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With the continuous innovation and development of related technologies in the field of robotics, various
robots have emerged in large numbers, the application scenarios of robots are becoming more and more
complex, and the requirements for robot technology are also getting higher and higher. As an indispens-
able part of robotics research, path planning technology has very important research and application
value. As a newmovable snake-shaped robot, the snake-shaped robot has always been a research hotspot
in the field of snake-shaped robots due to its multi-gait movement ability and strong environmental
adaptability. Among the various motion forms of the snake-shaped robot, the winding motion has the
highest efficiency, and the snake-shaped robot in this motion form can also assist itself in its movement
by contact with obstacles. However, there are few researches on the obstacle-assisted motion of snake-
like robots, and the algorithm for solving collision dynamics is relatively simple. Therefore, it is necessary
to conduct in-depth research on obstacle-assisted motion snake-like robots. The trajectory planning algo-
rithm of the multi-NAO snake robot is studied. First, it analyzes the basic principles and implementation
steps of the RRT algorithm and evaluates its advantages and disadvantages. On this basis, an improved
fast-expanding random algorithm is proposed for the shortcomings of the RRT algorithm. Combining
the advantages of the global search of the RRT algorithm, it is necessary to introduce an appropriate local
search algorithm. Under the premise of ensuring that the path can be generated, a certain algorithm is
added to improve the smoothness of the path, in order to reduce the turning time of the snake-like robot
when it walks, and improve the search efficiency. Aiming at the randomness of RRT when generating ran-
dom tree nodes, other algorithms are purposefully introduced to enable it to grow toward the target
point. Path planning simulations verify that the improved two-way rapid expansion random tree algo-
rithm has significantly improved search speed and search efficiency compared with Basic-RRT and Bi-
RRT algorithms, with shorter average planning time and higher success rate, the generated path is
smoother. Improved algorithm can not only avoid static global obstacles in a dynamic environment,
but also efficiently avoid sudden dynamic obstacles. The real-time dynamic obstacle avoidance experi-
ments based on the FANUC snake-shaped robot guiding the anthropomorphic obstacles to move and
rotate in translation and the snake-shaped robot dynamically avoiding real human arms verify that
the proposed algorithm can dynamically avoid regular and irregular moving obstacles online in time.
When the number of obstacles is 3, the number of successful plans is 49, and the planning time is
55 ms; when the number of obstacles is 12, the number of successful plans is 40, and the planning time
is 88.9 ms. Obviously, the increase in the number of obstacles leads to a decrease in the number of suc-
cessful planning and an increase in planning time.
� 2022 Published by Elsevier B.V. on behalf of King Saud University. This is anopenaccess article under the

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

With the increasingly obvious service trend of mobile snake-
shaped robots, it has gradually penetrated into every corner of
social production and life (Albini et al., 2021). Mobile snake-
shaped robots can use their own sensing equipment to detect the
surrounding environment and avoid obstacles in real time, in a
mode similar to human intelligence. Compared with other types
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of snake-shaped robots, mobile snake-shaped robots have unique
mobility characteristics that can bring more and more widely
applicable scenarios, so they have extremely high military and
civilian market value (Liu et al., 2019; Naughton et al., 2021; Jia
and Ma, 2021). At the same time, the research and application of
mobile snake robot technology can also reflect the national indus-
trialization development level and science and technology devel-
opment level. It is an important manifestation of national
scientific and technological innovation. Therefore, most countries
currently have the technical level and independent innovation
ability of mobile snake robot industry. The investment of the com-
pany is also increasing, and its application prospects are attracting
widespread attention from all walks of life (Amanov et al., 2021;
Pavlik et al., 2021).

Due to the wide variety of application scenarios of the mobile
snake-like robot, and many uncertain factors such as the diversity
of its task targets and the complex and changeable operating envi-
ronment, the requirements for the performance of the driving tra-
jectory planned by the algorithm itself are becoming higher and
higher (Foerster and Schmid, 2019). However, due to the short-
comings of traditional path planning algorithms, such as slow con-
vergence speed, high computational complexity, and poor
applicability, it has been difficult to meet the adaptability require-
ments for different environments (Tang et al., 2020). Therefore, a
high efficiency and strong accuracy is sought. And the motion plan-
ning algorithm that meets the real-time requirements is very
urgent and necessary. At the same time, with the continuous
development and maturity of the theory of snake-like robots, path
planning has become an indispensable core technology for mobile
snake-like robots towards the artificial intelligence stage (Li et al.,
2020). At present, mobile snake-like robots can only acquire the
unknown environment by attaching sensors to their body, and
use sensor scanning recognition technology to model the free state
space in the unknown environment. The mobile snake-like robot
needs to be in the process of motion planning. To master real-
time information in an unknown environment and complete
real-time obstacle avoidance, the requirements for the path plan-
ning algorithm of the mobile snake robot are also greatly improved
(Véras et al., 2019). In addition, as mobile snake-like robots have
been widely used in service areas such as industrial, agricultural,
military and medical services, the application range of path plan-
ning algorithms has gradually increased (Tanaka et al., 2021).
Therefore, it is necessary to study the path planning of mobile
snake-like robots in uncertain environments.

In this paper, the trajectory planning algorithm of the snake
robot is designed, and the experimental verification is carried out
using the SimRobot simulation software and the real snake robot.
Specifically, the novelty of this paper can be summarized as
follows:.

First: An improved RRT algorithm is proposed for the shortcom-
ings of the basic RRT algorithm.

Second: A hybrid trajectory planning algorithm is proposed
based on the dynamic characteristics of the competition environ-
ment. We conduct simulations with SimRobot simulation software,
and verify the accuracy and efficiency of the hybrid algorithm
through experiments on a solid snake-like robot.

Third: The Bi-RRT-Star dynamic obstacle avoidance path plan-
ning method based on the improved sampling function in the tar-
get direction is proposed, which is improved from three aspects:
connection strategy, heuristic dense sampling and expansion of
adjacent nodes.

Fourth: The effectiveness of the planning algorithm is verified
through the MATLAB static simulation and ROS dynamic simula-
tion as well as the real obstacle avoidance experiment of the snake
robot in a dynamic environment.
2

Fifth: Based on the V-REP environment, dynamic obstacle
avoidance simulation and a series of snake-like robot avoidance
dynamic obstacle experiments are carried out, which verifies that
the dynamic path planning method proposed in this paper can
achieve online avoidance of continuous motion obstacles.
2. Related work

Relevant scholars have developed the S1 � S7 series of snake-
shaped robots (Wang et al, 2019). Among them, the S5 has a very
high degree of bionics. It has a total of 8 torso units, and uses a 4-
channel radio to control 64 servo motors to achieve yaw motion. It
carries a battery to provide power. The S5 snake-shaped robot has
many joints and a small aspect ratio, which is very similar to the
aspect ratio of a real snake. The latest S7 adopts a more advanced
segmented design, which can achieve lateral and longitudinal fric-
tion differences without using passive wheels. In addition, the
snake-shaped robot head is equipped with a distance sensor, a
bending sensor, a rotation angle sensor, a camera, etc. It can realize
the functions of distance detection, motion measurement, rotation
angle measurement, image acquisition and so on.

Related scholars have proposed the DRRT algorithm, namely
dynamic RRT, which is suitable for dynamic environments
(Nakajima et al., 2019). The core idea is to make path planning fas-
ter and more stable by retaining historical path information. The
difference with ERRT is that DRRT is not a reserved path node.
Instead, when the environment changes, the points and branches
that become invalid due to obstacles in the current RRT are
removed, and the remaining vertices and branches are still avail-
able. Search in the tree until the target point is found. However,
it is possible that the tree cannot reach the target point after pro-
cessing, so expand on the remaining trees until the target point is
found.

Relevant scholars have proposed a comparative RRT algorithm
for the dynamic environment, planning two paths per cycle: a
stable path and a random path (Praserttaweelap and
Kiatwanidvilai, 2020). The stable path is through pruning and re-
planning the historical path to make it as close as possible to the
path of the previous cycle. The random path is derived from the
basic RRT method, and the path is random. By comparing the
two paths, a better path is obtained. This algorithm can prevent
the path from falling into a non-optimal stable state, and make it
gradually approach a better path.

Randomized Path Planner (RPP) is recognized as the first ran-
domized algorithm for motion planning (Li et al., 2021). This algo-
rithm opens a new door for motion planning. This algorithm
combines the idea of artificial potential field, by constructing an
artificial potential field in the configuration space, searching the
path trajectory along the negative gradient direction from the ini-
tial point to the target point. Because this type of algorithm can
avoid local minima by random walk method, RPP will not fall into
the local minima, search the path for the global optimum, and have
a very good effect on the completeness of the probability of path
planning (Hua et al., 2021).

Genetic algorithm is also one of the most used intelligent algo-
rithms for path planning of snake-shaped robots (Liu and Guo,
2019; Agarwal and Bharti, 2018). It can achieve good planning
results in the static workspace of single-snake robots and the
dynamic space of multi-snake robots. Relevant scholars have pro-
posed a knowledge-based genetic algorithm (GA), and used it in
the path planning of a mobile snake-like robot (Asghar et al.,
2021). They proposed a knowledge-based genetic algorithm to
integrate domain knowledge into its dedicated domain. Others
used genetic algorithms to complete the path planning of the
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snake-shaped robot in a discrete space, and the planned path
achieved good results (Wang et al., 2018; Girija and Joshi, 2019).
However, this method is carried out under a certain environmental
model. If the obstacles in the environment change, this method is
not applicable. They applied the improved genetic algorithm-
genetic simulated annealing method to the path planning problem
of the snake-like robot, which effectively improved the calculation
speed of path planning (Malik and Ahmad, 2017).
3. Method

3.1. Serpentine robot navigation architecture

The overall framework of the snake-shaped robot for navigation
is shown in Fig. 1. It can be seen from Fig. 1 that the key to snake
robot navigation is path planning. The path planning of snake robot
mainly includes two parts: planner and cost map. The path plan-
ning function package move_base has an interface for configuring
and running the navigation of the snake-shaped robot, and can
interact with it. Due to the existence of the path planning function,
the snake-shaped robot only needs to obtain the target position of
the navigation and some necessary sensor information. Path plan-
ning in ROS mainly relies on two planners, the global path planner
and the local path planner.
3.2. Fast expanding random tree algorithm

Rapidly-Exploring Random Tree (RRT) is a data structure and a
fast global search algorithm. It is proposed to solve the path plan-
ning problem of snake-shaped robots. The RRT algorithm not only
has the advantages of the probabilistic graph method, but is also
suitable for solving non-integrity constrained dynamics and kine-
matics problems, and in the case of integrity constraints, the per-
formance is better than that of the probabilistic graph method.

Mobile snake-shaped robots often encounter such a situation:
in the process of moving from one point in space to another, due
to obstacles in the surrounding environment or the constraints of
Fig. 1. Navigation frame diagram
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the snake-shaped robot’s own capabilities, a reasonable method
is required. The path bypasses these obstacles to reach the target
point. This is the path planning problem in the continuous domain.
Currently, there are many methods that can be used to solve such
problems, but almost every method has limitations, such as the
need for state discretization or a compromise between search effi-
ciency and search accuracy.

The RRT algorithm uses a point in space as the root node. Usu-
ally this point is the coordinates of the snake-shaped robot’s own
position. The leaf nodes of the tree are continuously expanded in
the surrounding space. The path composed of the nodes of the ran-
dom tree from the leaf node closest to the target point to the root
node is the path generated by the path planner.

In the algorithm, both the start position and the target position
are mapped to nodes in the random tree, the start position is
mapped to the start node, and the target position is mapped to
the target node. At the beginning, the initial node is used as the
root node of the random tree growth. If the Euclidean distance
between the initial node and the target node is less than a set crit-
ical value e, then there is no need to continue the random tree
search and jump directly out of the search. The connection with
the end point is the planned path. Otherwise, a random node is
selected in the motion space, from which a new tree node is gen-
erated from the random node. If the new node generated at this
time does not collide with a known obstacle, it will be inserted into
the node closest to the new node in the random tree. Otherwise,
you select a random node again and repeat the above process until
a leaf node of the random tree is close enough to the target node, or
the number of searches reaches the preset search limit. At this
time, a random tree that can reach the target node has been gener-
ated. The nearest leaf node of the target node inquires its root node
in turn until it reaches the root node of the random tree. These
nodes are taken out to generate the planned path.

Considering that the actual snake-like robot performs many
tasks, the search process of the random tree cannot be carried
out indefinitely, otherwise all other tasks will be blocked and the
system will be paralyzed. When the number of searches reaches
the preset upper limit, the search stops. If the path is not found
of the snake-shaped robot.
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at this time, the search fails and can only be searched again the
next time the planner is called.

3.3. Improved RRT algorithm

Although the basic RRT algorithm has many advantages com-
pared with many existing path planning methods, the inherent
randomness of the basic RRT algorithm also determines that this
method cannot be directly applied in a static environment or in a
dynamic moving obstacle environment. Path planning is in pro-
gress. Therefore, this paper uses the advantages of RRT algorithm
in global search, and adds some ideas of local search methods to
the basic RRT algorithm to improve the shortcomings caused by
its randomness. The advantage of the RRT algorithm is that it pro-
vides many interfaces in the algorithm structure, and different
implementation methods can be adopted according to the actual
situation to improve the algorithm at different levels. Therefore,
this article first makes different improvements in the interface
implementation, and then tries to change the structure of the ran-
dom tree to observe its effect. In addition, based on the realization
of static environment simulation, further improvements are
needed to adapt to the needs of the dynamic environment for
the dynamic mobile obstacle environment.

The fast-expanding random tree algorithm tends to search the
unsearched area. In this case, although the search range will
become very large, this randomness will cause a lot of calculations
to search for the target point or target area. In order to improve this
situation, the method of selecting the target point with a certain
probability is added, that is, each time a new node is selected,
the end point is selected with a certain probability, so that the
entire random tree will grow toward the target area.

1) Increase the gravitational component.

In order to enable the random tree to be generated toward the
target point or target area, it is not necessary to perform a compre-
hensive search of the global environment, thereby reducing the
search time and improving the real-time performance of the
search. In the RRT algorithm, the idea of virtual gravitation and
repulsion is introduced.

The idea of this improved algorithm is to add a target gravita-
tional function G(n) that grows towards the target point or target
area for each node n in the path. Here, node n refers to the nth
expanded from the starting point xinit. xnew node. To imitate
the mechanics formulas in physics, one can assume the following
formulas:.

FðnÞ ¼ RðnÞ þ Rðn� 1Þ � Gðn� 1Þ ð1Þ
Among them, R(n) refers to the random growth function of node

n, G(n) refers to the target gravitational function, and F(n) refers to
the growth guidance function from node n to the target point or
target area. The gravitational potential energy function is:.

Ux ¼ 0:5kp xnear � kpxgoal
� �2 ð2Þ

It can be deduced:.

Gx ¼ 0:5k2p xnear � xgoal
�� �� ð3Þ

Among them, x refers to the position vector of the snake-like
robot, kp is the gravitational coefficient, xgoal refers to the target
position vector of the snake-like robot, and xgoal -xnear represents
the difference between the geometric distance between the target
point xgoal and the node xnear. According to the above formula,
the target gravity function G(n) as shown in the following formula
is constructed. Among them, p is the growth step of the random
tree.
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GðnÞ ¼ kp pxnear � xgoal
� �

= xnear � kpxgoal
�� �� ð4Þ

When adding a new leaf node to the rapidly expanding random
tree, the target gravitational function calculates the force between
each node and the target node or target area to guide the selection
of new nodes that grow towards the target point. According to the
above, the random growth function of node n in the RRT algorithm
is:.

RðnÞ ¼ kpk xnear � xtarget k= xnear � pxtarget
�� �� ð5Þ

The final F(n) is:.

FðnÞ ¼ kp
k xnear � xtarget k
xnear � pxtarget
�� �� þ

xnear � kpxgoal
�� ��

k xgoal � xnear k ð6Þ

The formula for generating new nodes after introducing the
idea of gravitation is:.

xnew ¼ xnear þ kp
xnear � xgoal
�� ��

k xnear � pxgoal k � p
k xtarget � xnear k
xtarget � kpxnear

ð7Þ

The influence of gravitational thought on the growth of random
tree is mainly embodied in that the bias of each node in the ran-
dom tree to the end point can be adjusted by adjusting the gravi-
tational coefficient kp. Because the new leaf node is actually the
vector sum of the vector determining the step length and the grav-
itational vector in the direction of the random node, that is to say,
the gravitational component can completely affect the growth
direction of the random tree.

2) Path smoothing.

The basic idea of the RRT algorithm to construct a path is to con-
struct a random tree in free space. When a leaf node in the random
tree is close to the end point, you find a branch composed of a
sequence of nodes in the random tree as the final output.

There may be redundant nodes that can be deleted near the
start node of the path. Similarly, there may be redundant nodes
that can be deleted near the end node. Therefore, the path smooth-
ing process does two things: one is to scan from the start node to
the end node. Any node in the path is to detect whether the node
will collide; the second is to detect the collision information from
the termination node to each node in the path. After the two pro-
cesses are detected, all the redundant nodes that can be deleted in
the path can be determined. At this time, the redundant nodes in
the path are deleted to obtain the planned path after the path
smoothing process. Path smoothing can further optimize the
planned path, shorten the distance of the path, reduce the number
of times the snake-shaped robot turns, and shorten the time from
the starting point to the end point.

3) Two-way rapid expansion of random trees.

The RRT algorithm itself is a method to solve the problem of tra-
jectory planning. It can be improved to become another planner.
For example, it can grow in both directions during the growth of
a random tree, that is, let one tree start to grow at the starting
point, and the root tree grows from the end point.

The two-way rapid expansion random tree mentioned here is a
change to the algorithm structure, which is mainly reflected in:
adding a tree, and defining the random tree searched from the
starting point as random tree one. It is the second random tree,
the two trees start searching paths from their respective starting
points at the same time, and the way of generating nodes is the
same as that of the single-root random tree.

When the random tree is first searched in the free space and the
random tree is established, random tree two is also established.
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Random tree one and random tree two alternately grow leaf nodes.
It is close enough to another tree, that is, it detects whether the
Euclidean distance between two nodes is less than a preset value.
When the Euclidean distance between the two nodes is less than
the preset value, connect the two nodes, that is, connect the ran-
dom tree 1 and the random tree 2, then a path from the start point
to the end point can be generated.

After each leaf node is generated, it is tested whether the cur-
rent leaf node can be connected to another tree. If the condition
is met, the two trees are connected through the leaf node, and
the growth of the two random trees is terminated at the same time.
When connecting two trees, you need to know which leaf node on
the tree at this time detects that it can connect the random tree
where it is with another random tree. This information can be
obtained by the variable useFirstTree. When useFirstTree is true,
it means the leaf node is on random tree 1. When useFirstTree is
false, it means that the leaf node is on random tree 2.

In order to make path planning more efficient, the method of
path caching is introduced. That is, a cache area is established to
store the points on the path during the previous planning. When
the random tree search path is re-established, the operation of
selecting the target point will select the point in the path buffer
with a certain probability.

Now define a probability probWayPoint to choose a point in the
path cache area. probGoal makes the growth of the random tree
bias towards the target point, and probWayPoint makes the
growth of the random tree bias towards a planned path. If the
sum of probGoal and probWayPoing is less than 1, the random tree
will be random with the probability of 1-probGoal-probWayPoint
Grow. The way of taking points represented by these three proba-
bilities is shown in Fig. 2.

The discrete points in Fig. 2 represent the path points in the
path cache point, the random tree connected by the solid line is
the reconstructed random tree, and the node connected by the
dashed line represents the process of selecting a new target node.

This operation first selects two random trees, where p is a ran-
dom decimal number ranging from 0 to 1, and i is a random integer
ranging from 0 to NumWayPoint �1, where NumWayPoint is the
number of nodes in the path buffer quantity. Probabilistic selection
of points in the buffer area is achieved by adjusting the value of the
random number p. If the value of p is between probGoal and prob-
Goal + probWayPoint, the function returns a point in the path buf-
fer. The function returns the node indexed by i in the buffer area.
When the selected random decimal p is between probGoal + prob-
WayPoint and 1, the function returns a random point in free space.
This operation is similar to selecting a node with a certain proba-
bility bias toward the end point.
4. Results and discussion

4.1. Static obstacle avoidance path planning experiment

The path planning of the snake robot is a motion planning in a
high-dimensional manifold space to visually verify the feasibility,
Fig. 2. Schematic diagram of growth
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superiority and effectiveness of the proposed bidirectional fast
expanding random tree algorithm. Firstly, the 3D plane path plan-
ning simulation in the static obstacle scene is carried out in the
MATLAB environment. In the static obstacle avoidance simulation
environment, the two-way fast expanding random tree algorithm
proposed in this paper is compared with the traditional Basic-
RRT and two-way Bi-RRT algorithms to verify the correctness and
superiority of the proposed algorithm. This subsection assumes
that the snake robot is a point-like snake robot without direction,
that is, similar to a mobile snake robot platform. Then the pose of
the snake robot in its configuration space is simplified as the two-
dimensional plane position and orientation angle in the scene.

In the MATLAB environment, the size of the entire state space is
700�500, and the obstacle area is randomly set. Arbitrarily we
specify the initial position and target position, and then plan the
plane path. First, the pruning function is used to obtain a series
of path points without collision, and then by inserting some neces-
sary intermediate nodes, the sharp included angles in the path are
smoothly transitioned. Fig. 3 shows the curvature change of the
bidirectional fast-expanding random tree algorithm during the
entire path planning process. It can be seen from the figure that
the curvature of the planned path changes continuously.

In addition, for objective evaluation and performance, the pro-
posed algorithm is better than the other two algorithms in terms
of performance. At the same time, considering the unique random
sampling of the RRT algorithm, the three algorithms are planned
100 times for the same simulation scenario. Finally, statistically
we record their respective average search time, average number
of sampling nodes, and successful planning times during the entire
planning process, as shown in Fig. 4.

From the relevant data of the above simulation experiment, it
can be seen that the search speed and search efficiency of the
two-way rapid expansion random tree algorithm are significantly
improved compared with the other two algorithms Basic-RRT
and Bi-RRT. It is smoother, and the curvature of the path is contin-
uously changing, which can better meet the requirements of the
snake-shaped robot to move smoothly and without impact during
the static obstacle avoidance process.

In order to actually verify the feasibility and effectiveness of the
proposed static path planning algorithm, the ROS Moveit develop-
ment environment is used to build a path planning obstacle avoid-
ance experiment platform for the UR10 snake robot in a dynamic
environment. The Kinect V2 RGB-D sensor is placed on a tripod
and fixed at a fixed position in the environment to perceive static
and dynamic obstacles in the global environment. The anthropo-
morphic obstacle is fixed at a certain position in the static environ-
ment. Kinect obtains the color map and depth map of obstacles in
the environment, which are first converted into octree maps, and
processed by the point cloud PCL algorithm to obtain the outline
information of the obstacles. The process of scene information pro-
cessing is shown in Fig. 5. Real-time collision detection is realized
by calling the FCL flexible collision detection library. The angle
change curve of each joint in the static obstacle avoidance process
is shown in Fig. 6. It can be seen from Fig. 6 that the obstacle avoid-
with different probability biases.
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ance time of the six joints does not exceed 8 ms, and the joint
movement speed does not exceed 6 m/s, ensuring a certain
stability.

4.2. Dynamic obstacle simulation based on V-REP environment

In this section, the performance indicators of the snake robot
dynamic environment path planning algorithm proposed above
will be tested and verified in the snake robot virtual simulation
platform V-REP software. First, the geometric models of the snake
robot, dynamic sphere, and human obstacles are built in V-REP.
The computer for all simulation experiments is configured as
CPU Intel i7 3.8 Hz octa-core, RAM 16G, GPU NVIDIA GeForce
GTX 1080Ti with CUDA 10.0, all algorithm programs are written
in C++ language in the form of V-REP plug-in, embedded in the vir-
tual scene for routing planning. The Kinect V2 RGB-D sensor is used
for real-time perception to obtain environmental information such
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as dynamic obstacles. In this simulation experiment, the perfor-
mance of the dynamic path replanning algorithm Bi-RRT-Star is
mainly tested in a dynamic environment with a large number of
moving spherical obstacles, including the number of successful
planning, planning time and trajectory cost.

1) Different moving speeds of dynamic obstacles.

There are a total of 5 spherical obstacles around the snake robot
with a diameter of 0.1 m. We repeated planning experiments for 50
times, the statistical related performance indicators are shown in
Table 1. From the table, it can be seen that as the speed of dynamic
obstacles increases, the success rate of dynamic path planning is
decreasing, and the cost of path trajectory is also following. How-
ever, the planning time remains basically unchanged. The greater
the cost of the path trajectory, the less smooth the path trajectory
generated by the planning.

2) Different numbers of dynamic obstacles.

There are different numbers of moving spherical obstacles
around the snake robot, the diameter of which is 0.1 m, and the
speed of all obstacles is set to 1 m/s. The dynamic path planning
experiment of the snake-shaped robot was repeated 50 times,
and the statistical related performance indicators are shown in
Table 2. It can be seen from the table that with the increase in
the number of surrounding dynamic obstacles, the success rate of
the dynamic path planning of the snake robot is decreasing, and
the planning time and the cost of the path trajectory are increasing
accordingly.

4.3. Experiment of dynamic obstacle avoidance path planning based on
bidirectional fast expanding random tree algorithm

In this section, we will build a real experimental platform to
verify the dynamic path planning method, including three experi-
ments based on the FANUC snake-like robot to guide the transla-
tion and rotation of anthropomorphic obstacles, and the snake-
like robot to dynamically evade the human arm. In the first two
experiments, the FANUC snake-shaped robot is used to guide the
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Fig. 5. Processing of scene information.
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Fig. 6. The angle change curve of each joint during static obstacle avoidance.

Table 1
Results of dynamic programming under different obstacle speeds.

Obstacle speed
(m/s)

Number of successful
plans

Planning time
(ms)

Trajectory
cost

1 48 62 0.51
2 45 63 0.55
3 37 63.5 0.59
4 31 68.9 0.63

Table 2
Results of dynamic programming under different numbers of moving obstacles.

Number of
obstacles

Number of successful
plans

Planning time
(ms)

Trajectory
cost

3 49 55 0.41
6 47 68 0.53
9 44 73.5 0.57
12 40 88.9 0.64
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anthropomorphic obstacles to achieve uniform translation and
constant-axis rotation, while the latter snake-shaped robot evades
the human arm by random motion.

1) Based on FANUC translational guidance, snake robot avoid-
ing obstacles.
7

This section mainly tests the performance of the snake-shaped
robot in avoiding regular translational obstacles under the guid-
ance of the Bi-RRT-Star dynamic path planning method. Manually
we teach and program the FANUC snake robot in advance, so as to
realize that the anthropomorphic obstacle fixed by the end effector
moves at a translation speed of 600 mm/min along the negative
direction of the Y axis at a uniform speed, and records the initial
pose and target of the snake robot at this time.

When the Kinect V2 RGB-D vision sensor senses the dynamic
and continuous translation of the terminal anthropomorphic
obstacle, the Bi-RRT-Star algorithm dynamically re-plans a smooth
path for the snake-shaped robot to run safely and without collision
and to avoid moving anthropomorphic obstacles in time. The state
of the serpentine robot pose configuration sequence represents the
relative position of the snake robot and the anthropomorphic
obstacle at different moments. During the entire path planning
process, the snake-shaped robot can always reach the target posi-
tion from the initial pose safely and without collision. The angle
change curve of each joint during the obstacle avoidance process
is shown in Fig. 7. From the figure, the movement of the snake-
shaped robot can be seen. The angle of each joint in the dynamic
obstacle avoidance process based on FANUC translational guidance
varies from �6rad/s to 9 rad/s, and this range of change has a cer-
tain robustness.

2) Based on FANUC rotation guidance snake robot avoiding
obstacles.
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Fig. 7. The angle change curve of each joint during the dynamic obstacle avoidance process based on FANUC translational guidance.
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Fig. 8. The angle change curve of each joint in the dynamic obstacle avoidance process based on FANUC rotation guidance.
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This section mainly tests the performance of the snake-shaped
robot to avoid regular obstacles under the guidance of the Bi-
RRT-Star dynamic path planning method. Similar to the regular
translation, the FANUC snake-shaped robot is still manually pro-
grammed in advance to achieve the fixed anthropomorphic obsta-
cle of the end effector at 60. The angular velocity of/min rotates at a
constant speed around the positive direction of the Y axis, and
records the initial pose and target pose of the snake-shaped robot
at this time.

When the Kinect V2 RGB-D vision sensor senses the dynamic
and continuous rotation of the end anthropomorphic obstacle,
the Bi-RRT-Star algorithm dynamically re-plans a smooth path
for the snake-shaped robot to run safely and without collision
and the anthropomorphic obstacle that avoids movement in time.
The state of the serpentine robot pose configuration sequence rep-
resents the relative position of the snake robot and the anthropo-
morphic obstacle at different moments. During the entire path
planning process, the snake-shaped robot can always reach the tar-
get position from the initial pose safely and without collision. The
angle change curve of each joint during the obstacle avoidance pro-
cess is shown in Fig. 8. From the figure, you can see the motion of
the snake-shaped robot.
8

5. Conclusion

This paper analyzes the basic ideas and implementation steps of
the basic RRT algorithm, and evaluates its advantages and disad-
vantages. Then, in view of the large amount of calculation when
constructing the path of this algorithm, the real-time performance
is poor, and the path is composed of random nodes, which results
in the path is not smooth and the path is not the shortest. An
improved fast-expanding random algorithm is proposed. Finally,
the SimRobot simulation software was used to simulate the
planned path in a static environment, and the physical NAO
snake-shaped robot was used to plan the trajectory in the actual
dynamic process. When a moving obstacle moves to the planned
path, directly discarding the previously constructed random tree
itself is a waste of computing resources. Because searching and
building a random tree is a very computer resource consuming
thing, and the moving obstacle may only conflict with a branch
in the random tree. There is no need to make such a big sacrifice.
Therefore, the method is to detect whether the obstacle is in con-
flict with the branches of the random tree at this time, and then
delete the branches. On the basis of the original random tree,
dynamically we build and delete the branches of the random tree.
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Simulation and experimental results show that the search speed
and search efficiency are significantly improved compared with
the Basic-RRT and Bi-RRT algorithms, the average planning time
is shorter, the planning success rate is higher, and the generated
path is smoother, and it can dynamically avoid the global environ-
ment. In terms of the multi-tree-based artificially guided RRT algo-
rithm, the planner generates a fast-expanding random tree at the
starting point, the end point, and the artificially guided point to
form a multi-tree. When the obstacle speed is 4 m/s, the number
of successful planning is 31, the planning time is 68.9 ms, and
the trajectory cost is 0.63, which is in line with practical applica-
tion requirements. In order to merge multiple trees to return a con-
tinuous solution path, the first problem is the connection of the
trees. This paper uses a simple spline curve to perform fitting
smoothing and obstacle avoidance processing at the connection,
but occasionally sharp corners will appear. The robot will be stren-
uous to track because the dynamic constraints cannot be taken into
account at the connection. Finding a more efficient connection fit-
ting method to make the multi-tree connection as far as possible to
meet the dynamic constraints is the next step in the improvement
of the algorithm. In the future, we should explore the local feature
construction method of 3D point cloud data in mixed scenes, and
realize the establishment and extraction of feature descriptors
with Euclidean transformation and symmetric transformation
invariance, so as to obtain a general technology suitable for simul-
taneous recognition of all sizes and multi-targets in mixed scenes.
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