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In this paper, we apply the Exp-function method to find some exact solutions for two
nonlinear partial differential equations (NPDE) and a nonlinear ordinary differential equation
(NODE), namely, Cahn-Hilliard equation, Allen-Cahn equation and Steady-State equation, respec-
tively. It has been shown that the Exp-function method, with the help of symbolic computation,
provides a very effective and powerful mathematical tool for solving NPDE’s and NODE’s. Mainly
we try to present an application of Exp-function method taking to consideration rectifying a com-
monly occurring errors during some of recent works. The results of the other methods clearly indi-

cate the reliability and efficiency of the used method.
© 2010 King Saud University. Production and hosting by Elsevier B.V. All rights reserved.

1. Introduction

The study of exact solutions of nonlinear partial differential
equations (NPDE) plays an important role in mathematical
physics, engineering and the other sciences. In the past several
decades, various methods for obtaining solutions of NPDEs
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and ODE’s have been presented, such as, tanh-function meth-
od (Wazwaz, 2005, 2006a,b), Adomian decomposition method
(Hashim et al., 2006; Tatari et al., 2007), Homotopy perturba-
tion method (Rashidi et al., 2009; Biazar et al., 2009; Berberler
and Yildirim, 2009), variational iteration method (Shakeri and
Dehghan, 2008; Soliman and Abdou, 2007; Yusufoglu and Bekir,
2007), spectral method (Parand and Taghavi, 2009; Parand
et al., 2009, 2010), sine—cosine method (Tascan and Bekir,
2009; Wazwaz, 2007), radial basis method (Tatari and
Dehghan, 2010; Dehghan and Shokri, 2009) and so on. Recently,
He and Wu (2006) proposed a novel method, so called Exp-
function method, which is easy, succinct and powerful to
implement to nonlinear partial differential equations arising
in mathematical physics. The Exp-function method has been
successfully applied to many kinds of NPDEs, such as, KdV
equation with variable coefficients (Zhang, 2007), Maccari’s
system (Zhang, 2007), Boussinesq equations (Abdou et al.,
2007), Burger’s equations (Ebaid, 2007; Biazar and Ayati,
2009; Ebaid, 2009), Double Sine-Gordon equation (Domairry
et al., 2010; He and Abdou, 2007), Fisher equation (Ozis and
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Koroglu, 2008), Jaulent-Miodek equations (He and Zhang,
2008) and the other important nonlinear partial differential
equations (Koroglu and zis, 2009; Shin et al., 2009; Zhang,
2008). Recently, in some of papers applying the Exp-function
method (He and Wu, 2006) have been occurred with common
errors. Seven common errors are formulated and classified by
(Kudryashov, 2009). In this paper we try to apply this method
taking to rectifying these common errors to look exact solu-
tions of three nonlinear differential equations, namely, Cahn-
Hilliard equation, Allen-Cahn equation and Steady-State
equation given by

u, = yu, + 614(14).)2 + (312 — Dty — thyars
Uy = Uxx — Ll3 + u,

oal" (x) = Bu(x)(u(x) — m)(u(x) +m),

respectively, which o, f,m and y are the constants.

The Cahn—Hilliard equation was proposed to describe phase
separation phenomena in binary systems (Cahn et al., 1958).
This equation is related with a number of interesting physical
phenomena like the spinodal decomposition, phase separation
and phase ordering dynamics. It is also very crucial in material
sciences (Chan, 1961; Choo et al., 2004; Gurtin, 1996). On the
other hand, this equation is very hard and difficult to solve. The
Cahn-Hilliard equation has been extensively studied by Wang
and Shi (1993), Jabbari and Peppas (1995), Puri and Binder
(1991) for the study of interfaces. Global existence and unique-
ness of the solution have been shown by Elliott and Zheng
(1986). Jingxue (1992) has shown the existence of continuous
solution for the problem with degenerate mobility. Recently,
Dehghan and Mirzaei (2009) applied a numerical method based
on the boundary integral equation and dual reciprocity meth-
ods for one-dimensional Cahn-Hilliard equation. Ugurlu and
Kaya (2008) solved Cahn-Hilliard equation by tanh-function
method. Furihata (2001) applied finite difference for Cahn-Hil-
liard equation. Many articles have investigated this equation
mathematically and numerically this equation (Mello et al.,
2005; Kim, 2007; Wells et al., 2006). Also, Allen-Cahn equation
arise in many scientific applications such as mathematical biol-
ogy, quantum mechanics and plasma physics. It is well known
that wave phenomena of plasma media and fluid dynamics are
modelled by kink shaped and tanh solution or bell shaped sech
solutions (Wazwaz, 2007; Tascana and Bekir, 2009).

The rest of the paper is organized as follows: Section 2 de-
scribes Exp-function method for finding exact solutions to the
NPDESs. The applications of the proposed analytical scheme
presented in Section 3. The conclusions are discussed in the
Section 4. exp-function calculations are provided in the end.

2. Basic idea of Exp-function method

We consider a general nonlinear PDE in the following form

) =0, )

where N is a polynomial function with respect to the indicated
variables or some functions which can be reduced to a polyno-
mial function by using some transformation. We introduce a
complex variation as

M(X, t) = U(’?L

where k and w are constants. We can rewrite Eq. (1) in the fol-
lowing nonlinear ordinary differential equations

Nty vty gy Uy, Upgs Usys -

n = kx + ot, (2)

NWUkU , U, K*U",...) =0,

where the prime denotes the derivation with respect to 7.
According to the Exp-function method (He and Wu, 2000),
we assume that the solution can be expressed in the form

Zf:—da" CXp(li’]) (3)
> gbiexp(in)’

where ¢,d,p and ¢ are positive integers which can be freely
chosen, ¢; and b; are unknown constants to be determined.
To determine the values of ¢ and p, we balance the highest or-
der linear term with the highest order nonlinear term in Eq.
(3). Similarly to determine the values of d and ¢. So by means
of the exp-function method, we obtain the generalized solitary
solution and periodic solution for nonlinear evolution equa-
tions arising in mathematical physics.

Uln) =

3. Applications of the Exp-function method

Example 1. Let us consider the Cahn-Hilliard equation
(Ugurlu and Kaya, 2008; Dahmani and Benbachir, 2009) in
the form

u, = yu, + 614(ux)2 + (31 = Dty — Uy, (4)
that, by using the complex variation
u(x, 1) =Uln), n=kx+ot, (5)

and integrating with respect to u, Eq. (4) can be converted to
the ODE (for y = 1)

(w—kU+K'U" =3 VU + KU =0, (6)

where the prime denotes the derivative with respect to 5 and
also where the integration constant is chosen as zero. In other
words, we are solved this problem for the case when integration
constant is zero. In view of the Exp-function method, we as-
sume that the solution of Eq. (6) can be expressed in the form

_acexp(en) + -+ +a_qgexp(—dy)

byexp(pn) + -+ +b_gexp(—qn)’
where ¢, d, p and ¢ are positive integers which are unknown to
be determined later. In order to determine the values of ¢ and
p, we balance the linear term of the highest order with the high-

est order nonlinear terms in Eq. (6) i.e. U"” and U*U'. By sim-
ple calculation, we have

U(n)

gr = ARl LT )
crexp(8pn] 4 - -
and
= GGt pnl+ - cexp((Be £ Sppn+---
Sk === , 8)
caexpldpn] + - - caexp[8pn] + - -

where ¢; are determined coefficients only for simplicity. By bal-
ancing the highest order of Exp-function in Egs. (8) and (7), we
have

c+7p=3c+5p,

which leads to the result

p=c.

Similarly, to determine the values of d and ¢, we balance the
linear term of the lowest order in Eq. (6)

-+ dyexp[—(7q + d)n] )

U/N —
-+ dy exp[—8¢n]
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and
ey — o dsexpl=(q + 3d)n]
-+ + dy exp[—4qn]
_ -+ dsexp[—(5q + 3d)n] (10)
- +dyexp[-8qn]

where d; are determined coefficients only for simplicity, we
have

—(7q+d) = —(5¢ + 3d),
which leads to results
q=d.

For simplicity, we set p =c=1and ¢ =d =1, so Eq. (3) re-
duces to

Uln) =

a;exp(n) +ao +a_ exp(—1n)
exp(n) +bo +brexp(—n)

(11)

Substituting Eq. (11) into Eq. (6), equating to zero the coeffi-
cients of all powers of exp(nn) yields a set of algebraic equa-
tions for agy,by,a_y,a;,b;,k and ® (see Appendix A). By
solving the system of algebraic equations with a professional
mathematical software, we obtain

Case 1.

ay=b, by=0b,,

ap =0, by =0, (12)
a = —1, kfwff

where b_; is free parameter which can be determined by initial
or boundary conditions. Substituting these results into (11), we
obtain

—exp [ﬁ (x+ Z)] + b_yexp [,@(x + z)]
exp [JTE (x+ t)} +b_exp [772 (x+ t)}

These results cover some of special solutions Eq. (4) regarding
to initial value conditions. For example, if initial conditions
u(x,t) becomes u(x,0) = 0, then by substituting =0 in the
Eq. (13) we could obtain 5_; and exact solution of Eq. (4). If
Eq. (4) were in the following form:

u(x, 1) = (13)

ux)2 + (3u? — Duy,
u(x,0) = —tanh [%Ex}

u, = uy + 6u(

— Uxxxxs

(14)

From Egs. (14) and (13), we obtain

b =1 (15)
Thus, from substituting Eq. (15) into Eq. (13), we obtain
—exp [‘/. (x+ Z)} + exp [—ﬁ(x + l)}

exp[ (x+)}+exp[ (x+)}

= —tanh [\éﬁ

u(x,1) =

)

(x+1)

which is the solution obtained by tanh method in Ugurlu and
Kaya, 2008. Also, if Eq. (4) were in the following form:

U, = uy + 6u(u).)2 + (3% — Dy,
u(x,0) = —coth [gx]

— Uxxxs

(16)

From Egs. (16) and (13), we derive

by =-1. (17)
Thus, from substituting Eq. (17) into Eq. (13), we obtain
—exp [f(x + Z)} —exp [—ﬁ(x + Z)}

exp [f(x—‘- )} —exp [ i(x—&- )}

= —coth {g

u(x,1) =

(x+1)

)

which is the solution obtained by tanh method in Ugurlu and
Kaya (2008).

Case 2.

-1 = _b—17 b—l = b—17

dy :0, b() :07 (]8)
wol,  kew-d

Substituting these result into Eq. (11), we obtain the following
solution:

exp [@ (x+ t)] —b_jexp [— @ (x+ Z)]
u(x, ) = 7 % . (19)
exp [T (x+ t)} + b_jexp [— Z(x+ t)]
If Eq. (4) were in the following form:
— Uxxxxs

{ =t + 6u(u) + (3 — Dty (20)

u(x,0) = coth [2 x]
From Eq. (20) and Eq. (19), we obtain
by =1 (21)
Thus, from substituting Eq. (21) into Eq. (19), we obtain

exp [ (x+ t)] exp [— 2 (x4 t)}

)= exp [ (x+ t)] + exp [— 2(x+ t)}
= coth {? (x+1)],

which is the same as Ugurlu’s solution (Ugurlu and Kaya,
2008). Also, if Eq. (4) were in the following form:

U, = uy + 6u(ux)2 + (31 — Dty — Urrr,
— tanh |2 (22)
u(x,0) = tanh [TX].
From Eq. (22) and Eq. (19), we obtain
by =-1. (23)

Thus, from substituting Eq. (23) into Eq. (19), we obtain

exp [ (x+ t)] + exp [—@(}H— t)}

bt = exp [ (x+ t)] —exp [—‘?(}H— t)}
= tanh [\f (x+1)], (24)

which is the exact solutions given by Ugurlu and Kaya (2008),
Dahmani and Benbachir (2009). Fig. 1 depict the solution Eq.
(24).
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Figure 1
Case 3.
a_ :0, b,| :éag,
ap =ap, by=0, (25)
a=0, k=w=I

In this case, k and @ are imaginary numbers. Substituting these
results into (11), we obtain

0% ) = e T AT+ Lol ] 26)
If Eq. (4) were in the following form:

U = uy + 614(z4x)2 + (31 — Dty — Urnr,
{ u(x,0) =2 tan [Lx] + 2 cot [/1x]. @
From Egs. (27) and (26), we obtain
ay = 2V/2i. (28)
Thus, from substituting Eq. (28) into Eq. (26), we have
u(x, 1) = expli(x + t)]zf\/ilgp[fi(x +10)]’ (29)
we know
expli(x + t)] — exp[—i(x + )] = 2isin(x + 1), (30)
and
m:%tan [%(x—}—t)}—i—%cot B(H[)} (31)
Substituting Egs. (30) and (31) into Eq. (29), we obtain
u(x, 1) = g tan B (x+ t)} + g cot B (x+ z)} , (32)

which is the solution obtained by tanh method in Ugurlu and
Kaya (2008). Fig. 2 depict the solution Eq. (32). Also, if Eq. (4)
were in the following form:

1

The solutions of Eq. (24).

U = u, + 6u(ux)2 + (3% — Dty — thyrn,
{ u(x,0) = — 2 tan [Lx] — 2 cot [1x]. (33)
From Egs. (33) and (26), we obtain
ay = —2v/2i. (34)
Thus, from substituting Eq. (34) into Eq. (26), we have
u(x, 1) —2v2i (35)

- expli(x +1)] —exp[—i(x +1)]
Substituting Eqs. (30) and (31) into Eq. (35), we obtain

u(x, 1) = —§tan B(x—&-t)} —\/TEcot B(Hz)},

which is the solution obtained by tanh method in Ugurlu and
Kaya (2008).

Case 4.
2 (d-1) 2 (a2—-1)
a*lz_é Oal] ) b*l:_% 0[:11% 3
(2a%—1)b,
a = — ¢L1al 07 bO — b07 (36)
a = a, k=w=/3a -1,

where by and a; are free parameters. Inserting these result into
Eq. (11), we obtain

b (aP—1
ay exp(iy) — 210 L 2D exp(—p)

with n = /3@ — 1(x +1).
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Case 5.

@t =4 = ). boy = = (e}~ ).

bo = bo, (37)
k=w=12,

where by and a, are free parameters. Inserting these result into
Eq. (11), we obtain exact solution

_exp(n) + ao +5 (a5 — by) exp(—1)
exp(n) + bo — § (af — bg) exp(—n)’
with 7 = v2(x +1).

ap = do,

ay :17

u(x, 1)

Example 2. Now we consider the Allen-Cahn equation
(Wazwaz, 2007; Tascana and Bekir, 2009)

Uy = Uy — 1 + . (38)
Using the transformation (2), Eq. (38) becomes
U —oU -~ U +U=0, (39)

where prime denotes the differential with respect to 5. The
highest nonlinear term U° is now given by

P = aexplBe+pn+ - (40)
crexpldpn] +--- 7

and the highest linear term U” is given by

U,,:C36Xp[(é’+3p)}’]]+"'. (41)
caexpldpn] + - -

Balancing the highest order of exp-function in Egs. (41) and
(40), we have 3¢+ p=c+3p, so p=c. As since illustrated
in the previous example, we can also obtain that ¢ = d. Here,
we only consider the simplest case p=c=1land ¢g=d =1, so
Eq. (3) reduces to

=05 -1

The solutions of Eq. (32).

_ayexp(n) + ap + a_, exp(—n)
U= exp(o) + bu + b exp(—n) )

Substituting Eq. (42) into Eq. (39), equating to zero the coef-
ficients of all powers of exp(nn) yields a set of algebraic equa-
tions for ay, by, a_i,a;,b;,k and o (see Appendix B). By
solving the system of algebraic equations with a professional
mathematical software, we obtain

Case 1.
a) = 17 b,] = 07
ay = 07 b() = bo, (43)

a_; =0, k::I:‘/Ti, w=%.
Substituting these result into Eq. (42), we obtain

u(x, 1) = ! ) (44)
1 + by exp §($x—3—‘2/§t)

where b is free parameter. Replacing by = +1 in Eq. (44) gives
the solutions obtained in Wazwaz (2007), Tascana and Bekir
(2009). Fig. 3 depict the solution Eq. (44) with by = 1.

Case 2.
b—l = 07
ay = 07 bo = bo, (45)
a_; =0, k::I:*/TZ7 w=3.

a) = 71,

Substituting these result into Eq. (42), we obtain
1

1 + by exp [?(:Fxf}zﬁt)] 7

where b, is free parameter. Replacing by = +1 in Eq. (46) gives
the solutions obtained in Wazwaz (2007), Tascana and Bekir
(2009).

u(x, 1) =— (46)



K. Parand, J.A. Rad

Figure 3  The solutions of Eq. (44) for the parameter value by = 1.

Example 3. Finally, we consider the solution of steady-state
equation that is presented by a ordinary differential equation
in the following form (Elliott and French, 1987):

ol (x) = u(x)(u(x) — m)(u(x) + m), (47)
where o, f, m are the constants. By making the transformation
v(x) = m™ (u(ex) + m),

12
where ¢ = (ﬁﬁ) , Eq. (47) becomes
V() = v(x)(v(x) = D(v(x) = 2). (48)

According to the Exp-function method (He and Wu, 2006), we
assume that the solution of Eq. (48) can be expressed in the fol-
lowing from:

_ay explkx + o] + ay + a_ exp[—kx — o]

vx) = explkx + ] + by + b_y exp[—kx — @] @)

where ay, a9,a_1,bo,b_1,k and w are constants which are un-
known to be further determined. Substituting Eq. (49) into
Eq. (48) and equating the coefficients of all powers of
expli(kx + w)](i =0,£1,4£2,...) to zero yields a set of alge-
braic equations for a;,ay,a_1,by,b_1,k and w (see Appendix
C). By solving the system of algebraic equations with a profes-
sional mathematical software, we obtain

Case 1.

a1 =0, b_y=0b_y,

ap = 0, b() = 07 (50)
a=2, k=1L, w=o.

Substituting these results into (49), we obtain

2exp [@x + w}

V) = exp [\/Tix+w] +borexp [_\/fo— a)} | "

By the some manipulation in Eq. (51), we obtain

v(x)
_ exp [‘/Tix+w] +b_1exp [—‘/Tix—w} + exp {‘/Tix+w} —b_jexp {—‘/Tix— w]

exp {?x-&—w} +b_exp [—gx— w]

or equivalently

exp [‘/TEX—I— w] —b_jexp {—‘?x — w]
X

exp [‘/TEquw} +b_jexp [—@ —w]
If we choose b = 1,0 = —?g in our solution Eq. (52) gives

v(x) =1 + tanh [\/75 (x— s)] .

So

u(x) = mtanh {\/TQ (m\/gx — 8>:| , (53)

which this the solution gives the solution obtained in Elliott
and French (1987). Fig. 4 depict the solution of Eq. (47), when

m=o=pf=1.
Case 2.
a,=0, b_=0,
ag = 2by, by = by, (54)
a, =0, k=2, o=o.
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Figure 4 The solutions of Eq. (53) for the parameter value m =a = ff = 1.

Substituting these results into (49), we obtain

2by
v(x) = . 55
) exp [V2x + o] + by (53)
By the some manipulation in Eq. (55), we obtain
o(x) = by +exp [V2x + o] + by — exp [V2x + o]
exp [V2x + o] + by '
Or equivalently
exp [V2x + ] — by
v(x)=1- :
exp [V2x + o] + b
Or equivalently
exp {\/75’6 +%} — bg exp [—%x — %}
) =1-—"r 3 (56)
exp {7): + %} + by exp [—Tx - g}

v(x) =1 —tanh ?(}, - s)}
So
u(x) = —mtanh ? (m\/gx — 8):| ,

which this the solution gives the solution obtained in Elliott
and French (1987).

4. Conclusion

In this paper, the Exp-function method has been tested by
applying it successfully to the Cahn-Hilliard equations,
Allen—Cahn equation and Steady-State equation. In the Exp-
function method, the free parameters may imply some physical
meaningful results for the problem considered. The free
parameters, of course, might be related to initial conditions
as well. The performance of the Exp-function method is reli-
able and effective. Many methods (such as Adomian decompo-
sition method (ADM), Homotopy analysis method (HAM) or
variational iteration method (VIM)) can only obtain a special
equation with special boundary (initial) conditions; some
obtained solutions are physically meaningless. This paper ob-
tains solutions with free parameters that can be determined
via boundary (initial) conditions. In applications of Exp-func-
tion method in past decade common errors in finding exact
solutions of nonlinear problems have been omitted (53). In this
paper we present an application of this method with tackling
these common errors. The solving procedure reveals that the
exp-function method is a straightforward, succinct and prom-
ising tool for solving nonlinear partial differential equation
and nonlinear ordinary differential equation.

Appendix A

—wa_bob* | — k*a_\byb? | — 3KPd® \aph® | + 3k a’ \bob_,
— KPa_1bob’ | + ka_1boh’ | + wagh* | + k*aph* | + kK aph®
— kagh* | =0,
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—3kaph® by — 3wa_\bib* | + 3wagh’ by + 11k*a_b3h* | — 76k agh_y + 3kaoby — 3waghy — Twa_iby + 11K a_bg
UK b by — 12K a2, — IRa BB, + Kok’ b — k*a_1by — 11k ayby + 3wayby + Tka_1by + 11k agh;
2 3 2
+ 3ka,1b(2)bil _ 16k4a,,bil + 12k2ailb,1 + 4k2alb‘il + k a1b0 - 9ka1b0b,1 — Tk albob,l + 9a)a1b0b,1

+ 77k4(11b0b,1 — 33k20?b0b,1 + 21]{261%]?00,1 — 54k2a1a,1a0
+ 21k2(11b0a§ — IZkZaOafbg + 66k2afb,]ao — 2wagh_,
— 3ka, by + 2kagh_, — kK apby — 4k*aph_ — 97 a; =0,

—4kPa b’ | —2kab* | — 9K*a’ by — 2wa b | + 16k a;b? |
+2warb* | + 2ka b’ | — 12i°a \a\b* | + 21K >  hoaph
=0,
21 dboay — 12K d2a_ + 12K°alb_y — 4k arb_, — 2kayb_,
+ 3wa,by — 3waghy + 11k*a by — 11k*aby — 12k*ala,
— 9K alby — K*a\by + K ayby — 3kaby + 3kaghy — 16k aib_,
+20a1h_y — 2wa_; + 2ka_; + 16k*a_, +4k*a_

20apb’ | — 2kagh’ | — 16k aph’ | — 4k agh’ | + T7k*a_ byb” |
+ 1 aybob® | — Tk a_1boh* | — Tkaybob® | + 9ka_ boh*
—9wa_1boh” | + Twaiboh® | — @b | — 33k by
+ 21k a \byaib_y — 54k a_a\b* ay + 21K*a* | a\b_ by

=0,
— Itaibob’ | — 3kaoh® by — 3wa_1bib_| + 3wagh® b
- 11k4071b3b71 + 11k4a0b2_1bg - 12/(2&0412_1175 k2a0 — wdy + k4a0 + kao + wa1b0 — k4a1b0 + 3k2a?b0
+66k*a® \aph_ + K*a_1byb_, — K agh® b} + 3ka_,byb_, — 3K aya — K*arby — kayby = 0.
=0,
Appendix B
—36k*a® | + 18K apab_1a_1by — S1k*d® boay + 84k*a® \arb_,
—3Kad® by + 11K aybgb | — kagh_1by — 58k*a_byb_, ab, —d, =0,
+ 47k4a0b31b0 - 6ka|b’jl - 4k2a,]bil + 6k(1,]b27] 2a,1b0b,1 + kzllobil — waobil — 3&0&271 + élobil — kzll,]bobfl
+dia b’ | — 176k a b’ | — 6wa b | + 176k a_b* | +oa_1bpb- =0,
+ 6waih’ | — wa b+ Ka_ibt + 3K aib_ by + 2Pa_1b2b_, 2aph-1by + K a0+ wa by + 4K a bt — 4ka b
2 42 2,2 2 2 —2wab? | + 2wa_1b_y —3dda_, +a_b? — 3a;d*
— 13k a0b71b0 — 9k[l1b0b7] + lea,lbOb,l — 3ka0b71b0 171 -1 0%l —1% 11

+2a_1b_; + albz,l - kza()b,lb[) — wagh_1by = 0,2a,byb_,

— 6k2aph_, + 3k*a_ by + 3wa_ by — 6ayapa_,

+ 3K aybob_; — 3waybob_, + agh} + 2aph_; +2a_1by — ay = 0,
Kaby — kP aghy — wa by + waghy — 2wab_; — 4k*ab_,

+ alb(z, +2a1b_y +2wa_; — 3a1a(2) + 2agby

— 3afa,1 +a +4ka = 0,

+ 9waibgh* | — 12wa_byb_; + 3wagh® by + 11k a bih* |
+ wagh by — k*aph b} — 48K a, b’ |a} + 84k*a_aZb
— 48K a_a3b | — 3K aia_ by — K aph_1by + k*a_ b
+ka_ by =0,

15ka_1bob_1 + Swarbyh_, + 15wabob” | — 15ka bob’ |

— Payby — wayby + wag + kKag — 3atag + 2a1by + ag = 0,
— 10K agh_\ B} + SK2arbib_y + SkCaybob?® | + Sk*a_1bob_, e R A A A

—a +a; =0.
— 10k aph by — Skaybib_y — 115k*a_bob_, — 15k apa’b* |
— Swa_iby + Sk*a_ by + 230k aph? | + 30k*a3b_, Appendix C
- 75k2a0a3] - ISkzalailbo — 15k2a,1a§b0
+ 180k agarb_ya_y — 15K atb_ya_1by — 15K arb_aiby —d, —2a.,b, +3d* b, =0,
+ Sk*a_ by + Ska_by — 10k>agh” | — 15wa_ boh_, —KPa_1bob i + I agh® | + 6apa_1b_, — da_bb_,
+ Sk*aibib_ — 115k*a1bob* | = 0, +3a2 by — 3apd?, — 2ayb>, =0,
4T apb_1bo — 3K2abEa_, + 22 B2b_, — 13K2ash_1by — danb-ibo +6avarby + 30, + A ab’, — kb
—12ka b, + 3kagh_1by + 120a62b_ — 3oab_iby +6aa by +Ka by —2ab;
— 58k*aibyb_y + 84K atb_ya_y + 84K arb_ a5 + 9ka b —3aya_y + 3agh_y — K*agh_1by
+ wayb} — 176k a_1b_, — Ywa_, b} — 6kay b, =3mad, = 2ab’, —4a by =0,
+ 1KRa B — 4K a b, — S1UCabeash_, — a5 — darbob_y + 3K a_ by
+ 18k agarboa_y — 3k2a(2)a1b(2) +4kPa_b_y + 6ka_b_, — 6k*agh_; — 6a;apa_
+ 176k a\b* | + 11k*a_ by — wagby — k*agby — 6wa_b_ + 6araph_y + 6aja_,by + 6aga_
+ 6walbz_1 + k4a1bg — 36k2a7b2_1 + 3k2a(3)b0 - 48k2a1a2_| —da_by + 3613170 - 2aobé

— 48K*a @} — K agby — kaiby + kaghy + K a by = 0, —daph_y + 3K aiboh_, =0,
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3a(2) — Kaphy + 6ayaghy — 2a_;
—4kPa\b_y + K arby — 2a\b;
— daghy — 3ayay + 3a1b_,
+ 6aia_y —dayb_y + da_k* — 3afa,] =0,
—2ay — K’ ayby — 4aby + K ay
— 3afao + 3afb0 + 6ayay =0, 3af —2a; — af =0.
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