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In abiotic stresses, drought is the main problem in agricultural production which inhibits the plants to
show off their genetic potential. Maize is not only the cereal crop of the world but also 3rd important
cereal crop in Pakistan. Maize is drought-sensitive and affected at each growth and development stage.
So, the organic amendment is not only the solution to mitigate the drought stress due to long-lasting
moisture availability but also improves the growth, yield, quality, and nutrient uptake with improving
soil properties. Therefore, a two-year field experiment during 2018 and 2019 was laid out at
Agronomy Research Area, Department of Agronomy, Bahauddin Zakariya University, Multan, Pakistan.
Treatments included pre-screened maize hybrids: P-1429 (drought-sensitive) and Dk-6724 (drought-
tolerant); pre-optimized levels of each organic fertilizer source (OFS); recommended chemical fertilizer
source (CS), 10 t/ha biochar (BC), 10 t/ha farmyard manure (F.M) and 10 t/ha poultry manure (P.M);
and irrigation regimes i.e normal irrigation (Ck) 100 % field capacity and severe drought (SD) 50 % field
capacity. The Experiment was designed in a randomized complete block design (RCBD) with a split-
split plot arrangement and was replicated three times. Irrigation regimes were put in the main plot,
organic fertilizer sources were put in the subplot and maize hybrids were put in the sub-sub plot.
Different agronomic growth and yield attributes, quality attributes, crop physiology, soil physical prop-
erties, nutrient uptake, and activity of antioxidant enzymes were assessed. It resulted that in organic fer-
tilizer sources application, 10 t/ha poultry manure and farmyard manure followed by biochar improved
the growth and yield of maize hybrids significantly, under normal irrigation and severe drought. These
also improve the quality of maize by improving the nutrient uptake and soil physical properties like
increasing the soil porosity and decreasing the soil bulk density during consecutive years 2018 and
troubas),
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2019. It was also noticed that the application of organic fertilizers mitigated the adverse effect of drought
by the antioxidant defense system with the production of SOD, POD and CAT.
� 2023 Published by Elsevier B.V. on behalf of King Saud University. This is anopen access article under the

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Maize Zea mays L. is a cereal crop cultivated worldwide on a
large scale and is food for humans, animal feed, and industrial
raw material (Khan et al., 2008, Shah et al., 2022). As a food item,
it provides different minerals and vitamins, including vitamins B, C,
and E (Fekonja et al., 2011). Maize is used as processed and in its
raw form because it supplies an adequate amount of protein and
sugar (Lamphear et al., 2005). In Pakistan, it can be cultivated twice
a year during the spring and autumn season. In Punjab, the area of
cultivation for maize production is increasing during the spring
season due to the movement of formers from cotton cultivation
to maize cultivation. The average yield of maize in Punjab during
the year 2019–2020 was 9536 kg/ha which was low as compared
to others maize production countries. There are several reasons
behind the low yield of maize in Punjab, Pakistan. Abiotic stress
like drought stress and low soil fertility are the main factors for this
low yield.

Climate change is a major cause of high temperatures, more
evapotranspiration, and drought stress to all crops especially maize
(Hillel and Rosenzweig, 2002). Drought is the biggest challenge
worldwide to growing maize crops now a day (Zhang et al.,
2018). An optimum amount of water is required for the maize crop
for successful growth. Drought suppresses crop growth and devel-
opment, which leads to reduced yields and plant mortality (Aslam
et al., 2015, Shah et al., 2019). Water deficiency restricts the plant’s
metabolic activities leading to biochemical, physiological, and
morphological changes in plant processes and growth and devel-
opment (Djibril et al., 2005). Drought stress effect photosynthetic
rate and antioxidant activity (Khalid et al., 2021a,b, Hussain and
Shah, 2023).

Over the last few decades, a large number of chemical fertilizers
have been applied to prevent food shortages worldwide (Savci
Serpil, 2012; Sun et al., 2015). The excessive use of chemical fertiliz-
ers has led to several soil issues such as nitrogen leaching, soil degra-
dation, soil compaction, soil acidification, and reducing soil organic
matter (Horrigan et al., 2002; Nkoa Roger, 2014; Wang et al., 2019).
The usage of chemical fertilizers gradually depletes the soil and
increases heavymetals which are harmful to soil and human health
(Belyaeva et al., 2005). To copewith these problems, different strate-
gies are beingused. Organic fertilizer sources have the ability to hold
morewater and are being used to improve soil structure and soil fer-
tility. Organic substances should be used tomaintain soil health and
fertility (Bolan et al., 2003; Lehman et al., 2003). Organic fertilizers
act as the best fertilizers for increasing crop yield than chemical fer-
tilizers do by improving soil fertility (Mahmood et al., 2017; Cai
et al., 2019). Organic fertilizer sources improve soil fertility and crop
productivity (Cai et al., 2019, Wang et al., 2019; Duan et al., 2021).
Organic fertilizers are useful for enhancing environmental health
and increasing water-holding capacity, decreasing the cost of crop
production.Organic fertilizers are amajor constituent in sustainable
crop production (Adelekan et al., 2010).

There are different replacements for inorganic or chemical fer-
tilizers with organic substances like farm-yard manure, poultry
manure, and crop residues like biochar (Ibeawuchi et al., 2007).
Biochar is obtained from burning organic substances like crop resi-
dues, wood, etc. It assists the plants with more amount of carbon
(Woolf et al., 2010; Sohi, 2012). Fortification of biochar can
enhance the productivity of the soil because it helps to maintain
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soil fertility (Liang et al., 2006; Liu et al., 2013). Farmyard manure
is being used as an alternative chemical fertilizer to meet the nutri-
tional requirement of crops (Makinde et al., 2007; Law et al., 2009).
Farmyard manure helps the soil retain water and release nutrients
slowly, which increases microbial activity in the soil (Belay et al.,
2001). Manure can also minimize soil erosion and soil pollution
(Singh et al., 2016; Zhang et al., 2016). Poultry manure is also con-
sidered valuable organic fertilizer because of its nature to amend
and makes sure the availability of nutrients in the soil (Warren
et al., 2006). The presence of poultry manure minimizes the
wastage of nutrients and helps to incorporate moisture into the
soil (Ali et al., 2011; Adhikari et al., 2021). Poultry manure has a
high amount of carbon which integrates more amount of organic
matter into the soil. Therefore, the application of organic fertilizer
sources is regarded as a win–win to improve soil fertility and crop
production on agricultural land.

Hypothesis: It was hypothesized that organic amendments can
be helpful to increase maize productivity by improving the soil
structure and also mitigate the adverse effect of drought due to
increasing water holding capacity.
2. Materials and methods

2.1. Experimental site and design

The experiment was conducted in 2018 and was repeated in
2019 at Agronomic Research Area, Bahauddin Zakariya University
Multan, Punjab, Pakistan. The experiment was laid out on February
1st, 2018, and was repeated on the same date in 2019. An experi-
ment was laid out in Randomized Complete Block Design (RCBD)
with a split-split plot arrangement and each treatment was repli-
cated three times. Irrigation regimes were kept in the main plot,
organic fertilizer sources were kept in the subplot while maize
hybrids were kept in the sub-sub plot.

2.2. Pre-experiment plan

Before this study, a couple of experiments were conducted in
2017 for the screening of drought-sensitive and tolerant maize
hybrids under different irrigation regimes. Among the maize
hybrids, P-1429 and Dk-6724 were considered as drought-
sensitive and tolerant, respectively (Shah et al., 2022). Optimiza-
tion of levels of organic fertilizer sources i.e 0, 5, 10 t/ha (biochar,
poultry manure, and farmyard manure) with screened drought-
sensitive and tolerant maize hybrids under different irrigation
regimes was also done. It resulted that application of 10 t/ha bio-
char, poultry manure and farmyard manure is more effective as
compared control treatment followed by 5 t/ha application of bio-
char, poultry manure and farmyard manure.

2.3. Treatments plan

In this experiment, the efficacy of pre-screened drought-
sensitive and tolerant maize hybrids with the pre-optimized level
of each organic fertilizer source (recommended chemical fertilizer,
biochar, 5 t/ha poultry manure, and 5 t/ha farmyardmanure) under
different irrigation regimes were optimized. Treatments included
maize hybrids: P-1429 (drought-sensitive) and Dk-6724

http://creativecommons.org/licenses/by-nc-nd/4.0/
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(drought-tolerant); optimized levels of each organic fertilizer
source (OFS); recommended chemical fertilizer (CS), 10 t/ha bio-
char (BC), 10 t/ha farmyard manure (F.M) and 10 t/ha poultry man-
ure (F.M); and drought stress i.e normal irrigation (Ck) 100 % field
capacity and severe drought (SD) 50 % field capacity. Seeds of
maize hybrids were collected from Siraj Agro Chemicals, Multan.

2.4. Experimental soil and environment

The experimental soil was sandy clay loam with EC 2.8 dSm�1,
pH 7.9, and organic matter 1.02 %. Total available nitrogen, phos-
phorous, and potassium were 0.05 %, 9.50 mg/kg and 120 mg/kg,
respectively. Maximum and minimum daily temperature and rain-
fall recorded during the growth period for both years are given in
Fig. 1.

2.5. Organic fertilizer sources

Biochar was prepared by the pyrolysis method given by
(Qayyum et al., 2015) at the Muhammad Nawaz Sharif University
of Agriculture, Multan (MNSUAM). Poultry manure and farmyard
manure were collected from Veterinary Cattle Farm, Multan.
Physicochemical analyses of organic fertilizer sources are given
in Table 1.

2.6. Sowing methods and seed treatment

The experiment was laid out in direction of east–west. The size
of each experimental plot was 3 � 5 m. Sowing was done with the
Fig. 1. Maximum, minimum, and daily rainfall of
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dibbling method and plant-to-plant 18 cm and row-to-row dis-
tance of 70 cm was maintained to attain a plant population of
32,000 per acre. Before sowing seeds were treated with (Imidaclo-
prid 70WC), Thiamethoxam 70WC) @ 5 g/kg, and Thiophanate @
2 g/kg seed to prevent stem borer and disease attack.

2.7. Crop husbandry

A recommended dose of N:P: K (120:100:80) was applied
according to the designed treatments. Urea (46 % nitrogen) and
diammonium phosphate (18 % nitrogen + 46 % P2O2) fertilizers
were used as a source of chemical fertilizers source. The required
amount of phosphorus and potassium was applied at the time of
sowing while the required amount of nitrogen was applied in three
splits. The half dose was applied at the time of sowing and half of
the remaining was applied at the V8 stage and half was applied at
silking stage. All other agronomic practices were kept unchanged
for all the treatments during the growth period. Water holding
capacity was maintained during the entire growth period by using
the cut-throat flume and tensiometer. Plants were harvested at
physiological maturity for data collection.

2.8. Data collection

Data regarding yield attributes like plant height (cm), stem
diameter (cm), cob length(cm), number of grains rows, number
of grains per row, number of grains per cob, 1000-grain weight
(g), grain yield (t/ha), and biological yield (t/ha); quality parame-
ters like grain protein content (%) and oil content (%); and nutrients
experimental location during 2018 and 2019.



Table 1
Physicochemical analyses of experimental organic fertilizer sources used during 2018 and 2019.

Organic fertilizer sources Total OC (%) C: N D.M (%) Total N (%) Total P (mg/kg) Total K (mg/kg)

2018 2019 2018 2019 2018 2019 2018 2019 2018 2019 2018 2019

P.M 20.8 20.7 19.8 20.2 78.5 78.5 1.69 1.76 0.64 0.66 1.05 1.07
F.M 16.9 17.2 18.8 19.0 64.9 65.5 1.29 1.28 0.39 0.39 0.69 0.74
Biochar 23.1 23.0 19.9 20.2 62.0 62.4 1.12 1.11 0.45 0.47 0.60 0.60

P.M = Pollutary manure; F.M = Farmyard manure; D.M = Dry matter; OC = Organic carbon; N = Nitrogen; P = Phosphorus; K = Potassium.

M. Nadeem Shah, D.L. Wright, S. Hussain et al. Journal of King Saud University – Science 35 (2023) 102570
like nitrogen, phosphorus and potassium uptake (t/ha) was mea-
sure at physiological maturity. Ten plants from each experimental
plot were tagged before for collected collection. Quality traits like
grain oil content and grain protein content (Anonymous, 1990);
and nutrient uptake like nitrogen (Wolf, 1982), phosphorus
(Richards et al. 1954), and potassium (Ryan et al., 2001) were mea-
sured by pre-described methods. The chlorophyll contents index
was measured with the help of a SPAD meter (SPAS-502). Soil
physical properties like soil density and total porosity were mea-
sured by following (Blake and Hartge, 1986) and (Brady and
Weil, 1998). An antioxidant activity like superoxide dismutase
(SOD) contents were determined by following the protocol of
Beauchamp and Fridovich (Beauchamp & Fridovich, 1971), catalase
(CAT) was assayed by following Aebi (Aebi, 1984), peroxidase
(POS) was determined by Sakharov and Ardila (Sakharov &
Ardila, 1999).

2.9. Statistical analysis

All collected data were analyzed for analysis of variance by
using Statistix 9.1 statistical software. Three-way ANOVA was
applied for the significance level. The maize traits showing a signif-
icant difference (P � 0.05) were further analyzed through the least
significant difference (LSD) test for comparing the difference
among the treatment means. R studio and Microsoft Excel were
used to prepare graphs.

3. Results

3.1. Growth and yield attributes

Results regarding the interactive effect of organic fertilizer
sources and irrigation regimes between the drought-sensitive
Table 2
The influence of organic fertilizers and irrigations on the growth and yield of maize hybri

Treatments Plant Height (cm) Stem diameter (cm)

Drought Hybrids O.F.S 2018 2019 2018 2019

CK DK-6724 CS 186.3 d-f 190.1 d-f 1.84 d-g 1.94c-f
CK DK-6724 BC 190.7 cd 196.3c-e 1.90 d-f 2.00c-e
CK Dk-6724 FM 211.0b 217.7b 2.30 a 2.24b
CK DK-6724 PM 229.7 a 235.5 a 2.15b 2.42 a
CK P-1429 CS 182.2 fg 186.2 fg 1.82 e-g 1.91 eg
CK P-1429 BC 188.8c-e 194.2c-f 1.87 d-g 1.98c-e
CK P-1429 FM 192.8c 198.8c 1.94 cd 2.02c
CK P-1429 PM 211.8b 217.3b 2.03c 2.22b
SD Dk-6724 CS 152.0 i 154.3 i 1.52 j 1.61 h
SD Dk-6724 BC 173.1 h 178.2 gh 1.66 h 1.83 g
SD Dk-6724 FM 183.3 e-g 188.8 ef 1.80 fg 1.95c-f
SD DK-6724 PM 191.8 cd 197.3 cd 1.93 cd 2.01 cd
SD P-1429 CS 150.1 i 153.5 i 1.55 ij 1.56 h
SD P-1429 BC 172.0 h 177.2 h 1.65 hi 1.85 fg
SD P-1429 FM 179.8 g 187.0f 1.78 g 1.92 d-g
SD P-1429 PM 191.0 cd 196.5c-e 1.92 de 2.00c-e

Ck = control, O.F.S = organic fertilizer sources, CS = chemical source, BC = biochar, FM = fa
trait significantly differs at P � 0.05.
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and tolerant maize hybrids showed a significant difference in both
years 2018 and 2019 (Table 2 and Table 3).

Organic fertilizer sources (CS, B, FM, and PM) showed a signifi-
cant effect on plant height, stem diameter, cob length, grain rows
per cob, number of grains per row, and number of grains per cob
between the maize hybrids under normal and drought stress. Max-
imum Plant height (229.7 and 235.5 cm), stem diameter (2.15 and
2.42 cm), cob length (21.93 and 22.47 cm), grain rows per cob
(19.70 and 20.47), number of grains per row (41.33 and 42.80)
and number of grains per cob (835.3 and 875.9) was observed with
PM application (PM) under 100 % FC (Ck) in drought-tolerant maize
hybrid (Dk-6824) during 2018 and 2019, respectively. While the
minimum plant height (150.1 and 153.5 cm), stem diameter
(1.55 and 1.56 cm), cob length (14.27 and 15.13 cm), grain rows
per cob (13.27 and 14.37), number of grains per row (27.03 and
28.73) and number of grains per cob (358.9 and 413.7) was noted
with chemical fertilizer sources (CS) under 50 % FC (SD) in drought-
sensitive maize hybrid (P-1429) during 2018 and 2019, respec-
tively. Results showed that organic sources application increased
the growth of drought-sensitive maize hybrid (P-1429) and make
it statistically par with organic fertilizer sources in drought-
tolerant maize hybrid (Dk-6724) under the same irrigation regimes
during 2018 and 2019 (Table 2). Results also showed that the
application of organic fertilizer sources under severe drought
(SD) mitigated the drought stress when it was compared with nor-
mal irrigation (Ck) during 2018 and 2019 (Table 2).

Concerning the influence of organic fertilizer sources on cob
length, leaf area index (LAI), 1000-grain weight, grain yield, and
biological yield, the maximum cob length (21.93 and 22.47 cm),
leaf area index (5.41 and 5.52 cm2), 1000-grain weight (342.5
and 352.8 g), grain yield (9.44 t/ha and 9.77 t/ha) and biological
yield (17.67 t/ha and 19.62 t/ha) was noted with PM and FM appli-
cation under 100 % FC (CK) in drought-tolerant maize hybrid (Dk-
ds in 2018 and 2019.

Grain rows per cob Number of grains per
row

Number of grains per
cob

2018 2019 2018 2019 2018 2019

16.30c-e 17.20c-f 34.23 cd 36.17 cd 557.6 cd 622.1c-e
16.60c 17.37c-e 34.67c 36.47 cd 576.9 cd 633.2c-e
18.13b 19.07b 38.33b 40.47b 695.3b 773.4b
19.70 a 20.47 a 41.33 a 42.80 a 835.3 a 875.9 a
15.97 d-f 16.63 fg 32.83 e 35.47 de 524.0 d-f 590.4 d-f
16.40c-e 17.13c-f 33.97 cd 36.33 cd 556.6c-e 623.3c-e
16.73c 17.43c-e 34.67c 37.33c 581.1c 652.2c
18.40b 19.00b 38.13b 39.93b 701.5b 758.9b
13.83 h 14.47 h 27.37 g 29.57 g 378.3 g 427.8 h
15.20 g 16.23 g 31.20f 33.47f 473.9f 543.8 fg
15.90 ef 17.03 d-f 33.00 de 35.37 de 524.6c-f 602.6c-e
16.50 cd 17.43 cd 34.50c 37.00 cd 570.2 cd 645.2 cd
13.27 i 14.37 h 27.03 g 28.73 g 358.9 g 413.7 h
15.20 g 16.20 g 30.97f 32.83f 470.8f 532.8 g
15.57 fg 16.77 ef 32.33 e 34.47 ef 503.7 ef 578.8 e-g
16.30c-e 17.63c 34.37c 36.57 cd 560.9 cd 646.3 cd

rmyard manure, PM = poultry manure; Means not sharing the same letters for each



Table 3
Impact of organic fertilizer supplies and irrigation systems on growth and yield traits of maize hybrids during the years 2018 and 2019.

Treatments Cob Length (cm) Leaf area index 1000-grain weight (g) Grain yield (t/ha) Biological yield (t/ha)

Drought Hybrids F.S 2018 2019 2018 2019 2018 2019 2018 2019 2018 2019

Ck DK-6724 CS 17.77 d-f 18.30c-e 4.36 e-g 4.45 e-g 289.5 cd 297.4c-e 7.68 ef 8.46c-f 14.48 d-g 15.64 d-g
Ck DK-6724 BC 18.37 cd 18.67c-e 4.72 cd 4.82 cd 291.6 cd 302.0 cd 8.15 cd 8.52c-f 15.32 cd 16.26c-e
Ck Dk-6724 FM 20.23b 20.67b 5.41 a 5.52 a 324.0b 334.4b 9.44 a 9.77b 17.67 a 18.03b
Ck Dk-6724 PM 21.93 a 22.47 a 5.06b 5.17b 342.5 a 352.8 a 8.86b 10.31 a 16.31b 19.62 a
Ck P-1429 CS 17.30 fg 17.93 d-f 4.33 fg 4.42 fg 283.8 de 291.8 de 7.58f 8.14 e-g 13.99 fg 15.37f-h
Ck P-1429 BC 17.93c-e 18.47c-e 4.45 e-g 4.54 e-g 290.7 cd 299.6c-e 7.79 d-f 8.56c-f 14.38 e-g 16.08c-e
Ck P-1429 FM 18.43c 18.83c 4.62c-e 4.71c-e 298.7c 308.0c 8.08c-e 8.79c 14.92c-e 16.41 cd
Ck P-1429 PM 20.13b 20.73b 4.84 bc 4.94 bc 319.6b 329.4b 8.48 bc 9.52b 15.64 bc 18.03b
SD Dk-6724 CS 14.83 j 15.50 g 3.71 hi 3.79 j 236.5 g 243.2 g 6.49 gh 6.69 h 11.99 h 13.31 i
SD DK-6724 BC 16.47 hi 17.23f 3.96 h 4.07 hi 267.9f 276.2f 6.92 g 7.76 g 12.78 h 14.75 h
SD Dk-6724 FM 17.43 e-g 18.53c-e 4.30 g 4.38 g 282.9 de 291.7 de 7.52f 8.27 d-f 13.88 g 15.81 d-f
SD DK-6724 PM 18.20 cd 18.40c-e 4.60c-e 4.65 d-f 296.1 cd 305.3 cd 8.05 de 8.75 cd 14.85c-f 16.64c
SD P-1429 CS 14.27 k 15.13 g 3.69 i 3.76 j 230.0 g 236.3 g 6.45 h 6.48 h 11.90 h 12.85 i
SD P-1429 BC 16.37 i 16.97f 3.93 hi 4.01 ij 262.8f 271.9f 6.87 gh 7.73 g 12.69 h 14.83 gh
SD P-1429 FM 17.07 gh 17.73 ef 4.24 g 4.32 gh 275.7 ef 285.9 ef 7.42f 8.07 fg 13.68 g 15.49 e-g
SD P-1429 PM 18.17 cd 18.80 cd 4.58 d-f 4.67 d-f 292.7 cd 300.7c-e 8.02 de 8.62c-e 14.81c-f 16.47 cd

Ck = control, F.S = Fertilizer sources, CS = chemical fertilizer source, BC = biochar, FM = farmyard manure, PM = poultry manure; Means not sharing the same letters for each
trait significantly differed at P � 0.05.
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6724) during 2018 and 2019, respectively. While the minimum cob
length (14.27 and 15.13 cm), leaf area index (15.13 and 3.69 cm2),
1000 grain weight (230.0 and 236.3 g), grain yield (6.45 t/ha and
6.48 t/ha), and biological yield (11.90 t/ha and 12.85 t/ha) was
recorded with chemical fertilizer sources (CS) under 50 % FC (SD)
in drought-sensitive maize hybrids (P-1429) during 2018 and
2019 (Table 3). Results regarding 1000-grain weight showed that
organic sources application mitigated the drought stress in P-
1429 and also under (SD) treatment and make it statistically as
par Dk-6724 and under (Ck) treatment during 2018 and 2019.
Results regarding the grain yield showed that the application of
chemical fertilizers sources (CS) and farmyard manure application
in Dk-6724 were statistically as par biochar application (BC) and
farmyard manure application (FM), respectively in P-1429 under
the same irrigation regimes (SD) during 2018. In 2019, the statisti-
cal value for grain yield of P-1429 with poultry manure application
(PM) under (Ck) and biochar application (BC) under (SD) was sta-
tistically as par grain yield in Dk-6724 with farmyard manure
application (PM) under (Ck) and biochar application (BC) under
(Ck), respectively. Application of FM in Dk-6724 under SD removed
the adverse effect of drought and made it statistically as par P-
1429 with (CS) application under Ck treatment during 2019. Appli-
cation of CS, BC, and FM in P-1429 for biological yield mitigated the
drought effect and made it statistically as par Dk-6724 under the
same irrigation during 2018. The same mitigated effect was
observed in 2019.

3.2. Quality traits

Quality parameters like oil content and grain protein content
showed that organic fertilizer sources significantly improved the
quality of maize hybrids under drought stress during both years.
The maximum oil content (4.42 and 4.47 %) was noted in Dk-
6724 with farmyard manure application under normal irrigation
while the minimum (2.98 and 3.00 %) oil content was noted in P-
1429 with CS under severe drought (CS) during the 2018 and
2019, respectively. Alike, oil content and maximum protein con-
tent (8.04 and 8.35 %) were got in Dk-6724 with farmyard manure
under normal irrigation while the minimum protein content (5.41
and 5.91 %) was got in P-1429 with CS application under severe
drought (Fig. 3.1). A dramatic effect of organic fertilizer sources
was shown on drought-sensitive maize hybrid when it was com-
pared with Dk-6724 under normal and drought stress. Oil and
grain protein content percentage was improved when organic fer-
tilizer sources were applied under drought stress as compared to
5

normal irrigation. Results also showed that organic fertilizer
showed improved oil and protein content when organic fertilizer
sources were applied to drought-sensitive maize hybrid P-1429
(Fig. 2).

3.3. Nutrient uptake

Results regarding the effect of organic fertilizer sources on
nutrient uptake of maize hybrids under drought stress were also
significant. Organic sources showed a significant effect on irriga-
tion regimes and maize hybrids. DK-6724 uptake the maximum
nitrogen (131.8 and 141.1 kg/ha) with poultry manure application
under control irrigation while P-1429 uptake the minimum nitro-
gen (88.2 and 95.2 kg/ha) with CS application under severe
drought during 2018 and 2019, respectively. Similarly, nitrogen
uptake, maximum phosphorus (27.3 and 28.0 kg/ha), and potas-
sium uptake (40.2 and 42.8 kg/ha) were also noted in the same
treatment as nitrogen uptake during 2018 and 2019, respectively.
Results also showed that organic sources application improved
the nutrient uptake under severe drought stress when it was com-
pared with control irrigation. Organic sources application also
improved the nutrient uptake in P-1429 which resulted in a non-
significant effect between the hybrids. Among the organic fertilizer
sources, the maximum uptake was shown in poultry manure fol-
lowed by farmyard manure and biochar. Drought stress dramati-
cally decreased nutrient uptake (Fig. 2).

3.4. Leaf chlorophyll contents

The application of organic fertilizer sources and irrigation
regimes showed a significant effect on leaf chlorophyll contents
between the maize hybrids during 2018 and 2019. Among the
organic fertilizer sources, the application of poultry manure
showed the maximum leaf chlorophyll contents followed by farm-
yard and biochar application when it was compared with chemical
fertilizer application during both years. High leaf chlorophyll con-
tents were noted under drought stress when it was compared with
chemical fertilizer under 50 % FC. While maize hybrids showed a
non-significant effect with the application of organic fertilizer
sources and irrigation regimes for leaf chlorophyll contents (Fig. 3).

3.5. Soil properties

Results for soil analysis also showed that the application of
organic fertilizer sources significantly improved the soil properties



Fig. 2. Effect of organic fertilizer sources and irrigation regimes on the quality and nutrient uptake between the maize hybrids during 2018 and 2019.
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Fig. 3. Effect of organic fertilizer sources and irrigation regimes on leaf chlorophyll contents between the maize hybrids at different growing stages during 2018 and 2019.
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like soil bulk density and soil porosity. Soil bulk density is an
important parameter for crop nutrition and irrigation manage-
ment. The interactive effect of organic fertilizer sources and irriga-
tion regimes with maize hybrids was non-significant for soil bulk
density during both years. The main effect of organic fertilizer
sources and irrigation regimes was significant. Maximum soil bulk
density (1.50 and 1.49 g cm�3) was measured in chemical fertilizer
application while minimum soil bulk density (1.39 g cm�3) was
measured in poultry manure application during 2018 and 2019,
respectively. Between the irrigation regimes, maximum soil bulk
density (1.42 and 1.41 g cm�3) was noted in 50 % FC, and minimum
soil bulk density (1.45 and 1.44 g cm�3) was noted in drought
stress (100 % FC). It was noticed in a two-year field experiment that
with the application of organic fertilizer sources, soil bulk density
decreased during 2018 as compared to 2019. The application of
organic fertilizer sources also affected the soil porosity signifi-
cantly. Maximum soil porosity was measured in DK-6724 with
the application of poultry manure under 100 % FC while the mini-
mum soil porosity was measured in P-1429 with chemical fertilizer
application under 50 % FC (Fig. 4).
3.6. Antioxidant activity

Antioxidant activity was affected significantly by the applica-
tion of organic fertilizer sources and irrigation regimes during
2018 and 2019. Maximum SOD, POD, and CAT values were
7

recorded in DK-6724 with the application of poultry manure appli-
cation under 100 % FC. Minimum antioxidant activity was noted in
P-1429 with chemical fertilizer under severe drought. Poultry
manure and farmyard manure showed low SOD values under
100 % FC than biochar and chemical fertilizer applications at
100 % FC. The same pattern was noted under severe drought stress
(50 % FC). POD values also differed significantly with the applica-
tion of organic fertilizer sources and irrigation regimes. The decline
in POS values was noticed in chemical fertilizer and biochar appli-
cation than in poultry manure and farmyard manure application
under normal irrigation (100 % FC) and severe drought (50 % FC).
The same pattern for CAT was also noticed. Maximum CAT was
measured in DK-6724 with poultry manure application under
100 % FC than P-1429 with the application of chemical fertilizer
under severe drought (Fig. 5).
4. Discussion

4.1. Growth and yield

Our results revealed that plant growth, yield and yield compo-
nents increased with the application of organic sources when com-
pared with chemical fertilizer sources (Table 2 and 3). Nutrient
uptake affected crop physiology and increased the leaf chlorophyll
content which ultimately improved the maize crop growth. Our
results were as par previous findings. In maize, the application of



Fig. 4. Effect of organic fertilizer sources and irrigation regimes on soil properties between the maiz e hybrids during 2018 and 2019.
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manures, i.e., PM and FM tend to promote higher plant height
(Iqbal et al., 2013; Mohsin et al., 2012; Gul et al., 2021). Poultry
manure application compared to farmyard manure enhanced the
LAI (Amanullah and Khalid 2015). In maize, the length and diame-
ter of the cob have a crucial role in yield. Grains per ear and grain
size both affect maize yield, which is significantly influenced by
these two factors. The improvement in crop growth increased the
yield attributes of maize. For maize to grow its cobs and kernels,
nitrogen is a must. Cob and kernel development in maize necessi-
tates the presence of nitrogen. Organic manure application helped
to raise the number of grains per cob (Khan et al., 2008; AG et al.,
2017). The application of organic manure enhanced the growth,
grain yield, and yield components (Khaliq et al., 2004; Khan
et al., 2008; Khalid et al., 2016). Many researchers (Khanzada and
Arif 2000; Ali et al., 2011; Khan et al., 2008; Udom and Bello
2009, Hadayatullah et al., 2013) reported that poultry manure sig-
nificantly increased the grain yield in maize and biological yield
(Iqbal et al., 2013; Sharma et al., 2019).

Among the abiotic stresses, drought is the major limiting factor
for the growth and productivity of many field crops. Although
(Zhang et al., 2014; Edreira et al., 2014; Fahad et al., 2016). In this
experiment, drought stress reduced the plant height, stem diame-
ter, and leaf area of both drought-sensitive and drought-tolerant
maize hybrids, leading to a reduction in yield and other related
traits (Tables 2 and 3). This stress treatment had a more severe
effect on drought-sensitive maize hybrid as compared to
drought-tolerant maize hybrid. Several previous studies have
shown that drought stress can negatively impact the growth and
8

yield of various cereal crops (Rollins et al., 2013; Hu et al., 2015;
Elazab et al., 2016).

4.2. Quality attributes

Our results showed that maize hybrids were significantly
affected by drought stress and organic sources application.
Drought stress decreased the oil content and protein content while
organic fertilizer sources improved the quality of maize hybrids
(Fig. 2). Poultry manure and farmyard manure application
increased the protein and oil content compared to biochar and
chemical fertilizers. Our findings were supported by past research.
It has been shown that protein content is substantially impacted by
nitrogen content that is present in sufficient quantities in organic
sources, especially in poultry manure and farmyard manure. The
rise in protein levels may be related to an increase in leaf N con-
tent, rapidly converted to protein during grain growth and then
transported to grain for protein synthesis (Nagavani and Subbian,
2014). Aldal’in (2017) resulted that oil content increased with
the application of poultry manure. The application of poultry man-
ure is more profitable than other organic fertilizer sources regard-
ing the quality parameters of maize (Triboi et al. (2000); Awad
et al., 2014).

4.3. Nutrient uptake

Results regarding nutrient uptake showed that maximum N, P,
and K were measured in poultry manure and farmyard manure



Fig. 5. Effect of organic fertilizer sources and irrigation regimes on antioxidant activity between the maize hybrids during 2018 and 2019.
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as compared to biochar and chemical fertilizer under normal and
drought stress (Fig. 2). Manure study shows that poultry manure
is more nutrient-dense than other manure. Hirzel et al. (2007);
Waniyo et al. (2013); Liu et al. (2010) and Soro et al. (2015) support
our results; they concluded that N, P, and K uptake increase with
increasing nutrient concentration from organic fertilizer sources
amendment in soil. These results were also confirmed by some
researchers (Patidar & Mali (2002); Rao & Shaktawat (2002). So,
it is clear that in maize, maximum N, P, and K uptake was observed
in poultry manure application (Fahad et al., 2011; Sarwar et al.
9

2012; Das et al. 2013) because it is reasonable that poultry manure
application increased the soil nitrogen content (Garg and Bahla
et al., 2011; Aldal’in, 2017; Aziz et al., 2010). Similarly, with the
application of poultry manure, P and K uptake was also increased
compared to the control. The improvement in nutrient uptake
may be due to the influence of pH and improvement in soil phys-
ical properties. These findings confirm our results.

Drought stress as compared to control treatment significantly
affected nutrient uptake of drought-sensitive and tolerant maize
hybrids (Fig. 2). Several previous studies have reported that
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drought can decrease the uptake and transportation of macronutri-
ents (such as nitrogen, phosphorus, and potassium) in various
plant species (Farooq et al., 2011; Asrar et al., 2011; Suriyagoda
et al., 2014).

4.4. Chlorophyll contents

Our results showed that organic sources application increased
the uptake of N, P, and K. Organic sources application enhances
the nutrient uptake, mainly N uptake by reducing mineral leaching
(Fig. 3). Soil Nutrient uptake affected crop physiology and
increased the leaf chlorophyll content. The leaf is a factory for food
synthesis in the plant. Improvement in leaf chlorophyll contents
might be due to the N uptake from organic fertilizer sources.
Among the organic fertilizer sources, poultry manure and farmyard
manure are rich sources of N nutrients. Nitrogen is an integral part
of chlorophyll. Moreover, maximum leaf area was observed in the
application of poultry manure and farmyard manure application,
respectively. A larger leaf area allows for more photosynthesis,
which can improve maize grain yield and related traits by increas-
ing the uptake of nutrients and water through increased transpira-
tion. These findings are consistent with our results.

Drought stress significantly affected chlorophyll contents when
compared with the control condition (Fig. 3). Chlorophyll contents
were reduced under drought stress. These findings were revealed
with previous findings. Chlorophyll, the pigment responsible for
photosynthesis in plants, is particularly sensitive to drought stress.
Upadhyaya et al. (2008) and Oneto et al. (2016) reported that
drought stress can reduce the amount of chlorophyll in leaves,
which can impair photosynthetic efficiency and plant growth.

4.5. Soil physical property

Results showed that the interactive effect of maize hybrids with
organic fertilizer sources under drought stress on soil bulk density
was not significant. While soil porosity showed a significant effect
on drought-sensitive and tolerant maize hybrids with the applica-
tion of organic fertilizer sources under drought stress (Fig. 4). The
improvement in crop growth was subjected due to improvement in
the soil’s physical properties. The decrease in soil bulk density and
increase in soil porosity by application of organic fertilizer sources
significantly improved the nutrient uptake by the plant. Organic
fertilizers are naturally available mineral sources that contain a
moderate amount of plant essential nutrients. Organic amend-
ments have profound influences on soil’s physical properties. They
gradually release nutrients into the soil and maintain nutrient bal-
ance for the healthy growth of crop plants (Shaji et al., 2021). Sev-
eral studies revealed that the application of organic manures
decreased the bulk density (Tejada et al., 2006; Mehmood et al.,
2017) and total porosity (Celik et al., 2004; Yang 2011; AlAmin
et al., 2017; Roy et al., 2020). The increase in porosity was due to
an increase in soil organic matter (Aggelides et al., 2000). The
decrease in soil bulk density and increase in soil porosity by appli-
cation of organic fertilizer sources significantly improved the nutri-
ent uptake by the plant. The finding support our results. These
findings support our results.

4.6. Antioxidant activity

Results of this experiment showed that drought stress induced
the production of enzymes by their defense system and organic
sources improved this production. Maize hybrids were also signif-
icantly affected by drought stress and organic sources application
(Fig. 5). Drought leads to increased generation of reactive oxidative
species (ROS) in the plant cell. To mitigate the negative effects of
ROS in plants, different ROS-scavenging enzymes like superoxide
10
dismutase (SOD), catalase (CAT), and peroxidase (POD) are pro-
duced by the antioxidant defense machinery (Hussain et al.,
2018; Khalid et al., 2021a,b). Plants rely on complex antioxidant
systems to counteract the production of reactive oxygen species
(ROS) and protect themselves from oxidative damage (Sharma
et al., 2012; Hussain et al., 2016; Zafar et al., 2018). The application
of organic fertilizer sources improved the generation of these
enzymes to mitigate the drought stress effect (Hussain and Shah,
2023). The drought-tolerant maize hybrid was also significantly
affected under drought stress and application of organic fertilizer
sources as compared to the drought-sensitive maize hybrid. These
findings support our results.

5. Conclusions

The application of organic fertilizer sources improves crop yield,
yield attributes and maize quality with increasing nutrient uptake.
Organic amendments also mitigate the adverse effect of drought
through the antioxidant defense system with the production of dif-
ferent ROS-scavenging enzymes. Among the maize hybrids, the
application of 10 t/ha poultry manure followed by farmyard man-
ure and biochar is more effective as compared to chemical fertilizer
application. Organic manure also improved the efficiency of
drought-sensitive maize hybrids (P-1429) under drought stress.
The price of chemical fertilizers is increasing day by day and mar-
ginal formers of Pakistan cannot afford the high price of chemical
fertilizers. So, the application of 10 t/ha application of poultry man-
ure is an alternative to chemical fertilizers.
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