall: Recall, also known as sensitivity, measures the proportion of 
true positive predictions out of all actual positive instances in the 
dataset. A recall of 0.98 for class 0 means that 98 % of all instances 
not associated with ASD were correctly identified by the model. 
Conversely, a recall of 0.97 for class 1 indicates that 97 % of all actual 
ASD instances were correctly identified by the model.

• F1-Score: The F1-score, a harmonic mean of precision and recall, 
provides a balanced assessment of the model’s performance. With 
F1-scores of 0.98 for both classes, the model demonstrates a high 
level of accuracy in distinguishing between instances of “absence of 
ASD” and “presence of ASD.”

• Support: Support refers to the number of actual occurrences of each 
class in the dataset. In this case, there are 179 instances of class 0 and 
200 instances of class 1, indicating a relatively balanced distribution 
between the two classes.

• Accuracy: Accuracy measures the overall correctness of the model’s 
predictions. With an accuracy of 98 %, the Extra Trees Classifier 
model achieved a high level of correctness across all predictions, 
further emphasizing its effectiveness in ASD diagnosis.

• Macro and Weighted Averages: Both macro and weighted averages 
yielded consistent scores of 0.98 for precision, recall, and F1-score, 
reflecting the model’s consistent performance across all classes and 
accounting for the distribution of instances within each class.

In our analysis utilizing the Extra Tree Classifier model on the ASD 
dataset, we generated the AUROC with an AUC value of 1.00 (Fig. 3d), 
which indicates perfect discrimination by the model, making it highly 
reliable for ASD diagnosis. Overall, these results highlight the robust 
performance of the Extra Trees Classifier model in accurately diagnosing 
ASD, with high precision, recall, F1-score, support, accuracy, and 
average metrics across both classes.

7. Results and Discussions

In our research on ASD disease diagnosis, we employed several 
machine learning algorithms and analysed their performance metrics to 
ascertain their effectiveness in distinguishing between individuals with 
and without ASD. The Random Forest model demonstrated robust per-
formance, achieving high precision, recall, and F1-score for both classes. 
This indicates its proficiency in accurately identifying instances of 
“absence of ASD” and “presence of ASD.” With an impressive overall 
accuracy of 97 %, the model holds promise for enhancing ASD diagnosis 
accuracy. The model’s exceptional capability to differentiate between 
ASD-positive and ASD-negative individuals, as evidenced by the AUROC 
curve with an AUC value of 1.00, signifies its potential to significantly 
impact clinical decision-making.

Similarly, the Logistic Regression model showcased notable preci-
sion, recall, and F1-score for both classes, along with an overall accuracy 
of 96 %. Its high discriminative accuracy, validated by the AUROC curve 
with an AUC value of 0.99, suggests its potential utility in aiding clini-
cians in identifying individuals with ASD. The Gradient Boosting Clas-
sifier and Extra Trees Classifier exhibited strong performances also with 
an overall accuracy of 98 % respectively. Their flawless performance in 
distinguishing between individuals with ASD and those without ASD, as 
indicated by the AUROC curve with AUC values of 1.00, underscores 
their reliability and effectiveness in ASD diagnosis.

The results indicate that all developed machine learning models 
achieved high performance in accurately diagnosing ASD, with preci-
sion, recall, and F1-score consistently above 0.95 for both classes. The 

models also demonstrated high overall accuracy, reflecting their reli-
ability in predicting ASD across the dataset. The AUROC curves further 
validated the models’ effectiveness, with AUC values close to or equal to 
1.00, indicating that the models can make precise predictions while 
minimizing misclassifications, highlighting their potential for clinical 
applications in ASD diagnosis.

These findings hold significant implications for ASD diagnosis in 
clinical settings. By leveraging machine learning algorithms with high 
predictive accuracy, clinicians can make more informed decisions, 
leading to earlier detection and intervention for individuals with ASD. 
Moreover, the precise identification of ASD cases can facilitate the 
allocation of resources and support services, ultimately improving out-
comes for individuals and their families. Furthermore, the utilization of 
these advanced algorithms can streamline the diagnostic process, 
potentially reducing wait times and alleviating the burden on healthcare 
systems. Overall, the findings suggest that machine learning models, 
particularly ensemble methods like Random Forest, Gradient Boosting 
Classifier, and Extra Trees Classifier, hold promise for enhancing ASD 
diagnosis accuracy and efficiency in clinical settings. Further research 
and validation on larger datasets are warranted to fully assess their 
clinical utility and impact.

8. Conclusion and Future work

Machine learning techniques show promise in enhancing ASD diag-
nosis accuracy. Various models, such as Random Forest, Logistic 
Regression, Gradient Boosting Classifier, and Extra Trees Classifier, were 
applied to a comprehensive dataset. The results showed high perfor-
mance, with AUROC curves validating their discriminatory abilities. 
Particularly, the Random Forest model stood out, achieving 97 % ac-
curacy and a perfect AUROC curve, emphasizing the potential of ma-
chine learning algorithms in enhancing ASD diagnosis. Leveraging these 
algorithms could facilitate earlier detection and intervention, thereby 
improving outcomes for individuals and families affected by ASD. 
Furthermore, the adoption of advanced algorithms could streamline the 
diagnostic process and contribute to a better understanding of ASD 
epidemiology. However, we acknowledge potential biases or limitations 
in our methodology, necessitating further research on larger datasets 
and fostering collaboration between researchers and clinicians. Future 
plans involve developing a comprehensive ASD model that integrates 
genetic, behavioral, and medical data for practical use in clinical and 
research settings, with continuous monitoring and updating, based on 
new data and research. This model will encompass all available data to 
develop a unified solution and will be deployed for practical use in 
clinical and research settings. Continuous monitoring and updating of 
the model based on new data and emerging research will be essential for 
maintaining its effectiveness.
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