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Abstract The recent paper ‘‘The tanh–coth method combined with the Riccati equation for solving

nonlinear coupled equation in mathematical physics’’ (J. King Saud Univ. Sci. 23 (2011) 127–132) is

analyzed. We show that the authors of this paper solved equations with the well known solutions.

One of these equations is the famous Riccati equation and the other equation is one for the Wei-

erstrass elliptic function. We present the general solutions of these equations. As this takes place,

19 solutions by authors do not satisfy the equation but the other 29 solutions can be obtained from

the general solutions.
ª 2012 King Saud University. Production and hosting by Elsevier B.V. All rights reserved.
In the recent paper Bekir and Cevikel (2011) tried to study
the (2+1)-dimensional system of two equations in the form

ut þ auxxy þ 4auvx þ 4auxv ¼ 0; ð1Þ
ux ¼ vy ð2Þ

However, in fact, these authors looked for exact solutions
of these equations taking the traveling waves into account
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uðx; tÞ ¼ uðnÞ; vðx; tÞ ¼ vðnÞ; n ¼ xþ y� b t ð3Þ

As a result using variables (3) the authors transform equations
(1) and (2) to the system of nonlinear ordinary differential
equations in the form:

� bu0 þ au000 þ 4auv0 þ 4au0v ¼ 0 ð4Þ
u0 ¼ v0: ð5Þ

After integrating both equations of system (4) and (5), the

authors omitted constants of integration and obtained the
system

au00 � buþ 4au2 ¼ 0; ð6Þ
u ¼ v: ð7Þ

In fact, taking arbitrary constants into account we have the
system of equations in the form

au00 þ 4au2 � Cu� C2 ¼ 0 ð8Þ
u ¼ v� C1; ð9Þ
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where C= b � 4aC1 and C1, C2 are arbitrary constants.

Authors used the tanh–coth method for finding some exact
solutions of system (8) and (9). However the first equation of
system (8) and (9) (or system (6) and (7)) has the well known

general solution. Let us show this fact.
After multiplying on u0 Eq. (8) can be integrated with re-

spect to n again. In this case we have the equation in the form

ðu0Þ2 ¼ � 8

3
u3 þD1u

2 þD2uþD3; ð10Þ

where D1 ¼ C
a, D2 ¼ 2C2

a and D3 are arbitrary constants. The
general solution of (10) was found more than one century
ago and may be expressed via the Weierstrass elliptic function
(see, for example, Polyanin and Zaitsev (2003); Kudryashov

and Sinelshchikov (2012)). We can see it if we substitute
u ¼ � 3

2
}ðnÞ þ D1

8
into Eq. (10). In this case we obtain the fol-

lowing equation for the Weierstrass elliptic function

ð}0Þ2 ¼ 4}3 � g2}� g3

g2 ¼
2D2

3
þD2

1

12
; g3 ¼ �

4D3

9
� D3

1

216
�D2D1

18

ð11Þ

As a result we have solution of Eq. (8) in the form

u ¼ C

8a
� 3

2
}ðn� n0; g2; g3Þ ð12Þ

where

g2 ¼
4C2

3a
þ C2

12a2
; g3 ¼ �

4D3

9
� C3

216a3
� C2C

9a2
ð13Þ

We checked all solutions by Bekir and Cevikel (2011) and

obtained that 19 solutions from this paper: u3, u4, u10, u11,
u12, u13, u16, u17, u23, u24, u25, u26, u40, u41, u42, u43, u44, u47
and u48 do not satisfy Eq. (6) and sequently these solutions

are wrong. The other 29 solutions of Eq. (6) of Bekir and Cev-
ikel (2011) can be obtained from solution (12). For example,
when D2 and D3 in (11) are equal to zero, solution of (6) can

be transformed to the form:

u ¼ � 3D1

8
þ 3D1

8
tanh2

ffiffiffiffiffiffiffiffiffiffiffi
�D1

4

r
ðn� n0Þ

 !
: ð14Þ

Assuming D1 = �1 and n0 = 0 , we obtain

u ¼ 3

8
1� tanh2 n

2

� �� �
¼ 3

8

1

cosh2 n
2

� � ¼ 3

8
sech2

n
2

� �
ð15Þ

which coincides with u2 of paper by Bekir and Cevikel (2011)
(see formula (31)).

For D1 = 4 we have

u ¼ � 3

2
ð1þ tan2ðn� n0ÞÞ ¼ �

3

2

1

cos2ðn� n0Þ

¼ � 3

2
sec2ðn� n0Þ ð16Þ
For n0 = 0 the obtained solution coincides with u9 in work by
Bekir and Cevikel (2011) (see formula (38)). If n0 ¼ p

2
our solu-

tion coincides with u8 in Bekir and Cevikel (2011) (see formula
(37)). So it is not hard to make sure that all 29 ‘‘new’’ solutions
found by Bekir and Cevikel (2011) are contained in the solu-

tion (14) and consequently in general solution (12).
Bekir and Cevikel (2011) also considered the Riccati equa-

tion in the form
Y0 ¼ Aþ BYþ CY2; ð17Þ

where A, B and C are constants. Authors applied the
tanh–coth method at B = 0 to look for exact solution of Eq.

(17). However one can note that Eq. (17) also has the general
solution. In the case B = 0 the general solution of Eq. (17)
takes the form

Y ¼
ffiffiffiffi
A

C

r
tanð

ffiffiffiffiffiffiffi
AC
p

ðDþ nÞÞ; ð18Þ

where D is an arbitrary constant. It is not hard to see that all

12 specific solutions (formulae (10) in Bekir and Cevikel
(2011), which are used for constructing the solutions of Eq.
(6), are contained in (18). For example, if we take

A ¼ �C ¼ 1
2
we have Y1 ¼ tanh n

2

� �
in the case D= 0 and we

obtain Y1 ¼ coth n
2

� �
in the case of D= �ip. For A = 1,

C= 4 we obtain both solutions Y8 which differs only in the

phase of the argument (i.e. arbitrary constant D).
In conclusion, let us note that idea by Bekir and Cevikel

(2011) using the simplest equation method for finding exact

solutions was published in paper by Kudryashov (1990,
2005). We have to point out that the authors of work Bekir
and Cevikel (2011) made many mistakes discussed in papers
Kudryashov (2009a,b), Kudryashov and Loguinova (2009),

Kudryashov and Soukharev (2009), Kudryashov (2010),
Kudryashov and Ryabov (2010), Kudryashov et al. (2010),
Parkes (2009, 2010a,b,c).
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