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The problem of robust estimation in circular regression models has not been studied well. This paper con-
siders the JS circular regression model due to its interesting properties and its sensitivity for existence
and detection of outliers. We extend the robust estimators such as M-estimation, least-trimmed squares
(LTS), and least-median squares (LMS) estimators, which have been successfully used in the linear regres-
sion models, to the JS circular regression model.
The robustness of the proposed estimators are studied through its influence function, and via simula-

tion study. The results show that the proposed robust circular M-estimation is effective in estimating cir-
cular models’ parameters in the presence of vertical outliers. However, circular LTS and LMS are highly
robust estimators in case of circular leverage points. An application of the proposed robust circular esti-
mators is illustrated using a real eye data set.
� 2021 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The applications on circular variables have increased in last two
decades. It varied in many fields including biology, meteorology
and medicine. Although the first circular regression model backs
to Gould, (1969) and various versions of these models have been
proposed; the study of outliers and robustness of circular regres-
sion models still not well considered. Most of outliers’ detection
procedures were derived based on the simple circular regression
model (Hussin et al., 2004) by extending the common methods
from linear regression (Abuzaid et al., 2008, 2013). Model
(Hussin et al., 2004) assumed a linear relationship between the
two circular variables, which is a conservative condition, moreover,
it is not applicable to be extended for multiple regression settings.
Alternatively, Ibrahim (2013) investigated the robustness of the JS
model which is proposed by Sarma and Jammalamadaka, (1993)
with one independent circular variable based on the least squares
estimation (LS), and some outliers’ detection procedures were pro-
posed by Ibrahim et al. (2013). Moreover, Alkasadi et al. (2019)
derived an outlier detection procedure for the multiple JS model
with two independent circular variables. Recently, Jha and
Biswas (2017) have studied the robustness of Kato et al. (2008) cir-
cular regression model based on wrapped Cauchy distribution set-
tings by proposing the maximum trimmed cosine estimator.

Robust estimation methods received a great deal of interest to
improve estimator performance in linear regression models. These
estimators limit the influence of outliers. In this regard, Huber and
Lovric (2011), Hampel et al. (2011) and Birkes and Dodge (2011)
showed that the robust M-estimation is highly robust to vertical,
but leverage point can break them down completely. Several
robust alternatives have been investigated in the literature, among
those, least median squares (LMS) estimator Rousseeuw (1984) and
least trimmed of squares (LTS) introduced in Rousseeuw and Leroy
(2005), which are not much affected with leverage points.

This study is proposing M estimator and high breakdown point
estimators, LTS and LMS for JS circular regression, to reduce the
effect of vertical outliers and leverage point.

The rest of the article is organized as follows: Section 2 reviews
the formulation of the JS circular regression model, and its LS
parameters estimates. Section 3 formulates the effect of outliers
in the JS model. Section 4 proposes the robust M-estimators, stud-
ies the influence function for the proposed estimators and intro-
duces bounded influence of the JS circular regression estimators.
An extensive simulation study is conducted to study the perfor-
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mance of the proposed robust estimators in Section 5. Section 6
applies the robust estimators to the eye data set.

2. The JS circular regression model

2.1. Model formulation

For any two circular random variables U and V, Sarma and
Jammalamadaka (1993) proposed a regression model to predict v
for a given u, by considering the conditional expectation of the vec-
tor eiv given u such that

E eiv ju� � ¼ q uð Þeil uð Þ ¼ g1 uð Þ þ ig2 uð Þ; ð1Þ
where, eiv ¼ cosv þ i sinv ;l uð Þ represents the conditional mean
direction of v given u and q uð Þ represents the conditional concen-
tration parameter. Equivalently, we may write

E cosvjuð Þ ¼ g1 uð Þ and E sinv juð Þ ¼ g2 uð Þ: ð2Þ
Then, v can be predicted such that

l uð Þ¼v^ ¼ arctan
g2 uð Þ
g1 uð Þ¼

arctang2 uð Þ
g1 uð Þ if g1 uð ÞP0;

pþarctang2 uð Þ
g1 uð Þ if g1 uð Þ60;

undefined if g1 uð Þ¼ g2 uð Þ¼0:

8>><
>>:

ð3Þ

Due to the fact that g1 uð Þ and g2 uð Þ are periodic functions, thus
they are approximated for a suitable degree m (Kufner and Kadlec,
1971), which have the following two observational regression-like
models

V1j ¼ cosv j ¼ g1 uð Þ ’
Xm
k¼0

Ak cos kuj þ Bk sin kuj
� �þ e1j

and V2j ¼ sinv j ¼ g2 uð Þ ’
Xm
k¼0

Ck cos kuj þ Dk sin kuj
� �þ e2j: ð4Þ

for j ¼ 1; . . . ;n, where, e ¼ e1; e2ð Þ is the vector of random errors fol-
lowing the bivariate normal distribution with mean vector 0 and
unknown dispersion matrix R. The parameters Ak, Bk; Ck, and
Dk; k ¼ 0;1; . . . ;m, the standard errors as well as the matrix R can
then be estimated, by assuming that B0 ¼ D0 ¼ 0 to ensure model’s
identifiability.

2.2. Least squares estimation

Let u1;v1ð Þ; . . . ; un;vnð Þ be a random circular sample of size n.
Therefore, the observational Eqs. (4) can be summarized as

V 1ð Þ ¼ V11; . . . ;V1nð Þ0;V 2ð Þ ¼ V21; . . . ;V2nð Þ0;

e 1ð Þ ¼ e11; . . . ; e1nð Þ; e 2ð Þ ¼ e21; . . . ; e2nð Þ: ð5Þ

Un� 2mþ1ð Þ ¼

1 cosu1 � � � cosmu1 sinu1 � � � sinmu1

1 cosu2 � � � cosmu1 sinu2 � � � sinmu2

..

. ..
. . .

. ..
. ..

. . .
. ..

.

1 cosun � � � cosmun sinun � � � sinmun

2
66664

3
77775; ð6Þ

k 1ð Þ ¼ A0;A1; . . . ;Am;B1; . . . ; Bmð Þ0 and k 2ð Þ ¼ C0;C1; . . . ;Cm;D1; . . . ;Dmð Þ0:
ð7Þ

The observational Eqs. (4) can be written in matrix form

V 1ð Þ ¼ Uk 1ð Þ þ e 1ð Þand V 2ð Þ ¼ Uk 2ð Þ þ e 2ð Þ: ð8Þ
The least squares estimates turn out to be
2

k̂ 1ð Þ ¼ min
Xn

i¼1

V 1ð Þ
i � Uk 1ð Þ

� �2
and

k̂ 2ð Þ ¼ min
Xn

i¼1

V 2ð Þ
i � Uk 2ð Þ

� �2
: ð9Þ

These equations can be combined into the following single
matrices

k̂ 1ð Þ ¼ U0U
� ��1U0V 1ð Þ and k̂ 2ð Þ ¼ U0U

� ��1U0V 2ð Þ ð10Þ
The following section explains the effect of outliers on the JS cir-

cular regression model.

3. Outliers in the JS circular regression model

Outliers are a common problem in the statistical analysis. It is
defined as observations that are very different to the other obser-
vations in a set of data. Ibrahim (2013) investigated the robustness
of the JSmodel by simulation study, and concluded that JSmodel is
sensitive for outliers existence, and the presence of outliers has
potentially serious effects on LS estimation. Then Ibrahim et al.
(2013) proposed a COVRATIO statistic to define outliers in the y-
vertical. In this paper, we define two types of outliers, namely out-
liers in V, it is so called (circular vertical outliers), and outliers with
respect to U and it is so called (circular leverage points). The effect
of outliers on LS estimation is introduced by two ways:

1.Circular Vertical Outliers: if V1j and V2j are replaced by VI
1j and

VI
2j, respectively, where, VI

1j ¼ Z1V1j and VI
2j ¼ Z2V2j, which implies

V1j ¼ Z�1
1 VI

1j and V2j ¼ Z�1
2 VI

2j, then the circular regression in (4) can
be rewritten as follows:

Z�1
1 VI

1j ¼ cosv j ¼
Xm
k¼0

Ak cos kuj þ Bk sin kuj
� �þ e1j

and Z�1
2 VI

2j ¼ sinv j ¼
Xm
k¼0

Ck cos kuj þ Dk sin kuj
� �þ e2j: ð11Þ

Thus, k̂ 1ð Þ U;VI
1j

� �
¼ Z�1

1 k̂ 1ð Þ U;V1j
� �

, and k̂ 2ð Þ U;VI
2j

� �
¼

Z�1
2 k̂ 2ð Þ U;V2j

� �
.

2.Circular Leverage Points: if U is replaced by UI, where
UI ¼ ZU, then k̂ 1ð Þ UI;V1j

� � ¼ Z�1k̂ 1ð Þ U;V1j
� �

, and k̂ 2ð Þ UI;V2j
� � ¼

Z�1k̂ 2ð Þ U;V2j
� �

.
The following section derives robust estimators of the JS model

parameters.

4. Robust estimation of the JS circular regression parameters

In this section the robust estimation is extended to the JS circu-
lar regression model instead of the classical LS estimator defined in
(10) to improve estimation precision. We will use CM;CLTS and
CLMS abbreviations for circular M-estimation, circular least-
trimmed squares, and circular least-median squares,respectively,
as derived in the following subsections:

4.1. Robust CM-estimation of JS circular regression parameters

In Eq. (9), if Vi � Uk pð Þ� �2
, where p ¼ 1;2, has been replaced by

F Vi � Uk pð Þ� �
, where, F is symmetric, non decreasing function on

[0,1), and almost continuously differentiable anywhere, where
F 0ð Þ ¼ 0. Furthermore, F is a function, which is less sensitive to out-
liers than squares, then it yields an estimating equation, which
result is the same idea ofM-estimation of a linear regression model
as described by Huber and Lovric (2011).
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We define CM-estimates on the JS circular regression as follows:

k̂ 1ð Þ ¼ min
Xn
i¼1

F V 1ð Þ
i � Uk 1ð Þ

� �
and

k̂ 2ð Þ ¼ min
Xn
i¼1

F V 2ð Þ
i � Uk 2ð Þ

� �
: ð12Þ

To solve these equations, let the influence curve be w ¼ F 0, if this
exists then we will have:

Xn
i¼1

w V 1ð Þ
i � Uk 1ð Þ

� �
¼ 0 and

Xn
i¼1

w V 2ð Þ
i � Uk 2ð Þ

� �
¼ 0: ð13Þ

Whereas, if F :ð Þ ¼ V � Ukð Þ2, then the solution becomes the LS
estimate. Generally, Biweight or Huber functions have been widely
used as F :ð Þ. However, for Biweight function we define the weight
matrix W ¼ diag wð Þ with w ¼ w eð Þ

e then (13) can be reformulated as

W 1ð Þ V 1ð Þ � Uk 1ð Þ
� �

¼ 0 and W 2ð Þ V 2ð Þ � Uk 2ð Þ
� �

¼ 0; ð14Þ

where,

W 1ð Þ ¼
w V 1ð Þ � Uk 1ð Þ
� �
V 1ð Þ � Uk 1ð Þ

� � and W 2ð Þ ¼
w V 2ð Þ � Uk 2ð Þ
� �
V 2ð Þ � Uk 2ð Þ

� � : ð15Þ

Then (13) can be written as:

Xn
i¼1

W 1ð ÞF V 1ð Þ
i � Uk 1ð Þ

� �
U and

Xn
i¼1

W 2ð ÞF V 2ð Þ
i � Uk 2ð Þ

� �
U: ð16Þ

These equations can be combined into the following single
matrices:

UTW 1ð ÞUk 1ð Þ ¼ UTW 1ð ÞV 1ð Þ and UTW 2ð ÞUk 2ð Þ ¼ UTW 2ð ÞV 2ð Þ; ð17Þ
therefore, the robust estimators are given by

k̂ 1ð Þ ¼ UTW 1ð ÞU
� ��1

UTW 1ð ÞV 1ð Þ and

k̂ 2ð Þ ¼ UTW 2ð ÞU
� ��1

UTW 2ð ÞV 2ð Þ; ð18Þ

where, W 1ð Þ and W 2ð Þ are n� n matrix of weight matrix. The covari-
ance matrix of k̂ pð Þ is

R ¼ E w2� �
E w0ð Þ½ �2

U0U
� ��1

:

A popular possibility of F :ð Þ is to use the Huber’s function as
introduced in Huber and Lovric (2011). For a positive real
M ¼ 1:345, Huber introduced the following objective function

F eð Þ ¼
e2; forjej 6 M;

2Mjej �M2; forjej > M:

8><
>: ð19Þ

So the w is given as

w eð Þ ¼
2e; forjej 6 M;

2Msgn eð Þ; forjej > M:

8><
>: ð20Þ

Then the weight function W is given by:

W eð Þ ¼
1; forjej 6 M;
M
jej ; forjej > M:

8><
>: ð21Þ
3

4.2. Influence Function of Circular Regression Estimators

Let T be an estimator of w- type, then the influence function (IF)
describes the effect of an infinitesimal contamination at U on the
estimator T, and it is defined as:

IF U;V; T;Gð Þ ¼ �w U; T Gð Þð ÞR @w V;k pð Þð Þ
@k pð Þ

� �
f U;Vð Þdy

; ð22Þ

where, f U;Vð Þ is the density function. That is, the IF of T ¼ LS circu-
lar estimate, and it is given by:

IF U;V; LS;Gð Þ ¼
�2U V � U0k pð Þ

� �
R
w0 V � U0k pð Þ
� �

f U;Vð Þd U;Vð Þ

¼
�2U V � U0k pð Þ

� �
R
w0 V � U0k pð Þ
� �

f U;Vð Þd U;Vð Þ
� UU

0

UU0

¼
�2UU0U V � U0k pð Þ

� �
E w eð Þeð Þ : ð23Þ

It worth to remark that, IF of circular LS estimator is an
unbounded function in U and V. On the other hand, the influence
function of robust CM estimator is given by:

IF U;V;M;Gð Þ ¼
UU0w V � U0k pð Þ

� �
E w eð Þeð Þ ; ð24Þ

where, w is a bounded function. Thus, the IF of CM estimator is
bounded with respect to vertical V, but its unbounded with respect
to leverage U.

4.3. Bounded-influence circular estimator

The CM estimators are sensitive to circular leverage observa-
tions so, we propose a bounded-influence circular estimator
named robust CLTS estimator. By ordering the squared residuals
e21 and e22 ascendingly:

e21 1ð Þ; e
2
1 2ð Þ; . . . :; e

2
1 nð Þ and e22 1ð Þ; e

2
2 2ð Þ; . . . :; e

2
2 nð Þ:

Then the CLTS circular estimator choose the circular coefficients
k̂ 1ð Þ and k̂ 2ð Þ which minimize the sum of the smallest n

2 of the
squared residuals,

CLTS k̂ 1ð Þ
� �

¼
Xn

2

i¼1

e 1ð Þ� �
ið Þ and CLTS k̂ 2ð Þ

� �
¼

Xn
2

i¼1

e 2ð Þ� �
ið Þ;

which is equivalent to find the circular estimates corresponding to
the half circular sample having the smallest sum of squares of resid-
uals. As such, breakdown point is 50%. Replacing n

2

by nþ 2mþ 1ð Þ þ 1=2½ �, we get a robust CLMS estimator.
The following section investigates the performance of the pro-

posed robust estimators via simulation.

5. Simulation study

5.1. Settings

A simulation study was carried out to investigate the perfor-
mance of the proposed robust estimators for the JS circular regres-
sion model, namely CM;CLTS, and CLMS. Furthermore, to compare



Table 1
Simulation results of different estimators with no contamination data.

Estimators

LS CM CLTS CLMS

n ¼ 20 median MSE 3.0700 3.0996 3.4295 3.4159
median SE 6.8847 6.9177 7.2380 7.2353

median A jð Þ 0.9979 0.9978 0.9879 0.9890

n ¼ 50 median MSE 3.06375 3.1055 3.3815 3.3915
median SE 2.7494 2.7686 2.8726 2.8765

median A jð Þ 0.9975 0.9976 0.9853 0.9848

n ¼ 100 median MSE 3.0341 3.0780 3.3166 3.3301
median SE 1.3673 1.3775 1.4220 1.4241

median A jð Þ 0.9975 0.9976 0.9850 0.9837

Table 2
Simulation results of different estimators, with different percentages of vertical outliers.

Estimators

LS CM CLTS CLMS

10% vertical
n ¼ 20 median MSE 4.1001 3.3024 3.3155 3.3664

median SE 7.9386 7.1251 7.1456 7.1705
median A jð Þ 0.9061 0.9977 0.9899 0.9888

n ¼ 50 median MSE 4.3319 3.3278 3.2751 3.3469
median SE 3.2712 2.8444 2.8511 2.8591

median A jð Þ 0.9051 0.9975 0.9866 0.9871

n ¼ 100 median MSE 4.4382 3.2669 3.3229 3.2979
median SE 1.6572 1.4200 1.4233 1.4187

median A jð Þ 0.9027 0.9975 0.9849 0.9866

20% vertical
n ¼ 20 median MSE 4.4997 3.3534 3.3750 3.5734

median SE 8.2735 7.1689 7.2018 7.4142
median A jð Þ 0.8198 0.9974 0.9914 0.9892

n ¼ 50 median MSE 5.0477 3.5431 3.3549 3.3567
median SE 3.5196 2.8652 2.8656 2.9596

median A jð Þ 0.8114 0.9975 0.9878 0.9872

n ¼ 100 median MSE 5.3299 3.3107 3.3394 3.5284
median SE 1.8108 1.4230 1.4278 1.4769

median A jð Þ 0.8109 0.9975 0.9875 0.9857

30% vertical
n ¼ 20 median MSE 4.8460 3.3397 3.3416 4.1199

median SE 8.5369 7.1550 7.1677 7.9297
median A jð Þ 0.7392 0.9950 0.9936 0.9907

n ¼ 50 median MSE 5.3271 3.3031 3.3244 4.2309
median SE 3.5931 2.8447 3.2352 2.8531

median A jð Þ 0.7299 0.9971 0.9899 0.9900

n ¼ 100 median MSE 5.4952 3.2587 3.3031 4.1668
median SE 1.8271 1.4122 1.4211 1.6069

median A jð Þ 0.7214 0.9974 0.9898 0.9881
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these estimators with classical estimator LS. For simplicity, we con-
sider the case when m ¼ 1. Hence, we have the following set of
parameters to be estimated:

k ¼ k 1ð Þ; k 2ð Þ� � ¼ k1; k2; k3; k4; k5; k6ð Þ

¼ A0;A1;B1;C0;C1;D1ð Þ: ð25Þ
We consider the set of uncorrelated random errors e1; e2ð Þ from

the bivariate Normal distribution with mean vector 0 and vari-
ances r2

1;r2
2

� �
to be (0.03,0.03). The independent circular variable

V is generated from von Mises distribution with mean p and con-
centration parameter equals 2 i.e. vM p;2ð Þ.

For simplicity, we set the true values of A0 and C0 of the JS
model to be 0, while A1;B1, C0 and D1 are obtained by using the
4

standard additive trigonometric polynomial equations cos aþ uð Þ
and sin aþ uð Þ when a ¼ 2. For example, cos 2þ uð Þ ¼
�0:0416 cosu� 0:9093 sinu and sin 2þ uð Þ ¼ 0:9093 cosu�
0:04161 sinu . Then by comparison with Eq. (4), the true values
of A1;B1;C1 and D1 are �0.0 4161, �0.09093, 0.09093 and
�0.04161 respectively. Similarly, we can also get different sets of
true values by choosing different values of a.

We then introduce vertical and leverage outliers into the data
such that the percentages of contamination used are c%= 5%, 10%,
20%, 30%, 40% and 50% from the different sample sizes, namely
n = 20, 50 and 100.

To investigate the robustness of the estimators against vertical
and leverage circular outliers, the following scenarios were
considered:



Table 3
Simulation results of different estimators, with different percentages of leverage points.

Estimators

LS CM CLTS CLMS

10% leverage
n ¼ 20 median MSE 3.3900 3.3715 2.7337 2.8885

median SE 7.2103 7.1795 6.3544 6.6290
median A jð Þ 0.8364 0.8401 0.9328 0.8995

n ¼ 50 median MSE 3.3310 3.3289 2.7125 2.8507
median SE 2.8518 2.8517 2.5201 2.6391

median A jð Þ 0.8401 0.8409 0.8940 0.8704

n ¼ 100 median MSE 3.3235 3.3213 2.6144 2.8353
median SE 1.4229 1.4243 1.2460 1.3141

median A jð Þ 0.8351 0.8370 0.9070 0.8687

20% leverage
n ¼ 20 median MSE 3.3816 3.3181 2.7845 2.8622

median SE 7.2014 7.1410 6.4384 6.4432
median A jð Þ 0.7103 0.7108 0.8748 0.8652

n ¼ 50 median MSE 3.3159 3.3115 2.6904 2.8177
median SE 2.8488 2.8500 2.5284 2.5409

median A jð Þ 0.6989 0.6991 0.8485 0.8415

n ¼ 100 median MSE 3.2980 3.2661 3.1258 3.0405
median SE 1.4186 1.4138 1.3575 1.3629

median A jð Þ 0.7788 0.7812 0.8688 0.8540

30% leverage
n ¼ 20 median MSE 3.3077 3.2467 2.7804 2.9814

median SE 7.1256 7.0743 6.3662 6.5228
median A jð Þ 0.5691 0.5767 0.8287 0.8298

n ¼ 50 median MSE 3.2844 3.2708 2.7492 2.9900
median SE 2.8401 2.8333 2.4930 2.6046

median A jð Þ 0.5655 0.5671 0.8044 0.8016

n ¼ 100 median MSE 3.3032 3.2740 2.9956 3.0928
median SE 1.4228 1.4173 1.3373 1.3492

median A jð Þ 0.7029 0.7047 0.8233 0.8346
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1. No contamination
2. Vertical (outliers in the V only)
3. Leverage points (Outliers in some U only).

For vertical outliers scenario, the observation at position d, say
vd, is contaminated as follows; vI

d ¼ vd þ cp mod 2pð Þ, where vI
d

is the value after contamination and c is the degree of contamina-
tion in the range 0 6 c 6 1. The generated data of U and V are then
fitted by the JS circular regression model to give the estimates ofbA0; bA1; bB0; bB1; bC1, and bD1.

For leverage point scenario, different percentages of observation
at position d, say ud � vM 2p;6ð Þ instead of the original generated
data from vM p;2ð Þ. The performance of the proposed estimators
were then determined by assessing summary of three statistics
based on s ¼ 1000 Monte Carlo trials.

The first statistic is the median of standard error (SE) of the six
parameters and it is obtained by

SE k̂j
� �

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXs

j¼1

k̂i;j � �ki
� �2

s

vuuuut
; i ¼ 1;2; . . . ;6

where �k is the mean of the estimates which is obtained by,
Ps

j¼1
k̂i;j

s .
The second statistic is the median of mean errors of the estimators
given by, ei;js . Finally, the median of mean of the cosines of the circu-
lar residuals A jð Þ.

The simulations were performed by the statistical software R.
To run the simulation, the function rlm; ltsreg and lmsreg from
5

library MASS were used for M-estimation, LTS and LMS,
respectively.
5.2. Results and discussion

Table 1 shows that the median (MSE) of the LS is relatively smal-
ler than other estimators when the data are uncontaminated, So
the LS gave the best estimator.

Table 2 shows the results for contaminated data with vertical
outliers, where the MSE for CM was the smallest, and estimated
the associated A jð Þ were larger than others estimators. Thus, we
concluded that the robust CM is better than LS. The CLTS and CLMS
performance are almost the same.

According to Table 3, CLTS and CLMS perform better than all the
other estimators. They estimated models parameters with smallest
MSE, but suffer from small values of A jð Þ when the leverage per-
centages are increased in the data set. The CM does poorly as worse
as LS, and has higher median (MSE) than other robust estimators.
6. Practical example (Eye Data)

As an application of the proposed robust estimators, we con-
sider the eye data which are consisting of 23 observations. The
selected measurements are the angle of the posterior corneal cur-
vature (u) and the angle of the eye (between posterior corneal cur-
vature to iris) (v).

The Mean Circular Error(MCE) statistic was applied on the data
after fitting the JS model (Ibrahim, 2013), and they showed that
there are two vertical outliers with observation numbers 2 and



Table 4
Results of fitting the JS circular regression model for eye data.

Estimators

Parameters LS CM CLTS CLMS

bA0
1.0821 1.0516 1.2020 1.2450

bA1
�0.1497 �0.1579 �1.1748 �0.1834

bB1
�0.3836 �0.3383 �0.4383 �0.4748

bC0
0.0986 0.0855 �1.4844 81.3559

bC1
0.2533 0.2711 �0.0555 �0.0752

bD1
0.5935 0.6125 2.1307 2.0032

SSE 5.7828 4.9763 3.7041 3.6986
A jð Þ 0.9775 0.9863 0.9249 0.9288

S. Alshqaq, A. Abuzaid and A. Ahmadini Journal of King Saud University – Science 33 (2021) 101576
15 were identified. The interest here is to compare the fitted model
using different estimators and to check the SSE ¼ P

SEð Þ.
The results based on classical LS and robust estimators are

reported in Table 4. The SSE for LS is the largest (SSELS=5.7828)
compare to other estimators. Thus, the CLMS is the superior
estimator.

7. Conclusion

This paper has revisited the JS circular regression model by
deriving a set of robust estimators including M, LTS and LMS esti-
mators to improve the robustness of the LS estimator. Simulation
results and the application on real data clearly show that robust
circular estimators perform better than the classical estimator
mentioned earlier. Thus, it is recommend to obtain robust estima-
tors for other circular regression models to increase the accuracy of
its predictability.
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