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1. Introduction

Throughout of the present paper, we denote that the set of all
real numbers, the set of all complex numbers, the set of all quater-
nions and the set of all n� n matrices R, C, Q and MnðRÞ, respec-
tively. Also, the notations: rðAÞ, RðAÞ, AT , A�1, Aþ and VecA stand
for the rank, range, transpose, inverse, Moore-Penrose inverse
and vector operator of matrix A, respectively.

The quaternions (Nie et al., 2017; Zeng, 2005; Tian and Styan,
2005; Farebrother et al., 2003; Zhang, 1997):

Q ¼ fa1 þ a2iþ a3jþ a4k : a1; a2; a3; a4 2 Rg; ð1-1Þ

where f1; i; j; kg is set of basis of Q which satisfying the following
‘‘Hamilton conditions”:
i2 ¼ j2 ¼ k2 ¼ �1;
ij ¼ k; ki ¼ j; jk ¼ i;

ji ¼ �k; ik ¼ �j; kj ¼ �i; ð1-2Þ

are a four dimensional generalization of two dimensional complex
algebra:

C ¼ a1 þ a2if : a1; a2 2 R; i2 ¼ �1
o
: ð1-3Þ

Similarly to how complex numbers can describe both points
and linear operations in the plane, quaternions can describe both
points and linear operations in three or four dimensions. Histori-
cally, the development of quaternions runs parallel to the develop-
ment or real linear algebra and matrix theory. Thus they provided a
framework for dealing with vector quantities before the wide
spread popularization of matrices and vector calculus in mathe-
matics and physics and have inspired the development of more
general ‘‘hypercomplex” geometric algebras such as Clifford alge-
bras (Farenick and Pidkowitch, 2003; Zhang, 1997, 2011; Sun
et al., 2011; Lee and Song, 2010; Harauz, 1990; Behan and Mars,
2004; Kuipres, 2000; Farebrother et al., 2003; Alagoz et al., 2012;
Song et al., 2014; Jafari et al., 2013; Li et al., 2014; Huang, 2000;
Song and Wang, 2011; Wang, 2005; Bolat and Ipek, 2004; Wang
and Song, 2007). In the other word, quaternions algebra have been
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playing a central role in many fields of sciences such as differential
geometry, human images, control theory, quantum physics, theory
of relativity, simulation of particle motion, 3D geophones,
multispectral images, signal processing include seismic velocity
analysis, seismic waveform deconvolution, 3D anemometers, sta-
tistical signal processing and probability distributions (Farenick
and Pidkowitch, 2003; Zhang, 1997; Sun et al., 2011; Lee and
Song, 2010; Harauz, 1990; Behan and Mars, 2004; Kuipres, 2000;
Took and Mandic, 2011; Ginzberg, 2013; Leo and Scolarici, 2000;
Zhang and March, 2011).

Recently, matrix quaternion equations and systems play an
important role in mathematics and other sciences such as engi-
neering, statistics, control theory and quantum field theory in
physics and chemistry (Behan and Mars, 2004; Took and
Mandic, 2011; Sun et al., 2011; Lee and Song, 2010; Ginzberg,
2013; He and Wang, 2013; Nie et al., 2017; Wang et al., 2009,
2016; Rehman and Wang, 2015; Lin and Wang, 2013; Zhang,
2007, 2013; Lawrynowicz et al., 2010; Zhang and March,
2011). For example, Zhang (1997) studied and proved some
properties on quaternions and quaternions on matrices; Lee
and Song (2010) established matrix representations of Clifford
algebra; Farebrother et al. (2003) established some matrix repre-
sentations of quaternions; Tian and Styan (2005) established
some matrix versions of the Cauchy-Schwarz and Frucht-
Kantorovich inequalities over the quaternion algebra; Alagoz
et al. (2012) studied the split quaternion matrices; Bolat and
Ipek (2004) studied the singular value decomposition of quater-
nion matrices; Song and Wang (2011) solved some restricted
some linear quaternion equations by using an alternative con-
densed Cramer rule method; He and Wang (2013), Nie et al.
(2017), Wang et al. (2016) and Rehman and Wang (2015) estab-
lished the necessary and sufficient conditions for the existence
to the solutions of such matrix quaternion systems which
include the coupled generalized Sylvester matrix equations and
matrix quaternion equations with three and more variables.
Moreover, the vector-sensor signal processing was studied by
Behan and Mars (2004); a color human face image by quaternion
matrix representations was recognized and reconstructed by Sun
et al. (2011); the statistical properties of quaternion matrices
was studied by Ginzberg (2013); quaternions random signals
was studied by Took and Mandic (2011); the three-
Dimensional (3D) Ising models was constructed and discussed
by Zhang (2007, 2013); the order-disorder model and Ising lat-
tice was studied by Lawrynowicz et al. (2010); and the
temperature-time duality in the 3D Ising model was also pre-
sented by Zhang and March (2011).

The complex number as in (1-3) can be extended and defined as
a real linear representation r on matrix quaternions Q of order
2n � 2n (n 2 N) as follows (Lee and Song, 2010; Farebrother et al.,
2003; Song et al., 2014; Huang, 2000; Jafari et al., 2013; Zhang,
1997, 2011; Tian and Styan, 2005): r : Q ! M2n ðRÞ by

Qr ¼ rða1I þ a2HÞ : H2 ¼ �I; ð1-4Þ
where a1; a2 2 R; and H is not a unique matrix.

Also the Hamiltonian representation as in (1-1) and the quater-
nion representation as in (1-4) are extended as follow (Lee and
Song, 2010; Farebrother et al., 2003; Song et al., 2014; Huang,
2000; Jafari et al., 2013; Zhang, 1997, 2011; Tian and Styan,
2005; Zeng, 2005): Let r : Q ! M2n ðRÞ be a real linear representa-
tion on matrix quaternions Q defined by:

Qr ¼ rða1I þ a2H þ a3J þ a4KÞ; ð1-5Þ

where ar 2 R ðr ¼ 1;2;3;4Þ, I is an identity matrix of order 2n � 2n

and H; J; K are real matrices of order 2n � 2n such that satisfying
the following Hamilton conditions:
H2 ¼ J2 ¼ K2 ¼ �I;

HJ ¼ K; JK ¼ H; KH ¼ J;

JH ¼ �K; KJ ¼ �H; HK ¼ �J: ð1-6Þ
Note also that H; J and K are not unique real matrices and the

Hamilton conditions as in (1-6) can be rearranged as in the follow-
ing table:
Hamilton Conditions Table
�
 I
 H
 J
 K
I
 I
 H
 J
 K

H
 H
 �I
 K
 �J

J
 J
 �K
 �I
 H

K
 K
 J
 �H
 �I
Finally, the Moore-Penrose inverse and Kronecker products of
matrices as defined below, respectively, are playing a central role
to obtain our results in the solutions of the linear quaternion
systems.

(i) The Moore-Penrose inverse Aþ of a rectangular matrix A is
defined to be satisfied the following equations (Wang,
1997; Kilicman and Al-Zhour, 2007, 2011)
AAþA ¼ A; AþAAþ ¼ Aþ; ðAAþÞT ¼ AAþ ; ðAþAÞT ¼ AþA:

ð1-7Þ

Note that if A is a nonsingular square matrix, then Aþ ¼ A�1.

(i) The Kronecker product of A ¼ ½aij� and A ¼ ½bkl� is defined by
(Van Loan, 2000; Visick, 2000; Jódar and Abou-Kandil, 1989;
Al-Zhour and Kilicman, 2007; Al-Zhour, 2012, 2014, 2015,
2016):
A� B ¼ ½aijB�: ð1-8Þ

Note that the Kronecker product has the following nice properties
(Kilicman and Al-Zhour, 2007; Al-Zhour and Kilicman, 2007; Al-
Zhour, 2012, 2014, 2015):

ðA� BÞþ ¼ Aþ � Bþ;

ðA� BÞðC � DÞ ¼ AC � BD;

VecðABCTÞ ¼ ðC � AÞVecB; ð1-9Þ
where A B, C and D are matrices with compatible sizes.

One of the most important applications of quaternions, Kro-
necker products and the 2� 2 Pauli spin matrices as in (3-1) later
is the Hamiltonian of the 3D Ising model on a simple or thorhombic
lattice which is written by (Zhang, 2013):

Ĥ ¼ �J
Xn
s¼1

Xm
q¼1

Xl

d¼1

sðsÞq ; dsqðsþ1Þ; d

�J=
Xn
s¼1

Xm
q¼1

Xl

d¼1

sðsÞq ; dsqðsÞ þ 1; d

�J==
Xn
s¼1

Xm
q¼1

Xl

d¼1

sðsÞq ; dsqðsÞ; dþ 1:

ð1-10Þ

The partition function of (1-10) is given by Zhang (2007, 2013)
as follows:

Z ¼ TrðTðVÞÞm ¼ TrðV3V2V1Þm; ð1-11Þ
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where the transfer matrices V1, V2; V3 and all variables are given in
equations (1)-(9) in Zhang (2013) works. Also another representa-
tion of a partition function of (1-10) is given by Zhang (2007,
2013) works as follows:

Z ¼ ð2 sin h2KÞmnl
2

TrðV3V2V1Þm ¼ ð2 sinh2KÞmnl
2

X2nl
i¼1

kmi ; ð1-12Þ

where the transfer matrices V1, V2; V3 and all variables are given in
Eqs. (11)–(23) in Zhang (2013) works.

In the present paper, several new attractive and interested lin-
ear representations of matrix quaternions are constructed by using
Kronecker structures which conclude to the general partitioned
linear representation form of matrix quaternions. Furthermore,
the general solutions of partitioned linear quaternion and linear
matrix quaternion systems which includes the coupled Sylvester
matrix quaternion equations are also presented by using our new
effective approach.

2. Linear representations of matrix quaternions as in (1-4)

Since the matrix H (where H2 ¼ �I) as in (1-4) is not a unique,
then in this Section we construct the 2-dimensional, 4-dimensional
and 8 -dimensional matrix quaternions based on the Kronecker
structure as in the following cases:

Case 1. Choose H ¼ 0 �1
1 0

� �
, then it is easy to verify that

H2 ¼ �I2 and the real linear representation r on matrix quater-
nions Q2 is given by r : Q2 ! M2ðRÞ and defined as follows:

Qr ¼ rða1I2 þ a2HÞ ¼
a1 �a2
a2 a1

� �
: ð2-1Þ

Case 2. Consider the following matrices:

A ¼ 0 �1
1 0

� �
; B ¼ 1 0

0 �1

� �
: ð2-2Þ

Here, A2 ¼ �I2, B
2 ¼ I2 and the real linear representation r on

matrix quaternions Q4 is given by r : Q4 ! M4ðRÞ and defined as
follows:

Qr ¼ rða1I4 þ a2HÞ : H2 ¼ �I4; ð2-3Þ
Now, we can generate the matrix quaternions of order 4� 4 by
using the Kronecker product as follow. Choose: H ¼ A� B ¼
0 0 �1 0
0 0 0 1
1 0 0 0
0 �1 0 0

2
664

3
775, then H2 ¼ A2 � B2 ¼ �I4. In this case,

Qr ¼

a1 0 �a2 0
0 a1 0 a2
a2 0 a1 0
0 �a2 0 a1

2
6664

3
7775: ð2-4Þ

Case 3. Consider the following matrices:

A ¼ 0 �1
1 0

� �
; B ¼ 1 0

0 �1

� �
; C ¼ 0 1

1 0

� �
: ð2-5Þ

Here, A2 ¼ �I2, B
2 ¼ C2 ¼ I2 and the real linear representation r

on matrix quaternions Q8 is given by r : Q8 ! M8ðRÞ which is
defined as:

Qr ¼ rða1I8 þ a2HÞ : H2 ¼ �I8: ð2-6Þ
Now, we can generate the matrix quaternions of order 8� 8

by using the Kronecker product in some different ways. For
example,
(i) Choose:

H ¼ A� C � B ¼

0 0 0 0 0 0 �1 0
0 0 0 0 0 0 0 1
0 0 0 0 �1 0 0 0
0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0
0 0 0 �1 0 0 0 0
1 0 0 0 0 0 0 0
0 �1 0 0 0 0 0 0

2
66666666664

3
77777777775
, then

H2 ¼ A2 � C2 � B2 ¼ �I8. In this case,
Qr ¼

a1 0 0 0 0 0 �a2 0
0 a1 0 0 0 0 0 a2

0 0 a1 0 �a2 0 0 0
0 0 0 a1 0 a2 0 0
0 0 a2 0 a1 0 0 0
0 0 0 �a2 0 a1 0 0
a2 0 0 0 0 0 a1 0
0 �a2 0 0 0 0 0 a1

2
66666666666664

3
77777777777775
: ð2-7Þ
(ii) Choose:

H ¼ A� B� C ¼

0 0 0 0 0 �1 0 0
0 0 0 0 �1 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 �1 0 0 0 0
0 0 �1 0 0 0 0 0

2
66666666664

3
77777777775
, then

H2 ¼ A2 � B2 � C2 ¼ �I8. In this case
Qr ¼

a1 0 0 0 0 �a2 0 0
0 a1 0 0 �a2 0 0 0
0 0 a1 0 0 0 0 a2

0 0 0 a1 0 0 a2 0
0 a2 0 0 a1 0 0 0
a2 0 0 0 0 a1 0 0
0 0 0 �a2 0 0 a1 0
0 0 �a2 0 0 0 0 a1

2
66666666666664

3
77777777777775
: ð2-8Þ
(iii) Choose:

H ¼ A� A� A ¼

0 0 0 0 0 0 0 �1
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 �1 0 0 0
0 0 0 1 0 0 0 0
0 0 �1 0 0 0 0 0
0 �1 0 0 0 0 0 0
1 0 0 0 0 0 0 0

2
66666666664

3
77777777775
, then

H2 ¼ A2 � A2 � A2 ¼ �I8. In this case,
Qr ¼

a1 0 0 0 0 0 0 �a2

0 a1 0 0 0 0 a2 0
0 0 a1 0 0 a2 0 0
0 0 0 a1 �a2 0 0 0
0 0 0 a2 a1 0 0 0
0 0 �a2 0 0 a1 0 0
0 �a2 0 0 0 0 a1 0
a2 0 0 0 0 0 0 a1

2
66666666666664

3
77777777777775
: ð2-9Þ
3. Linear representations of matrix quaternions as in (1-5)

Since H, J and K are not unique real matrices as in (1-5), then we
discuss below some important cases for choosing these matrices
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such that the all Hamilton conditions as in (1-6) holds in order to
get the 4-dimensional and 8-dimensional matrix quaternions from
(1-5).Consider the following 2� 2 Pauli spin matrices:

A ¼ 0 �1
1 0

� �
;

B ¼ 1 0
0 �1

� �
;

C ¼ 0 1
1 0

� �
;

D ¼ 1 0
0 1

� �
: ð3-1Þ

Here, it is easy to verify that:

A2 ¼ �I2; B
2 ¼ C2 ¼ D2 ¼ I2;

AD ¼ DA ¼ A; BD ¼ DB ¼ B; CD ¼ DC ¼ C;

AB ¼ C; BA ¼ �C; CA ¼ B; AC ¼ �B; CB ¼ A; BC ¼ �A:

Now by using the Kronecker products of A; B; C and D in some
ways, then we can generate the imaginary parts H; J and K
2 M4ðRÞ in many different selections. For example, if we choose:

H ¼ D� A ¼

0 �1 0 0
1 0 0 0
0 0 0 �1
0 0 1 0

2
6664

3
7775;

J ¼ A� B ¼

0 0 �1 0
0 0 0 1
1 0 0 0
0 �1 0 0

2
6664

3
7775;

K ¼ HJ ¼ A� C ¼

0 0 0 �1
0 0 �1 0
0 1 0 0
1 0 0 0

2
6664

3
7775:

It is easy to verify that the all Hamilton conditions are holds by:

H2 ¼ D2 � A2 ¼ �I4;

J2 ¼ A2 � B2 ¼ �I4;

K2 ¼ A2 � C2 ¼ �I4;

HJ ¼ DA� AB ¼ A� C ¼ K;

JH ¼ AD� BA ¼ A� ð�CÞ ¼ �K;

JK ¼ A2 � BC ¼ �ðDÞ � ð�AÞ ¼ H;

KJ ¼ A2 � CB ¼ �ðDÞ � A ¼ �H;

KH ¼ AD� CA ¼ A� B ¼ J;

HK ¼ DA� AC ¼ A� ð�BÞ ¼ �J:

In this case,

Qr ¼ rða1I4 þ a2H þ a3J þ a4KÞ ¼

a1 �a2 �a3 �a4
a2 a1 �a4 a3
a3 a4 a1 �a2
a4 �a3 a2 a1

2
6664

3
7775:

ð3-2Þ
Similarly, we can easily construct some possible cases for

choosing the real matrices H; J and K which satisfying the all
Hamilton conditions by rearranging the Kronecker products
between 2� 2 -matrices A;B;C and D as given in (3-1). Also based
on the Kronecker products of A; B; C and D in (3-1), we can gener-
ate the imaginary parts H; J and K 2 M8ðRÞ in many different ways.
For example,
(i) Choose: H ¼ A� C �D, J ¼ D� A� C and K ¼ HJ ¼ A� B� C.
(ii) Choose: H ¼ A� B� D, J ¼ B� D� A and K ¼ HJ ¼ C � B� A.

Note that H; J and K are matrices of order 8� 8 with one
nonzero element (1 or -1) in each row and one nonzero element
(1 or �1) in each column and it is easy to check that the all
Hamilton conditions as in (1-6) are holds and easy also to find
the quaternion matrix Qr ¼ rða1I4 þ a2H þ a3J þ a4KÞ 2 M8ðRÞ.

Note that we can obtain the higher dimensional quaternion
matrices of order 2n � 2n (n ¼ 3;4; . . .) by using m-fold Kronecker
products of 2� 2 matrices as same as chosen in (3-1).

4. General partitioned representations form of matrix
quaternions

We note from the all above cases as in Sections 2 and 3 that any
quaternion matrix Qr 2 M2n ðRÞ can be rewritten as a partitioned
quaternion matrix as follow:

Qr ¼ S11 S12
S21 S22

� �
: S11 ¼ S22; S12 ¼ �S21: ð4-1Þ

Now, we can construct the 8-dimensional matrix quaternions based
on (4-1) and by letting T be a partitioned matrix of order 8� 8 as
follows:

T ¼

T11 T12 T13 T14

T21 T22 T23 T24

T31 T32 T33 T34

T41 T42 T43 T44

2
6664

3
7775 ¼ S11 S12

S21 S22

� �
; ð4-2Þ

where each block of matrices Tij is of order 2� 2 and each block of
matrices Skl is of order 4� 4.In fact,

S11 ¼ T11 T12

T21 T22

� �
;

S12 ¼ T13 T14

T23 T24

� �
;

S21 ¼ T31 T32

T41 T42

� �
;

S22 ¼ T33 T34

T43 T44

� �
;

and T11 ¼ T22, T14 ¼ T23, T41 ¼ T32, T33 ¼ T44, T21 ¼ �T12, T13 ¼ �T24,
T31 ¼ �T42, T34 ¼ �T43.

By this way, we can obtain the quaternion matrix Qr 2M8ðRÞ as
in the following form:

Qr ¼

a1 �a2 �a3 �a4 �a5 a6 �a7 �a8
a2 a1 �a4 a3 �a6 �a5 �a8 a7
a3 a4 a1 �a2 �a7 �a8 a5 �a6
a4 �a3 a2 a1 �a8 a7 a6 a5
a5 �a6 a7 a8 a1 �a2 �a3 �a4
a6 a5 a8 �a7 a2 a1 �a4 a3
a7 a8 �a5 a6 a3 a4 a1 �a2
a8 �a7 �a6 �a5 a4 �a3 a2 a1

2
66666666666664

3
77777777777775
: ð4-3Þ

Similarly, we can extend this method as in (4-1) and (4-2) and
depends on the quaternion matrix of order 8� 8 as in (4-3) to
obtain an quaternion matrix of order 16� 16, 32� 32, and so on
to get the quaternion matrix of order 2n � 2n (n ¼ 4;5; . . .).

5. Some applications of linear matrix quaternions

In this Section, we present the general vector solutions of the
partitioned linear quaternion equations, general linear matrix
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quaternion system and coupled Sylvester matrix quaternion sys-
tem by using Kronecker structure.

Lemma 5.1. Let Qr ¼ N �M
M N

� �
2 M2n ðRÞ be a partitioned quater-

nion matrix and N, M 2 M2n�1 ðRÞ such that the all relevant inverses

exist. Then Q�1
r ¼ S�1

N N�1MS�1
N

�S�1
N MN�1 S�1

N

" #
, where SN ¼ N þMN�1M

is the Schur complement of N in Qr.
Lemma 5.2. Let Qr ¼ N �M
M N

� �
2 M2n ðRÞ be a partitioned quater-

nion matrix such that rðQrÞ ¼ 2rðNÞ, RðNÞ ¼ RðMÞ and

RðNTÞ ¼ RðMTÞ. Then

Qþ
r ¼ SþN �SþM

SþM SþN

" #
; ð5-1Þ

where

SþN ¼ ðN þMNþMþÞþ; SþM ¼ �ðM þ NMþNþÞþ: ð5-2Þ
Theorem 5.1. Let M, N 2 M2n�1 ðRÞ be given real full-rank matrices

such that RðNÞ ¼ RðMÞ and RðNTÞ ¼ RðMTÞ, and c, k 2 M2n�1�1ðRÞ be
given constant vectors, and x, y 2 M2n�1�1ðRÞ be unknown
vectors. Then the general solutions of the following linear quaternion
system:

Nx�My ¼ c; Mxþ Ny ¼ k; ð5-3Þ

are given by:

x ¼ cðN þMNþMþÞþ þ kðM þ NMþNþÞþ;
y ¼ kðN þMNþMþÞþ � cðM þ NMþNþÞþ: ð5-4Þ
Proof. The system as in (5-3) can be rewritten in matrix form as
follows:

Qrz ¼ r; ð5-5Þ

where Qr ¼ N �M
M N

� �
is a quaternion matrix of order 2n � 2n,

r ¼ c
k

� �
is a constant vector of order 2n � 1 and z ¼ x

y

� �
is a vector

of order 2n � 1 to be solved. Now the system as in (5-5) is a parti-
tioned linear matrix quaternion and satisfies the all assumptions
of Lemma 5.2, then the unique solutions of quaternion system (5-
3) is given by:

x

y

� �
¼ N �M

M N

� �þ c

k

� �
¼ SþN �SþM

SþM SþN

" #
c

k

� �
: ð5-6Þ

Hence, it is easy from (5-6) to obtain the general solution x and
y as in (5-4). h
Theorem 5.2. Let A, B; C; D 2 Mn be given real full-rank matrices

such that RðB� AÞ ¼ RðD� CÞ and RðBT � ATÞ ¼ RðDT � CTÞ, and G,
H 2 Mn be given constant matrices, and X, Y 2 Mn be unknown matri-
ces. Then the general vector solutions of the following general linear
matrix quaternion system:

AXBT � CYDT ¼ G; CXDT þ AYBT ¼ H; ð5-7Þ
are given by:

VecX ¼ ðB� Aþ DBþDþ � CAþCþÞþVecG
þ ðD� C þ ADþAþ � BCþBþÞþVecH;

VecY ¼ �ðD� C þ ADþAþ � BCþBþÞþVecG
þ ðB� Aþ DBþDþ � CAþCþÞþVecH: ð5-8Þ
Proof. By taking the vector operator for both sides of the
system as in (5-7) and based on the properties of Kronecker
product as in (1-9), then (5-7) can be rewritten in matrix form
as follows:

Qrw ¼ d; ð5-9Þ

where Qr ¼ N �M
M N

� �
¼ B� A �D� C

D� C B� A

� �
is a quaternion parti-

tioned matrix, d ¼ VecG
VecH

� �
is a constant vector and w ¼ VecX

VecY

� �
is

a vector to be solved.

Now the system as in (5-7) is a partitioned linear quaternion and
satisfies the all assumptions of Lemma 5.2, then the unique solu-
tions of quaternion system as in (5-7) is given by:

VecX

VecY

� �
¼ B� A �D� C

D� C B� A

� �þ VecG

VecH

� �
¼ SþB�A �SþD�C

SþD�C SþB�A

" #
VecG

VecH

� �

¼ ðB� Aþ DBþDþ � CAþCþÞþ ðD� C þ ADþAþ � BCþBþÞþ

�ðD� C þ ADþAþ � BCþBþÞþ ðB� Aþ DBþDþ � CAþCþÞþ
" #

� VecG

VecH

� �
: ð5-10Þ

Hence, it is easy by simple computations of (5-10) to obtain the
general vector solutions of X and Y as in (5-8). h

One of the most important cases can be obtained from (5-7) is
the following coupled Sylvester matrix quaternion equations:

AX � YBT ¼ G; XBT þ AY ¼ H; ð5-11Þ

where A, B 2 Mn are given real full-rank matrices, G, H 2 Mn are
given constant matrices, and X, Y 2 Mn are unknown matrices to
be solved as in next result.

Corollary 5.1. Let A, B 2 Mn be given real full-rank matrices such that

RðIn � AÞ ¼ RðB� INÞ and RðIn � ATÞ ¼ RðBT � InÞ and let G, H 2 Mn be
given constant matrices and X, Y 2 Mn be unknown matrices. The
general vector solutions of the coupled Sylvester matrix quaternion
equations as in (5-11) are given by:
VecX ¼ ðIn � Aþ BBþ � AþÞþVecG
þ ðB� In þ Bþ � AAþÞþVecH;

VecY ¼ �ðB� In þ Bþ � AAþÞþVecG
þ ðIn � Aþ BBþ � AþÞþVecH: ð5-12Þ
Proof. Similarly by the same technique as in the proof of Theo-
rem 5.2, then (5-11) can be rewritten in matrix form as follows:

Qrt ¼ e; ð5-13Þ

where Qr ¼ N �M
M N

� �
¼ In � A �B� In

B� In In � A

� �
is a quaternion parti-

tioned matrix, e ¼ VecG
VecH

� �
is a constant vector and t ¼ VecX

VecY

� �
is
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a vector to be solved. Applying Lemma 5.2, then the unique solu-
tions of quaternion system as in (5-11) is given by:

VecX

VecY

� �
¼ In � A �B� In

B� In In � A

� �þ VecG

VecH

� �
¼ SþIn�A �SþB�In

SþB�In SþIn�A

" #
VecG

VecH

� �

¼ ðIn � Aþ BBþ � AþÞþ ðB� In þ Bþ � AAþÞþ

�ðB� In þ Bþ � AAþÞþ ðIn � Aþ BBþ � AþÞþ
" #

VecG

VecH

� �
:

ð5-14Þ
Hence it is easy to obtain the general vector solutions of X and Y

as in (5-12) by using simple computations of (5-14). h
Remark 5.1. If the all relevant inverse of submatrices N and M
exists in the partitioned linear quaternion matrix

Qr ¼ N �M
M N

� �
that obtained in Theorems 5.1 and 5.2 and in

Corollary 5.1. Then we can easily get the general (vector) solutions
of linear (matrix) quaternion systems as in (5-3), (5-7) and (5-11)
by using the same procedures as in the proofs of Theorems 5.1 and
5.2 and Corollary 5.1 together with using Lemma 5.1.
6. Conclusion

Several new attractive and interested linear representations of
matrix quaternions are constructed and obtained as in Sections
2,3 and 4 by using Kronecker structures which conclude to the gen-
eral linear representation form of matrix quaternions as in Sec-
tion 5. Moreover, the general solutions of partitioned linear
quaternion and linear matrix quaternion systems which includes
the coupled Sylvester matrix quaternion system are also presented
by using a new approach. How to extend the use of our new
method to find the general solutions of such linear matrix quater-
nion systems of several variables as in (Wang et al., 2016; Nie et al.,
2017; Rehman and Wang, 2015); and also how to apply our new
method for dealing the partition functions for the Hamiltonian of
the 3D Ising model as in (1-11) and (1-12) which is given in details
in (Zhang, 2013; Lawrynowicz et al., 2010) still require further
researches.
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