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1. Introduction

The fractional calculus deals with derivatives and integrals to an
arbitrary orders (real or complex order). The fractional calculus is
applied to model the frequency-dependent damping behaviour of
many viscoelastic materials (Bagley and Torvik, 1983), continuum
and statistical mechanics (Mainardi, 2012), control theory
(Bohannan, 2008), bioengineering (Magin, 2004).

This is one of the reason of why fractional calculus has become
more and more popular, and it is described as something which is
realistic.

Some of the problems that exist in the real world are being
modelled by using fractional derivative and integral terms and
such equations are known as the fractional integro-differential
equations (FIDEs). FIDEs are found in the fields of signal prossing
(Diethelm, 2010), mechanics (Rossikhin and Shitikova, 1997),
econometrics (Baillie, 1996), fluid dynamics (Kilbas et al., 2006),
unclear reactor dynamics, a coustic waves (Oldham and Spanier,
1974) and electromagnetics (Tarasov, 2009) etc.

There are many authors who have investigated the analytic
results on existence and uniqueness of problems solutions to FIDEs
such as Momani (2000) has got the local and global existence and
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uniqueness solution of the integro-differential equation.
Karthikeyan and Trujillo (2012) studied the existence and unique-
ness of FIDEs with boundary value conditions. Most of nonlinear
FIDEs has not had the exact analytic solution. So approximation
and numerical techniques must be used. Recently, several numer-
ical methods are applied for solving fractional differential equa-
tions and fractional integro-differential equations. Momani and
Noor (2006) applied Adomian polynomials to solve FIDEs. The
authors in Pandey et al. (2009), obtained the approximate solution
of Abel’s integral equations by using homotopy perturbation
method (HPM) and it's modification, also, by using Adomian
decomposition method and it's modification. Zhang et al. (2011)
produced the homotopy analysis method for higher-order FIDEs.
Collocation method is introduced in Eslahchi et al. (2014),
Saadatmandi and Dehghan (2011), Zhao et al. (2014) for solving
the FIDEs with weakly singular kernels and linear and nonlinear
integro-differential equations of fractional orders with Volterra
type.

In Mohammed (2014), Mohammed investigated the numerical
solution of linear FIDEs by least squares method shifted chebyshev
polynomials. More recently in 2017, Kumar and co-authors (Kumar
et al., 2017) presented a comparative study three numerical
schemes such as linear, Quadratic and Quadratic-Linear for the
FIDEs. Wang and Zhu (2017) used the wavelet numerical method
to solve nonlinear Volterra FIDEs.

In this paper we negotiate the local and global existence of the
solution for the following FQIDEs

Dx(t) = f(t,x(t)) + x(t) /tK(t,s,x(s))ds, X(to) =%, 0<qg<1.
(1)
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Where DY is a Caputo’s fractional derivative and q is a parameter
describing the order of the fractional derivative and K(t,s,x(s)) is
a nonlinear function, and x(t) is the unknown function to be
determined.

We present a comparative study between two methods LDM and
the MADM for solving FQIDEs. Several analytical and numerical
methods such as LDM were used to solve nonlinear ordinary, partial
and integral equation. Yang and Hou (Yang and Hou, 2013) used this
method to solve nonlinear FIDEs. The reliable modification of ADM
has been done by Wazwaz (1999), this computational method leads
to find the analytical solutions and has certain advantages over stan-
dard numerical methods. The previous method shows that there is
no sign for the rounding of errors in it. As it does not involve dis-
cretization and does not require large computer obtained memory
of power. The main purpose of this paper is applying LDM and
MADM to solve nonlinear FQIDEs because there is no attempt have
been made to solve this kind of equations.

The paper is organized as follows. It is started by introducing
some necessary definitions and mathematical preliminaries of the
fractional calculus theory which are required for establishing our
results. In Section 3, local and global existence of FQIDEs is proved
by using Schauder’s and Tychonoff fixed point theorems. In Section 4,
we extend the application of LDM and MADM to construct our ana-
lytical approximate solution to nonlinear FQIDEs. In Section 5, we
present two examples that show the efficiency of the methods.

2. Basic information about the fractional calculus

Here, we intend to introduce some basic definitions and proper-
ties of fractional calculus theory see (Kilbas et al., 2006;Podlubny,
1998; Samko et al., 1993).

Definition 1. A real function f(x),x > 0 is said to be in space
Cu i eR if there exists a real number p> u, such that
f(t) =tPf1(t), where f(t) € C(0,00), and it is said to be in the
space Cj, if and only if f" € Cy,n e N.

Definition 2. The Riemann-Liouville fractional integral operator of
order o > 0 of a function f € C,, u > —1, is defined as

, 1 .
THO = 555 [, €= Fo)ds. a0 o
76 = f0).

Some properties of the operator 7* can be found in (Miller and Ross,

1993), which are needed here, as follows: for
fe Cunu = 71,O(,ﬁ = Oand V = —

1. 7*Jf(t) = Tf(b),

2. 7RI (6) = T T (),

3. jaﬂ = r1+/+1)ta+’

Definition 3. The fractional derivative of f(t) in the caputo sense is
1

defined as
D) = =g |, (€= sy, 22)

form-1<a<mmeN,t>0,feC.

Property 1. The Laplace transform of the Caputo derivative is
defined as

=

LID*x(t)] = s"X(s) —
k

5*k1x00(0), (23)

Il
o

forn — 1 < o < n.The function X(s) of the complex variable s defined
by X(s) = L{x(t); s} = [y~ e~x(t)dtis called the Laplace transform of
the function x(t).

Lemma2l. fm-1<a<
two properties hold:

m,mecN,f € CZ’,,u > —1, the following

1. D*7*f(t) = f (),
2. (T Df(t) = f(t) - Sie fO(0) .

3. Local and Global Existence Solutions

This section is devoted to the study of the initial value problem
(IVP) for FQIDEs of the type

Dx(t) = f(t,x(t)) + x(t) /tK(t,s,x(s))ds, X(to) =%, 0<qg<1.

(3.1)
where f € C[] x R",R"],K € C[] xJ x R",R"] and J = [to,to +a]. It is
easy to show that the IVP (3.1) is equivalent to the integral
equation.

X(t) = Xo + ﬁ /[ t (t—3)"'f(s,x(s))ds

t T
b / (t—1)"" (x(‘c) K(T,s,x(s))ds> dr, (3.2)
r(q) to to
which can be seen by integrating (3.1) from ¢, to t. Since fand K are
continuous, on differentiating (3.2), we obtain (3.1). We will begin
to prove the following local existence result by applying Schauder’s
fixed point theorem.

Theorem 3.1 (Schauder (Zeidler, 1995)). If E is a closed, bounded,
convex subset of a Banach space B and T:E — E is completely
continuous then T has a fixed point.

Theorem 3.2. Assume that

(i) f e CJ x R",K € C[J x J x R”,R”],f; | K(t,s,x(s)) | ds < N
for to<s<t<to+axeQ={xeC]J,R":x(to)=x0 and
[ X(t) —xo |< b}
(ii) [If (5,x(5)) = f(s,¥(s))|| < 3 T
(iii) ||K(a,s,x(s)) — K(0,5,Y(s ))H \% e

ECIEGR
(1v) 5 1@ Dthen the (IVP) (3.1) has at least one solution x(t) on

Nod
t<t0+o<,forsome0<a<a.

Proof. Consider the set D = {(t,x):t €] and
1
: bI'(g+1)\7

let |f(t,x(t))|<M on D. Choose o= mm{a, <M}(mxﬁ)q} and

let Qy={xe(C[Jy,R"]:x(to) =%o and |x—Xxo|<b} where
IX]] = MaXy<i<io+o | X(t) | andjy = [to, to + . Clearly the set Qp is
closed, convex and bounded. For any x € Q, define the operator
Tx by

| x —Xo |< b} and

- ' _ )1
F(Q)/fo(t S)Tf(s,x(s))ds

+ﬁ /t NT <x(‘[) /t TI((T,s,x(s))ds>dr7 (3.3)

we may apply Schauder’s fixed point theorem to prove the exis-
tence of a fixed point of T € Qp which is equivalent to solving the
IVP clearly Tx(to) = xo, and for ¢ € J,.

Tx(t) = xo +
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IT(t) — x0| = \

/ 5.1(5))ds
F]q / ( / K(t,s,x(s ))ds)dr

q)/ $" | Fs,x(5)) | ds

1 t g T
g )/ (t-1) (X(‘C)| : I((t,s,x(s))\ds)dr,

Mo gargs e N[
gl"(q)/ (t-s) ds+r(q)/(t )7 |x(1)|dT

to Jto

< (£+N|x<r)\> (t— o)

)

I'(q)  TI(q) q
ol
= m(M+N||XH)

Which implies that TQq C Q. Furthermore, for any ti,t; € J,, such
that t, > t;, we obtain

ITx(t) — Tx(ty) |
R T
,‘r(q)/to (t2 —$)T f(s,x(s))ds
R P (x(‘c) “Krs x(s))ds)dr
I'(q) o

o
—_ (t1 — $)T'f(s,x(s))ds
r(q/f | s))

0

(@) J,
+ﬁ -/ttl R (X(T)_ A K(t,s x(s))d5>d
g 1 (69 )

_ﬁ /{: (ti - S)C”lf(S,x(S))ds

_ﬁ | t: (- (X(‘L’) t: K(z.s. x(s))ds> df‘
) %q) / (6 ="' = (6 =)' ] | f(s.x(5)) | ds
*ﬁ /: (tz =) | f(s,x(5)) | ds

+ﬁ[l (& -0 (6 -]
><<\x \/ \K'csx())\ds)dr

e / (6= (1x0m) / K(r.s.x(s) | ds ) de

< % /[l [( 2 =) = (ti - S)qil}ds +% [][2 (tz—5)"'ds

NHX” /[l -0 - (t - r)q”]dwr% /rt2 (& —7)"'dt

s (%) [(t2 = t1)" = (&2 — to)? + (t1 — Lo)" + (£2 — £1)7]
M + N|x||
(Fem) =) o

as t; — t, the right hand side of inequality (3.4) tends to zero.
Therefore the operator T : Qg — Qo is equicontinuous, and conse-
quently the closure of T(Qy) is compact.

To show that T is a continuous map, let us take an € > 0 and x,y
in Qo, it follows, using uniform continuity of f and K that for any
€ > 0 there exists § > 0 such that

| Tx()
|

~ F(s.y(s))ds
K(T,5.3( >>>ds)

+%/[:(t—)q‘><(r r)(/Kfsy )d

<t L €97 xS ~Fls.y) s
+% /t (t=0"" x(1) | (/{f(l K(z.s,x(5)) = K(7,5.(5))) Ids>dT
+% /t (t—1)"" | x(t) - y(7) | ([ | K(z,5,X(5)) | ds>d1'

Since fand K is uniformly continuous for the above € > 0, there exist
6 > 0 such that | x(t) — y(t) |< 6, by using (ii)-(iv) we have

1 el(g+1) [f g1
\Tq)imq /to(t—s) ds

ON [t e
+F(Q)/to (t-1)"dt

x| 1€el'(q+ 1o q oN

= e = t—to) + =———~

2@ e Y T

We shall next discuss a global existence result for IVP(3.1) using

Tychonoff's fixed point theorem, which we state in the following
form.

(t — tg)q < €.

Theorem 3.3 (Tychonoff (Zeidler, 1995)). Let B be a complete, locally
convex, linear space and By a closed convex subset of B. Let the
mapping T : B— B be a continuous and T(By) C Byif the closure of
T(Bo) is compact then Thas a fixed point in By.

Theorem 3.4. Assume that
(i) f € CR, x R",R"],g € C[R?,R,], &(t,
creasing in u for each T € J and
[f(t.x)[<gt[x]), (t,x)€R.xRY

(ii) K € C[R? x R",R"],G € C[R?,R,], G(t,s,u) is monotone non-
decreasing in u for each (t,s) € R* and

| K(t,s,%) [< G(E;s, | x ),

u) is monotone nonde-

(t,s,%) € R* x R";

(iii) [I |K(0,s,X(s))|do < N,fort,s € R;,x € C[R., R"]
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Then the fractional quadratic integro differential equation

ot

Du(t) = g(t,u(t)) + u(t) / G(t.,s,u(s))ds, u(to) = (3.5)
to

has a solution u(t) existing for for every up > 0,t > to, also, then for

every xo € R" such that | xo |< uo, there exists a solution x(t) of (3.1)

for t > to satisfying | x(t) |< u(t),t > to.

Proof. Let us consider the real vector space B of all continuous
functions from |[to, oc] into R", the topology on B being that induced
by the family of pseudo-norms {V,(x)},~; where for
X € B, Vy(X) = sup; . | X(t) |. A fundamental system of neighbor-
hoods is the given by {S,},-;, where S, = {x € B: V,,(x) < 1} under
this topology, B is a complete, locally convex linear space.

Now define a subset By of B as follows:

By = {x € B:| x(t) |< u(t),t > to},

where u(t) is a solution of (3.5) existing for t > to. It is clear that in
the topology of B, By is closed convex and bounded. Consider the
integral operator defined by (3.3) whose fixed point corresponds
to a solution of (3.1), evidently, the operator T is compact in the
topology of B, and hence the closure of T(By) is compact. In view

of the boundedness of B;,. Now to prove T(By) C By, observe that
for any x € By,

ITx(0)] <||x0u+ﬁ/[ (€= 57 (5.x(5))ds
L N a1 T
T l (t-1) HX(T)H( l ||K(‘575,X(S))Hds>dr

<[] +ﬁ [ €5t sy s

tiig L -0 ([ 6. xshas e

1 1
<o+ [ / (£ —5)"g(s, u(s))ds

*rg 0w ([ s sy e =uco

Using the monotonicity of g and G, the definition of By, and the fact
u(t) is a solution of (3.5), therefore ||Tx(t)|| < u(t), which implies
T(B()) C B().

Hence by Tychonoff’s fixed point theorem, T has a fixed point in
By, which completes the proof of the theorem.

4. Numerical methods to solve the fractional quadratic integro-
differential equations

4.1. Laplace decomposition method

Firstly, we consider the FQIDEs (1) and apply the Laplace trans-
form first on both sides of (1)

L{Dx(t)} = LI (,x(t) }+z:{ /Ktsx ds} (4.1)

using the differentiation property of Laplace transform (2.3), we get
SILIX(E)} — ¢ = LIF(EX(t }+£{ / K(t,s,x(s ds} (4.2)

where ¢ = S0 's* *-1x#(0). Thus, the given equation is equivalent
to

E{x(t)}:—+ C{f(tx ) +—= E{ /Ktsx ds} (4.3)

The second step in Laplace decomposition method is that we repre-
sent solution as an infinite series given below

X(t) = Xn. (4.4)
n=0
The nonlinear operator is decomposed as
f(&x(6) = An, (4.5)
n=0
K(t,s,x(t)) = By (4.6)
n=0
where A,, B, are Adomian polynomials of xo, X1, X3, . . ., X, .. are given
by
1 dn o0 i
Ay = i |:f(t1 Z/L Xi):| (4.7)
i=0 /=0
1 dn > l
By = o | K(Ls, Zz x)| (4.8)
i=0 J=0
substituting (4.4), (4.5) and (4.6) into (4.3) in case 0 < q < 1, we will

(4.9)

{an / ;Bnas}.

Matching both sides of (4.9) yields the following iterative
algorithm:

L{xo} =@, (4.10)
1 1 t
LiY =~ L{Ao} + L xg(t)/ Bods 4.11)
st st t,
1 1 t
Ll =~ LA} +—L xl(t)/ Bids}, (4.12)
X X to
and so on, in general the recursive relation is given by
t
LX) :Sl—qz:{An} +Sl—q£{xn(t)/ Bnds}7 n>o0. (4.13)
to

Applying inverse Laplace transform to (4.13), so our required recur-
sive relation is given bellow

Xo(t) = H(t), (4.14)

Xn1(t) = L7 {slqc{An}} + L (4.15)

] t

1

{S—qﬂ{xn(t) /[0 Bnds}},
where H(t) is a function that arises from the source term and the
prescribed initial conditions. The modified Laplace decomposition
method suggests the function H(t) defined above in (4.14) be
decomposed into two parts

H(t) = Hy(t) + Ha(t).

Instead of iteration procedure (4.14) and (4.15), we suggest the fol-
lowing modification

(4.16)
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Xo(t) = Hi (1),
Xi(6) = Ho(t) + £ {:—qﬁ{Ao}} s {slq.c{xo(t) /t: Bods}},

L efu [ nas}).

The solution through the modified Laplace decomposition method
high depend on the choice of H;(t) and H(¢t).

X1 () = L7 {:—qﬁ{An}} +L

4.2. Modified Adomian decomposition method

we consider the FQIDEs (1) and apply the operator J* the
inverse of the operator D* to both sides of (1) yields

¢K(t,s,x(s))ds>. (4.17)

Jt

Z/, P EX0) + I (x(t)

The Adomian decomposition method suggests the solution x(t) be
decomposed by the infinite series of components

X(t) = E%Xn(t) (4.18)

and theinonlmear function in (1) is decomposed as follows

f(t.x(t) = iAnv (4.19)
n=0

K(t,s,x(t)) = ZOO:B,, (4.20)

where A, B, are the so-called Adomian polynomials, substitution
the decomposition series (4.18), (4.19) and (4.20) into both sides

of (4.3) gives
/ ZB ds).
fo n=0
(4.21)

From this equation, the iterates are determined by the following
recursive way

2/1117

n-1

ixn(t) =Y % +J (f}\n) +J <f:x
n=0 j=0 ° n=0 n=0

(4.22)

X1 = J%(An) +J* (xn(t) ‘/ttBnds), nx=0. (4.23)

Where y, = x(0) the initial condition and the Adomian polynomials
An, B, are given by (Adomian, 1994)

l dn >0 1

An=—r o {f(t, 2;/ xi)} I (4.24)
] dn > i

B, = S {K(t,s, IZO:A xi)] y (4.25)

The decomposition series solutions are generally converge very
rapidly. The convergence of the decomposition series have investi-
gated by several authors (Cherruault and Adomian, 1993). For later
numerical computation, let the expression

(4.26)

denote the N-term approximation to x(t).

5. Numerical examples

In this section, we present some numerical examples of solu-
tions of the FQIDEs via the LDM and MADM.

Example 5.1.

D u(t) = - Zt%)u(t) +ﬁ +u(t) /0[ tsin(s)u(s)ds,

1 (s
r{d) (3t
(5.1)

with the initial condition is u(0) = 0 and 0 < a < 1. First, we apply
the Laplace transform to both sides of (5.1)

LD"u(t)] = £ [% @ £ 25) (t )] +L {1;60}

2
+ C{u(t) /Ottsin(s)u(s)ds},

using the property of Laplace transform and the initial condition we

get
“Llu(o)] = £ {% (57 -26)u0] + 2|2

+ E[u(t) /Ot tsin(s)u(s)ds},

=51a{5 %%)@9725) (t)

+L {u(t) /Ot tsin(s)u(s)ds} },

substituting (4.4), (4.5) and (4.6) into above equation, we have

o 1 1 /84 1\ & t
L Lz;un(t)} = {c [r(l) <§t - 2t7> Zun(t) +L {m}
Z / tsin(s Zun } (5.2)
n=0
Match both side of (5.2), we have the following relation

1 t
£lu0(t] = £ 355
1 1 /8, i
t
+L {un(t)/ tsin(s)un(s)ds} }
0

Applying inverse Laplace transform to above equation we get

-1 {3l
£ {51 {L [ré) @ - 2r%> un(t)]
+L [un(t) /Ot tsin(s)un(s)ds} }}

Therefor, the solution is obtained to be

and

Llu)] +L{]2t60]

=1+L

Lun (1)

uy (t) =

u(t) :ﬁ];ﬁta*l(2+a)(3+a)(4+a) (5.3)

According to ADM, the recursive ADM is
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to(t) = J* (ﬁ) ,

! (gﬁ - 2&) un(t)> +j“(

t=J" ==
Uni1(t) =] (1—(;)
Therefor, the solution is obtained to be
1

u®) = 3775300

un(t)/ttsin(s)un(s)ds

)

to

<1680t2‘”4l" (2<x + g) VAT (3o + 6)0(74’“) T

(5.4)

Tables 1, 2 presents the approximate solution for different val-
ues of o, we have noticed that the accuracy is improving by com-
puting more terms of the approximate solutions (see Fig. 1).

Example 5.2.

319

D u(t) = 2Vt + 26 — (\/E n t%) In(1 + t)u(t) + u(t) /t e'su(s)ds,

to

(5.5)

with the initial condition is u(0) = 0 and 0 < « < 1. First, we apply

the Laplace transform to both sides of (5.5)

c[D*u(t)] = £[2vE+26 - (VE+8) In(1+ u(®)]

+L {u(t) [[efsu(s)ds}

Table 1
Approximate solution for Eq. (5.1) at different values of o.
t o=0.25 o =0.50 o=0.75 a=1
0.10 0.00003306 0.00001760 0.00000854 0.00000393
0.20 0.00006887 0.00004630 0.00002766 0.00001542
0.30 0.00010211 0.00007925 0.00005394 0.00003391
0.40 0.00013495 0.00011479 0.00008569 0.00005879
0.50 0.00017335 0.00015398 0.00012242 0.00008971
0.60 0.00022680 0.00020067 0.00016515 0.00012687
0.70 0.00030859 0.00026180 0.00021683 0.00017138
0.80 0.00043603 0.00034789 0.00028290 0.00022580
0.90 0.00063071 0.00047350 0.00037189 0.00029462
1.00 0.00091880 0.00065781 0.00049606 0.00038493
Table 2
Approximate solution for Eq. (5.1) at different values of o.
t o=0.25 o =0.50 o=0.75 a=1
0.10 0.00003306 0.00001760 0.00000854 0.00000393
0.20 0.00006887 0.00004627 0.00002765 0.00001542
0.30 0.00010146 0.00007907 0.00005389 0.00003389
0.40 0.00013261 0.00011402 0.00008545 0.00005872
0.50 0.00016694 0.00015166 0.00012162 0.00008945
0.60 0.00021225 0.00019489 0.00016298 0.00012609
0.70 0.00027948 0.00024930 0.00021177 0.00016944
0.80 0.00038294 0.00032352 0.00027235 0.00022147
0.90 0.00054051 0.00042959 0.00035172 0.00028583
1.00 0.00077391 0.00058345 0.00046007 0.00036840
Laplace Decomposition Method Adomian Decomposition Method
0.0010 0.0010 ' :
Ifr! /1!
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Jfed 1)1
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o’ A Vs
/////./' /4//'/.
0.0002 o 0.0002 o
o = =
e s
. —.
o laZE="" o laZE=""
0 05 1 15 0 0.5 1 15

— — approximate at 0=0.25

- approximate at ¢=0.75 — - — approximate at =1

approximate at a=0.50

(b)

— — approximate at a=0.25 approximate at a=0.50
- approximate at a=0.75 — - — approximate at a=1

Fig. 1. Approximate solutions by using (LDM) and (ADM).
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using the property of Laplace transform and the initial condition, uo(t) = £ {5175[2‘/?+ 25] }7

we get
_ 1 3
Lu(t)] = Sl {z: [2ﬁ 426 — (ﬁ + t%) In(1+ t)u(t)] Una(6) = £ 1{;1'5 [— (ﬁ + f2) In(1 + t)un(f)]
t ‘l t
+L {u(t) / etsu(s)ds} }, +s_“£ {un(t) / etsun(s)ds} }
to fo
substituting (4.4), (4.5) and (4.6) into above equation, we have Therefor, the solution is obtained to be
-1 1 2
. ut) = — (64800t3+2‘”7t1"(<x 4o+ —)4-“) o (5.7)
c {Zun(t)} = Sl {z: >76 3 3
n=0

2Vt 426 — (\/E + t%) In(1 + t)iun(t)}
n=0 According to ADM, the recursive ADM is
iun(t) /tefsiun(s)ds} } uo(t) =J*(2V1),
n=0 to n=0 o 3 o 3
56) i (6) =J*(26) + (= (VE+ &) In(1 + (1))

—14L

t
” t t d
Match both side of (5.6), we have the following relation +J (u"( )/ €'stin(s) S)’

to
therefor, the solution is obtained to be

1 1
1024194 0)°T'(6+30)

Llu(t)] = Sl—az: [NE + 26} ,
1 , u(t) 49152/T (9+ rx) BT 4 ) 4705 + .,
Ll (0] = £ = (VE+2) In(1 + tua ()] 2
t (5-8)
+sl—a£{u,,(t)/ e‘sun(s)ds].

t we have noticed that the result is the same in the previous method,

Table 3 presents the approximate solution for the different values of
The inverse Laplace transform applied to the previous equations o, we have noticed that the accuracy is improving by computing

and we obtain more terms of the approximate solutions (see Fig. 2).
Table 3
Approximate solution for Eq. (5.5) at different values of o.
t o=0.25 o =0.50 o=0.75 a=1
0.10 0.36765557 0.18953458 0.09364270 0.04465906
0.20 0.64992844 0.39965869 0.23491078 0.13300533
0.30 0.91632907 0.62512154 0.40768544 0.25566171
0.40 1.17989872 0.86293000 0.60610126 0.40930681
0.50 1.45649193 1.11417053 0.82680896 0.59157564
0.60 1.77042701 1.38614601 1.06939284 0.80089138
0.70 2.15749580 1.69486410 1.33799321 1.03724849
0.80 2.66751254 2.06790583 1.64365154 1.30364112
0.90 3.36681803 2.54769945 2.00732460 1.60814543
1.00 4.34085479 3.19522247 2.46360149 1.96674225
Laplace Decomposition Method Adomian Decomposition Method
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— — approximate at 0=0.25 approximate at a=0.50 — — approximate at a=0.25 approximate at o=0.50
(C) — - approximate at o=0.75 — * — approximate at o=1 (d) — - approximate at 0=0.75 —*— approximate at a=1

Fig. 2. Approximate solutions by using (LDM) and (ADM).
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6. Conclusion

In this paper, we have proved the local and global existence of
solutions. Also we have applied the LDM and MADM to find the
solution of nonlinear initial value problems of FQIDEs for the first
order. Actually, these methods do not require any linearization,
perturbation or restrictive assumptions. In our research we have
observed that the LDM and MADM is a very effective and powerful
tool for finding the solutions for any problems in this field. We use
the Maple package (2015) in calculations.
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