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Population genetic data collected from variable regions in human genome have been extensively used for
studying human origins and migration patterns, estimating the probative value of DNA evidence and in
disease association studies. Here, we illustrate the value of population genetic data in the genomic era
with an emphasis on their role in health science and practice. This commentary is intended to show
the value of an ethnicity-based approach to medicine and the role of genetics via accumulated population
genetic data as its rational support basis. For this specific reason, we feel that new genome-based knowl-
edge and resources need to be disseminated urgently to health professionals, researchers, policy makers
and the public, so that it may be fully integrated into health-related policy and decision making. Ideally,
all population genetic databases should be freely accessible, but this creates several technical issues
which need to be properly considered. Those highlighted here include such as factors sample size, marker
type, population descriptions and genotyping coverage.
� 2023 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Variable regions of the human genome are known as genetic
markers. They are commonly used for studying human ancestry
(Hatin et al., 2011; Reich et al., 2012; Schroeder et al., 2015), indi-
vidual identification via DNA profiling in crime cases (Coble et al.,
2004; Phillips et al., 2007), genetic mapping of disease loci and tis-
sue matching in transfusion and transplant medicine (Morishima
et al., 2002; Pratschke et al., 2016). A wide range of either serolog-
ical or molecular techniques have been adopted for screening
genetic variability between individuals or populations. This former
suite of methodologies is now gradually being replaced by molec-
ular techniques such as the polymerase chain reaction (PCR) with
sequence specific primers (SSP), restriction fragment length poly-
morphism (RFLP) analysis and DNA sequencing, now including
‘next generation’ systems. These DNA-based technologies have
high specificity and analysts enjoy easy access to testing reagents
(Fukuen et al., 2002; Vilches et al., 2007; Ladouceur et al., 2012).
In this regard, we do note that phenotyping with antibodies is still
the gold standard methodology in tissue typing laboratories
engaged in compatibility testing of donors and patients. However,
even in this type of laboratory new molecular techniques have to
be applied in complex cases, such as for genotyping chronically
alloimmunized patients. The status of any such individual cannot
be determined by serological techniques due to the presence of cir-
culating alloantibodies (Kulkarni et al., 2018).

A significant landmark of human genomic study occurred in
2003 with the completion of Human Genome Project. Their data-
base identified approximately 25,000 – 30,000 protein-coding
genes in the genome (Southan, 2004). This initiative stimulated
the invention of several new sequencing technologies starting from
around 2010. Collectively these known as next-generation DNA
sequencing (NGS). They have far higher genotyping capacity than
the conventional Sanger DNA sequencing methodology and can
routinely capture sequence diversity in genomes at an unprece-
dented scale (Lind et al., 2010; Liu et al., 2014; Duke et al., 2016;
Steward et al., 2017). Their further development has led to the gen-
eration of genuinely abundant human genomic data (Steward
et al., 2017). Today, both NGS and Sanger sequencing methodolo-
gies as well as other molecular techniques such as PCR-SSP and
PCR-RFLP are widely used in various molecular biological research
disciplines including population genetics, forensics and medical
genetics. This commentary will focus on population genetic data
and their value in the modern era of medicine and refer to
Simpson et al. (2014), Karp et al. (2008), Ahmed and Shabani
(2019) and Takashima et al. (2018) for ethical concerns related to
the sharing and aggregation of genetic data.
2. Population genetic data and health

Over recent years, population genetic data from many different
human ethnic groups have been reported. These range from single
nucleotide polymorphism (SNPs), simple bi-allelic gene loci such
as human platelet antigen (HPA), human neutrophil antigen
(HNA) through those with variable copy number (e.g., killer cell
immunoglobulin-like receptor: KIR) to highly polymorphic regions
(human leukocyte antigens: HLAs and short tandem repeats: STR).
The now abundant data from these markers have been used for
many different purposes including for ancestry analysis (Edinur
et al., 2012, 2013a; Abidin et al., 2020; Hajar et al., 2020a; Hakim
et al., 2020a), investigative leads (e.g., ancestry-informative panels
of SNPs for ancestry inferences of suspects and missing persons),
and estimating the probative value or weighting DNA identifica-
tion evidence (Tvedebrink and Eriksen, 2019; Hakim et al.,
2020b; Oldoni et al., 2020) and reference sets for disease associa-
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tion studies (Chasman et al., 2004; Baye et al., 2011; Jagannathan
et al., 2011; Rohana et al., 2011). Indeed, many population genetic
data originally acquired ancestry or forensic studies have turned
out to have beneficial value for health as described below.

2.1. Searching for transfusion and transplant donor

The medically relevant HLA, blood group, HPA, HNA, KIR and
cytokine population datasets are used for searching compatible
blood and organ donors to avoid post-transplantation and transfu-
sion complications (Morishima et al., 2002; Chambers et al., 2016;
Orzinska et al., 2019). These experiences show the enduring value
of attaching reliable ethnicity data to such collections of genetic
information. For instance, individuals with Jk (a-b+) and Fy (a+b
+) phenotypes are uncommon in African Americans, with frequen-
cies around 8.1% and 1.0%, respectively (Barclay, 2001). Thus, com-
patible donor for a patient with Jk (a-b+) and Fy (a+b+) phenotypes
might be difficult to find from within this population. However,
these Kidd and Duffy blood group phenotypes are much more
widely distributed among other groups; e.g., Malaysians (19.0–
38.0% and 9.0–38.0%, respectively; see Hajar et al., 2020b; Hajar
et al., 2021) and Koreans (28.3% and 11.4%, respectively; see Kim
et al., 2003). This example amply demonstrates how completed
population genetic data can be helpful when searching for donors
with rare phenotypes and see sub-section 2.3 for notes on ethnic-
ity/race vs genetic ancestry and health.

2.2. Estimating risk of disease susceptibility and the effectiveness of
medical treatment

Certain population-specific genetic variants have been associ-
ated with a high risk of disease susceptibility including for autoim-
mune and infectious diseases and in predisposition to some
cancers (Norhalifah et al., 2018; Sakuraba et al., 2020; Bukhari
et al., 2021). They contribute to differences in disease profiles even
when one controls for social factors like housing quality, diet, life-
style, geographic location, poverty etc. For example, APOL1, a fre-
quent genotype among populations with African ancestry is
linked to kidney diseases (Borrell et al., 2021), while a SNP
(rs370140172) in EYS gene on the long arm of chromosome 6 is
associated with type-2 diabetes in Native Hawaiians (Sun et al.,
2021). Equally, ancestry specific variants are highly significant in
determining the effectiveness of medical treatments. One good
example is the well-known antiplatelet medication, Plavix, that
has been shown to be ineffective for treatment of heart disease
and stroke in majority of Asians and Polynesians due to the
absence of the CYP2C19 allele in these population groups (Wu
et al., 2015; Borrell et al., 2021). More recently, Zhang et al.
(2021) reported SNPs in genes associated with coronavirus 2019
susceptibility in ethnically diverse subjects with African and Euro-
pean ancestry and their findings were validated against their
health records. This study shows how different (e.g., frequency
data for rs138390800, rs147311723, rs61735795, rs367866934
variants located in genes relevant to severe acute respiratory syn-
drome coronavirus 2 infection) might be between some groups due
to local selection forces even when they are ancestrally related.
These few examples demonstrate the value of population genetic
data (if available) where associated disease prevalence is known.
Medical decisions can be made and outcomes predicated based
on ethnicity information (see later).

2.3. Searching for novel markers of disease susceptibility

As described in the earlier sections, population genetic data are
regularly being reported for many ethnically related and unrelated
population groups. Ethnicity classification tends to be defined by



Table 1
Here we show how social definition obscures the ancestral genetic signal using HLA-A
and -B allele frequencies for Europeans, social and ancestry defined Maori. Data for
Europeans and Maori were extracted from Edinur et al. (2012). Projected values for
the wider set of socially self-defined Maori individuals can be calculated from the
geometric mean across the two right hand columns.

HLA allele Europeans
(n= 545)

Admixed
Maori (n = 65)

Full ancestry
Maori (n = 49)

A*01 0.22 0.08 0.05
A*02 0.27 0.31 0.36
A*03 0.13 0.07 0.00
A*11 0.05 0.18 0.16
A*23 0.02 0.00 0.00
A*24 0.08 0.19 0.38
A*25 0.02 0.02 0.00
A*26 0.02 0.02 0.00
A*29 0.04 0.00 0.00
A*30 0.02 0.01 0.00
A*31 0.04 0.01 0.00
A*32 0.04 0.01 0.00
A*33 0.01 0.01 0.00
A*34 0.00 0.08 0.05
A*68 0.04 0.02 0.00
B*07 0.14 0.07 0.02
B*08 0.13 0.04 0.02
B*13 0.02 0.00 0.04
B*14 0.04 0.04 0.00
B*15 0.00 0.05 0.01
B*18 0.04 0.02 0.00
B*27 0.04 0.01 0.01
B*35 0.06 0.01 0.00
B*37 0.01 0.01 0.00
B*38 0.01 0.01 0.00
B*39 0.01 0.12 0.09
B*40 0.08 0.16 0.20
B*41 0.01 0.00 0.00
B*44 0.17 0.08 0.02
B*45 0.01 0.01 0.00
B*47 0.01 0.01 0.00
B*48 0.00 0.10 0.14
B*49 0.01 0.00 0.00
B*50 0.02 0.02 0.00
B*51 0.07 0.01 0.00
B*53 0.03 0.00 0.00
B*54 0.00 0.01 0.00
B*55 0.03 0.16 0.37
B*56 0.01 0.05 0.07
B*57 0.04 0.01 0.00
B*58 0.01 0.02 0.00
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the original purpose of the study. Here, forensics and population
genetics provide the perfect contrast. Forensics is primarily inter-
ested in a social definition of ethnicity (in New Zealand this is
self-declared ethnic affiliation), but population genetics demands
ethnicity information to be based on ancestry. Hence, any forensic
database in New Zealand will include ‘Maori’ who are both full
blood Maori (as medicine and population genetics require) and
admixed Maori – e.g., refer (Edinur et al., 2012, 2013a, 2013b,
2013c). When DNA samples obtained during the development of
a New Zealand forensic DNA database were examined (with all
due Ethics permits), we found differences between members of
two sub-sets of data (i.e., those from full ancestry vs admixed her-
itage Maori); refer Table 1. These two type are about 50:50 among
our volunteers and allele frequency data for the latter were more
or less exactly intermediate between those for the former and for
matching reference data for Europeans (interpreted by us to mean
that the admixture fraction was around 0.50 in this sub-set).
Therefore, it is imperative that medical analysts properly under-
stand where their data come from and how participants are
defined. Here, population stratification can lead to low statistical
power (increasing the genomic variability of each cohort) or lead-
ing false positive results (if case and controls belong to different
3

ancestral groups) in medical research. In admixed populations,
the individual ancestral mosaic is different from one person to
another and may possibly create problems when searching for
genetic variants associated with disease pathogenesis. Possible
solutions would be to create different case-control cohorts by
ancestral origin, or by considering ancestral variables and not eth-
nicity in etiological formulations; e.g., refer Peterson et al. (2019)
for details. In our experience, population stratification continues
to occur especially in multi-ethnic countries, as previously
observed for Polynesians and Europeans in New Zealand. This is
associated with extensive inter-marriage in the community
(Chambers et al., 2016). For this specific reason, multiple cohorts,
ancestral variables and tabulation of admixed and full ancestry
population datasets (refer Table 1) can be used to estimate fre-
quency distribution of a particular markers for medical purposes.
In general, similarities and differences between population data-
sets can be powerful tools because they may reveal variants that
can be used as candidates in disease association studies. A good
marker would then be one with large differences in frequency
and disease prevalence between populations, such as the ones
described earlier for APOL1 and CYP2C19 in sub-section 2.2 and
see later on 1000 Genomes Project in section 3.

2.4. Reference controls for other diseases

We would also like to note that any genetic markers that are
being screened as control data for a specific disease may also have
other unforeseen extended medical benefits. This is because, many
diseases map to a common region with otherwise anonymous
markers in the human genome. One good example is HLA where
many infectious diseases and cancers are linked to this extended
gene region (Shukla et al., 2015; Shi et al., 2020). In this context,
a single set of HLA population data can be developed and used
for studying multiple diseases.

3. Current developments, technical considerations & future
directions

Medicine today is an increasingly dependent on genetic knowl-
edge and we are moving towards precision medicine where even
individual treatment and disease prevention will be based on
information about personal genetics, lifestyle, environmental fac-
tors etc. But until then, there are already plenty of known genetic
differences between people of different ethnicities, ancestry or
simply between those from different geographic regions that are
highly valuable for estimating disease susceptibility and response
to medical treatment. However, as the new age of personalized
genomic medicine dawns we remain in total agreement with
Borrell et al. (2021):

‘‘Indeed, we contend that the epidemiologic importance of race/eth-
nicity will never disappear.”

For this reason, several public databases are now dedicated to
storing these kinds of datasets. They include the Allele Frequency
Net Database (AFND), Immuno Polymorphism Database (IPD), gno-
mAD and Ensembl - refer https://www.allelefrequencies.net/,
https://www.ebi.ac.uk/ipd/, https://gnomad.broadinstitute.org/
and https://www.ensembl.org/index.html, respectively for details.

AFND is the largest population genetic database storing fre-
quency data (alleles, genes, haplotypes and genotypes) of HLA,
KIR, major histocompatibility complex class I chain related genes
(MIC) and a number of cytokine gene polymorphisms found in
worldwide populations. Information from this resource has been
extensively used in a variety of settings such as histocompatibility,
immunology, epidemiology, pharmacogenetics, and population
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genetics (Gonzalez-Galarza et al., 2020). However, data stored in
AFND represent only one relatively small (but also one of the most
polymorphic) region of the human genome. Any population
genetic data deposited in these collections should only ever be col-
lected from well-characterized and well-described populations
(i.e., indicating full or admixed ancestry) and be of sufficient sam-
ple size to properly reflect the particular population as a whole
(Borrell et al., 2021; Edinur et al., 2022). Population data collected
from limited numbers of individuals may not adequately represent
the actual genetic diversity in that particular population and sub-
sequently may affect the accurate interpretation of any statistical
results if they are used as a reference standard.

Efforts should also be made to study and include as many as
population groups as possible in any particular population data-
base. This will not only ensure equity in medical research, but will
also help to give better insights into genetic variability across the
planet and its wider influences on health (Banerjee and
Chaudhury, 2010; Landry et al., 2018). Currently, AFND holds data
from more than 1600 populations including records from over ten
million healthy individuals belonging to 141 countries. However,
there are many more population datasets for Europeans in AFND
than there are people from Africa and Central Asia (Tshabalala
et al., 2015; Santos et al., 2016; Gonzalez-Galarza et al., 2020).

Currently, NGS is becoming a widely affordable platform and
has the ability to capture entire whole genomes. One good example
is the 1000 Genome Project which compiles genomic information
generated using NGS and aims to create public databases of human
genetic variants that can be used for a wide range of biological
research (Larson et al., 2015; McKenna et al., 2010). The power of
this type of data is shown where as many as 53% of rare variants
detected are only found in individual populations, and 17% of
low-frequency variants are detected exclusively in single ancestry
groups. It is thus crucial for this project to be expanded further as
there are many population groups that are either not included at
all and/or underrepresented (e.g. Persians and Austronesians) in
this global genome-wide survey (Wong et al., 2013; Thareja
et al., 2015). Our own genetic research programme showed that
there are differences even between ethnically related populations.
For example, products of HLA genes (class I and II) that determine
tissue specificity are diverse and different between Malays and
Polynesians, even though they share a partial Austronesian origin
in common (Chambers and Edinur, 2013, 2021; Edinur et al.,
2012, 2013c).
4. Conclusions

Genetic screening using various molecular techniques have pro-
duced large amounts of population data that can be used for
improving human health, as described in this short commentary.
Here we endorse the value of an ethnicity/genetic ancestry-based
approach to medicine and the role of genetics via the generated
population genetic data as its rational support basis. This view
has becoming clearer and is even significant when we are moving
towards the era of precision medicine. However, several key ele-
ments such as sample size, marker type, population description/
stratification and genotyping coverage should be properly evalu-
ated before any population genetic data can be used as valid
resources to health professionals, researchers or policy makers.
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