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A B S T R A C T

In this work, we propose the ideas of orthogonal 𝐹 -proximal contraction mappings, generalized orthogonal 𝐹 -
proximal contraction mappings and establish several best proximity point theorems in an orthogonally complete
metric space () through a non-self mapping. Hence, utilizing these recently discovered results, numerous
of the existing findings in the literature are generalized or expanded. An illustration is provided to highlight
the utility of our findings. Finally, for illustrative applications, we discuss the qualitative properties of the
solutions for a fractional boundary value problem in the Caputo sense, and we study the dynamic economic
equilibrium problem.
1. Introduction

Since the last century, numerous results on fixed point theory have
been constructed because of its various applications in areas like math-
ematics, computer science, and economics. Eldered and Veeramani
(2006) proposed the idea of cyclic contraction mapping and estab-
lished best proximity point theorems in a uniformly convex Banach
space. Raj (2013) proposed the idea of weakly contractive mapping.
He introduced a notion called P-property and used it to prove adequate
conditions to make certain existence of the best proximity point. Altun
et al. (2020) proposed the ideas of p-proximal contraction and p-
proximal contractive mappings and established best proximity point
theorems on metric spaces(). Aslantas et al. (2021) proposed the
idea of cyclic p-contraction pair for single-valued mappings and estab-
lished best proximity point theorems. Moreover, he gave the existence
and uniqueness results for the solution of a system of second-order
boundary value problems. In addition, Basha (2011) proposed the
idea of non-self-proximal contractions and established best proximity
point theorems that were applied to check the existence of the best
approximation answers to equations and it is sensible that it has no
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solution. Additionally, a methodology was constructed to find such an
optimal approximate solution. Is there any point 𝗒0 in the metric space
(M, 𝜓) satisfying 𝜓(𝗒0, 𝛱𝗒0) = 𝜓(𝛺 , 𝛤 ) where 𝛺 , 𝛤 are non-empty subsets
of M, 𝛱 ∶ 𝛺 → 𝛤 is a non-self mapping and 𝜓(𝛺 , 𝛤 ) = inf {𝜓(e, g) ∶ e ∈
𝛺 , g ∈ 𝛤 }?. The point 𝗒0 ∈ M is called the best proximity point( ).

Wardowski (2012) proposed the idea of 𝐹 -contraction mapping and
established fixed point theorems that generalize the Banach contrac-
tion principle. Cosentino and Vetro (2014) published Hardy–Rogers-
type fixed point results for self-mappings on entire ordered metric
spaces, corresponding with this research direction. Moreover, Omidvari
et al. (2014) proved the existence of the best proximity point for
𝐹−contractive non-self mappings and presented two types of 𝐹−
proximal contraction. Beg et al. (2021) extended the notion of 𝐹 -
proximal contraction maps and established certain best proximity point
theorems for non-self mappings in a complete metric space. Gordji
et al. (2017) introduced orthogonal metric space and proved Banach’s
fixed point theorem with applications to the existence of a solution for
a first-order ordinary differential equation. Gunaseelan et al. (2021)
proved fixed theorems under orthogonal 𝑂-contractions on 𝑏-complete
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metric space. Applications of some fixed-point theorems in orthog-
nal extended S-metric spaces are given in Basha and Veeramani

(2000), Khalehoghli et al. (2020), Rezaei et al. (2021) and Touail
nd Moutawakil (2021). Other concepts and applications of orthogonal

contractions and fixed point theorems are apparent in Gnanaprakasam
et al. (2023), Sawangsup et al. (2020) and Charoensawan et al. (2023).
An orthogonally complete metric space is often defined in terms of a
ompleteness property related to orthogonality. For instance, a space
ight be said to be orthogonally complete if every orthogonal de-

omposition (or a related structure) converges in the metric space.
Saleem et al. (2021) discussed on some coincidence best proximity
point results. Younis et al. (2024) discussed on best proximity points
for multivalued mappings and equation of motion. Ahmad (2024)
resented the usefulness of contraction mappings in mathematics and
heir wide range of applications in nonlinear differential equations.

In the aforementioned piece of work, we propose a new idea of
rthogonal 𝐹 -proximal contractions(  ) (of the first and second
ind), generalized orthogonal 𝐹 -proximal contractions (of the first and
econd kind), and then prove   results on  .

2. Preliminaries

In this section, we present the idea of a control function given
in Wardowski (2012). Consider  to be the family of all functions
𝐹 ∶ R+ → R such that:

(𝐹1) the mapping 𝐹 is strictly non-decreasing;
(𝐹2) for each positive sequence {𝛼𝜈}, one has

lim
𝜈→∞

𝛼𝜈 = 0 ⟺ lim
𝜈→∞

𝐹 (𝛼𝜈) = −∞;

(𝐹3) we can find 𝜃 ∈ (0, 1) satisfying lim𝛼→0+ 𝛼𝜃𝐹 (𝛼) = 0.

Now, we introduce several examples of above mappings:

Example 2.1 (Wardowski, 2012). Let 𝐹1, 𝐹2, 𝐹3, 𝐹4 ∶ R+ → R by:

(1) 𝐹1(𝑥) = ln 𝑥, ∀ 𝑥 > 0;
(2) 𝐹2(𝑥) = 𝑥 + ln 𝑥, ∀ 𝑥 > 0;
(3) 𝐹3(𝑥) = − 1

√

𝑥
, ∀ 𝑥 > 0;

(4) 𝐹4(𝑥) = ln(𝑥2 + 𝑥), ∀ 𝑥 > 0.
Then, 𝐹1, 𝐹2, 𝐹3, 𝐹4 ∈  .

Definition 2.2 (Wardowski, 2012). A mapping 𝛱 ∶ M → M on a 
is said to be an 𝐹 -contraction if we can find 𝐹 ∈  and 𝜏 ∈ R+

atisfying

𝜏 + 𝐹 (𝜓(𝛱𝗒, 𝛱 𝜗)) ≤ 𝐹 (𝜓(𝗒, 𝜗)),
for all 𝗒, 𝜗 ∈ M with 𝜓(𝛱𝗒, 𝛱 𝜗) > 0.

Gordji et al. (2017) established the notion of an orthogonal set (or
-set), with various properties and examples as follows:

Definition 2.3 (Gordji et al., 2017). Let M ≠ 𝜙. Consider ⊥ ⊆ M ×M

to be a binary relation. If ⊥ verifies the next property:

∃𝗒0 ∈ M ∶ (∀𝗒 ∈ M, 𝗒⊥𝗒0) or (∀𝗒 ∈ M, 𝗒0⊥𝗒).

Then, M is called an orthogonal set . We denote this -set by (M, ⊥).

Example 2.4 (Gordji et al., 2017). Let M = [0,∞) and define 𝑦̃⊥𝗒 if
𝑦̃ 𝗒 ∈ {𝑦̃, 𝗒}. Then, by setting 𝑦̃0 = 0 or 𝑦̃0 = 1, (M, ⊥) is an -set.

Definition 2.5 (Gordji et al., 2017). Assume that (M, ⊥) is an -set. We
say that {𝗒𝜈} is an orthogonal sequence (briefly, -sequence) if
(∀𝜈 ∈ N, 𝗒𝜈⊥𝗒𝜈+1) 𝑜𝑟 (∀𝜈 ∈ N, 𝗒𝜈+1⊥𝗒𝜈 ).
2 
Definition 2.6 (Gordji et al., 2017). The triplet (M, ⊥, 𝜓) is said to be
n orthogonal  ()if (M, ⊥) is an -set and (M, 𝜓) is a .

Definition 2.7 (Gordji et al., 2017). Consider (M, ⊥, 𝜓) be an .
Then, an operator 𝛱 ∶ M → M is called an orthogonally continuous in
𝗒 ∈ M, if for all -sequence {𝗒𝜈} in M with 𝗒𝜈 → 𝗒 as 𝜈 → ∞, one has
𝛱(𝗒𝜈 ) → 𝛱(𝗒) as 𝜈 → ∞. Moreover, 𝛱 is called ⊥-continuous on M, if
𝛱 is ⊥-continuous in every 𝗒 ∈ M.

Definition 2.8 (Gordji et al., 2017). Let (M, ⊥, 𝜓) be an . Then,
is called as  , if every -Cauchy sequence is convergent.

Remark 2.9 (Gordji et al., 2017). Every complete  is   and
the converse need not be a true.

Example 2.10. Let M = [0, 1) and suppose that

𝗒⊥𝜗 ⟺

{

𝗒 ≤ 𝜗 ≤ 2
5 ;

or 𝗒 = 0.
Then (M, ⊥) is an -set. Clearly, M with the Euclidean metric is not
complete , but it is  . In fact, if {𝗒𝜈} is an -Cauchy sequence
in M, then we can find a subsequence {𝗒𝜈𝗄} of {𝗒𝜈} for which 𝗒𝜈𝗄 = 0 ∀
≥ 1 or we can find a monotone subsequence {𝗒𝜈𝗄} of {𝗒𝜈} for which

𝗒𝜈𝗄 ≤ 2
5 ∀ 𝜈 ≥ 1. It follows that {𝗒𝜈𝗄} converges to a point 𝗒 ∈ [0, 25 ] ⊆

M. Already, we know that every Cauchy sequence with a convergent
ubsequence is convergent. Furthermore, {𝗒𝜈} is convergent.

Let 𝛺 and 𝛤 be non-void subsets of M, then

𝜓(e, 𝛤 ) ∶= inf {𝜓(e, g) ∶ g ∈ 𝛤 , e ∈ 𝛺},

𝛺0 ∶= {e ∈ 𝛺 ∶ 𝜓(e, g) = 𝜓(𝛺 , 𝛤 ) for some g ∈ 𝛤 },

𝛤0 ∶= {g ∈ 𝛤 ∶ 𝜓(e, g) = 𝜓(𝛺 , 𝛤 ) for some e ∈ 𝛺}.

If 𝜓(𝛺 , 𝛤 ) > 0 for two closed subsets of a normed space, then 𝛺0
and 𝛤0 are contained in the limits of 𝛺 and 𝛤 , respectively (Basha and
Veeramani, 2000).

Definition 2.11. A mapping 𝛱 ∶ 𝛺 → 𝛤 is called an orthogonal   
f first kind (   ) if we can find 𝐹 ∈  and 𝜏 > 0 satisfying

𝜗1⊥𝜗2
𝜓(𝗒1, 𝛱 𝜗1) = 𝜓(𝛺 , 𝛤 )
𝜓(𝗒2, 𝛱 𝜗2) = 𝜓(𝛺 , 𝛤 )

⎫

⎪

⎬

⎪

⎭

⇒ 𝜏 + 𝐹 (𝜓(𝗒1, 𝗒2)) ≤ 𝐹
(

𝜓(𝜗1, 𝜗2)
)

,

for all 𝗒1, 𝗒2, 𝜗1, 𝜗2 in 𝛺 and 𝗒1 ≠ 𝗒2.

Definition 2.12. A mapping 𝛱 ∶ 𝛺 → 𝛤 is called an orthogonal   
f second kind (   ) if we can find 𝐹 ∈  and 𝜏 > 0 satisfying

𝜗1⊥𝜗2
𝜓(𝗒1, 𝛱 𝜗1) = 𝜓(𝛺 , 𝛤 )
𝜓(𝗒2, 𝛱 𝜗2) = 𝜓(𝛺 , 𝛤 )

⎫

⎪

⎬

⎪

⎭

⇒ 𝜏 + 𝐹 (𝜓(𝛱𝗒1, 𝛱𝗒2)) ≤ 𝐹
(

𝜓(𝛱 𝜗1, 𝛱 𝜗2)
)

,

for all 𝗒1, 𝗒2, 𝜗1, 𝜗2 in 𝛺 and 𝛱𝗒1 ≠ 𝛱𝗒2.

Definition 2.13. A mapping 𝛱 ∶ 𝛺 → 𝛤 is called a generalized
orthogonal    of first kind (   ) if we can find 𝐹 ∈  and
𝜎 , t,𝓁, 𝛽 ≥ 0, 𝜏 > 0 with 𝜎 + t + 𝓁 + 2𝛽 = 1, 𝓁 ≠ 1 satisfying

𝜗1⊥𝜗2
𝜓(𝗒1, 𝛱 𝜗1) = 𝜓(𝛺 , 𝛤 )
𝜓(𝗒2, 𝛱 𝜗2) = 𝜓(𝛺 , 𝛤 )

⎫

⎪

⎬

⎪

⎭

⇒ 𝜏 + 𝐹 (𝜓(𝗒1, 𝗒2)) ≤ 𝐹
(

𝜎 𝜓(𝜗1, 𝜗2) + t𝜓(𝗒1, 𝜗1)

+ 𝓁𝜓(𝗒2, 𝜗2) + 𝛽(𝜓(𝜗1, 𝗒2)
+ 𝜓(𝜗2, 𝗒1))

)

,

for all 𝗒1, 𝗒2, 𝜗1, 𝜗2 in 𝛺 and 𝗒1 ≠ 𝗒2.
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Definition 2.14. A mapping 𝛱 ∶ 𝛺 → 𝛤 is called a generalized
rthogonal    of second kind (  ) if ∃ 𝐹 ∈  and 𝜎 , t,𝓁, 𝜓 ≥

0, 𝜏 > 0 with 𝜎 + t + 𝓁 + 2𝛽 = 1, 𝓁 ≠ 1 such that the conditions

𝜗1⊥𝜗2

𝜓(𝗒1, 𝛱 𝜗1) = 𝜓(𝛺 , 𝛤 )
𝜓(𝗒2, 𝛱 𝜗2) = 𝑑(𝛺 , 𝛤 )

⎫

⎪

⎪

⎬

⎪

⎪

⎭

⇒ 𝜏 + 𝐹 (𝜓(𝛱𝗒1, 𝛱𝗒2)) ≤ 𝐹
(

𝜎 𝜓(𝛱 𝜗1, 𝛱 𝜗2)

+ t𝜓(𝛱𝗒1, 𝛱 𝜗1) + 𝓁𝜓(𝛱𝗒2, 𝛱 𝜗2)
+ 𝛽(𝜓(𝛱 𝜗1, 𝛱𝗒2) + 𝜓(𝛱 𝜗2, 𝛱𝗒1))

)

,

for all 𝗒1, 𝗒2, 𝜗1, 𝜗2 in 𝛺 and 𝛱𝗒1 ≠ 𝛱𝗒2.

Definition 2.15. A mapping 𝛱 ∶ 𝛺 → 𝛤 is called an ⊥-proximally
reserving if

𝜗1⊥𝜗2
𝜓(𝗒1, 𝛱 𝜗1) = 𝜓(𝛺 , 𝛤 )
𝜓(𝗒2, 𝛱 𝜗2) = 𝜓(𝛺 , 𝛤 )

⎫

⎪

⎬

⎪

⎭

⇒ 𝗒1⊥𝗒2,

for all 𝗒1, 𝗒2, 𝜗1, 𝜗2 in 𝛺.

Definition 2.16. Let (M, ⊥, 𝜓) be a - and (𝛺 , 𝛤 ) be a non-void
closed subsets of (M, ⊥, 𝜓). The pair (𝛺 , 𝛤 ) satisfies the ⊥- property if

𝗒1⊥𝗒2, 𝜗1⊥𝜗2
𝜓(𝗒1, 𝜗1) = 𝜓(𝛺 , 𝛤 )
𝜓(𝗒2, 𝜗2) = 𝜓(𝛺 , 𝛤 )

⎫

⎪

⎬

⎪

⎭

⇒ 𝜓(𝗒1, 𝗒2) = 𝜓(𝜗1, 𝜗2),

for all 𝗒1, 𝗒2, 𝜗1, 𝜗2 in 𝛺.

Definition 2.17. Let (M, ⊥, 𝜓) be a -. A set 𝛤 is said to be an
elatively compact in context with 𝛺 if every sequence {𝗒𝜈} of 𝛤 with
(𝗒, 𝗒𝜈 ) → 𝜓(𝗒, 𝛤 ) for some 𝗒 ∈ 𝛺 has a convergent subsequence.

3. Main results

Throughout this part,we present some basic result.

Lemma 3.1. Let (M, ⊥, 𝜓) be an orthogonal  and (𝛺 , 𝛤 ) be non-
void closed subsets pair of (M, ⊥, 𝜓). Let 𝛱 ∶ 𝛺 → 𝛤 satisfy the following
conditions:

(L1) 𝛱(𝛺0) ⊆ 𝛤0 and (𝛺 , 𝛤 ) satisfies the ⊥- property;
(L2) 𝛱 is ⊥-proximally preserving;
(L3) there exists 𝗒0, 𝗒1 ∈ 𝛺0 such that

𝜓(𝗒1, 𝛱𝗒0) = 𝜓(𝛺 , 𝛤 ),
and 𝗒0⊥𝗒1.

Then, we can find a 𝗒 ∈ 𝛺 implies that 𝜓(𝗒, 𝛱𝗒) = 𝜓(𝛺 , 𝛤 ).

Proof. By condition (L3), there exists 𝗒0, 𝗒1 ∈ 𝛺0 such that

𝜓(𝗒1, 𝛱𝗒0) = 𝜓(𝛺 , 𝛤 ),
and 𝗒0⊥𝗒1. Since 𝛱𝗒1 ∈ 𝛤0, there exists 𝗒2 ∈ 𝛺0 such that

𝜓(𝗒2, 𝛱𝗒1) = 𝜓(𝛺 , 𝛤 ),
Since ⊥-proximally preserving, we get

𝗒1⊥𝗒2.

Likewise, we can construct an -sequence

𝗒0⊥𝗒1, 𝗒1⊥𝗒2, 𝗒2⊥𝗒3,… , 𝗒𝜈⊥𝗒𝜈+1,… .

Then, {𝗒𝜈} is an -sequence with
𝜓(𝗒𝜈+1, 𝛱𝗒𝜈 ) = 𝜓(𝛺 , 𝛤 ),

3 
for all 𝜈 ∈ N. By ⊥--property, we have

𝜓(𝗒𝜈 , 𝗒𝜈+1) = 𝜓(𝛱𝗒𝜈−1, 𝛱𝗒𝜈 ),

for all 𝜈 ∈ N. If for some 𝜈0, 𝜓(𝗒𝜈0 , 𝗒𝜈0+1) = 0, consequently

𝜓(𝛱𝗒𝜈0−1, 𝛱𝗒𝜈0 ) = 0.
Therefore, 𝛱𝗒𝜈0−1 = 𝛱𝗒𝜈0 . Hence, 𝜓(𝛺 , 𝛤 ) = 𝜓(𝗒𝜈0 , 𝛱𝗒𝜈0 ). Thus the
conclusion is immediate. □

Now, we give our best proximity result on    .

Theorem 3.2. Let (M, ⊥, 𝜓) be a   and (𝛺 , 𝛤 ) be non-void closed
ubsets of (M, ⊥, 𝜓). Let 𝛱 ∶ 𝛺 → 𝛤 satisfy the following conditions:
(B1) 𝛱(𝛺0) ⊆ 𝛤0 and (𝛺 , 𝛤 ) satisfies the ⊥- property;
(B2) 𝛱 is ⊥-proximally preserving;
(B3) 𝛱 is an    ;
(B4) there exists 𝗒0, 𝗒1 ∈ 𝛺0 such that

𝜓(𝗒1, 𝛱𝗒0) = 𝜓(𝛺 , 𝛤 ),
and 𝗒0⊥𝗒1;

(B5) 𝛱 is ⊥-continuous.
Then, there is one 𝗒 ∈ 𝛺, where 𝜓(𝗒, 𝛱𝗒) = 𝜓(𝛺 , 𝛤 ).

Proof. By Lemma 3.1, we have 𝜓(𝗒, 𝛱𝗒) = 𝜓(𝛺 , 𝛤 ). So let for any 𝜈 ≥ 0,
𝜓(𝗒𝜈 , 𝗒𝜈+1) > 0. Since 𝛱 is an    , we have that

𝜏 + 𝐹 (𝜓(𝗒𝜈 , 𝗒𝜈+1)) ≤ 𝐹
(

𝜓(𝗒𝜈−1, 𝗒𝜈 )
)

.

Consequently,

𝜏 + 𝐹 (𝜓(𝗒𝜈 , 𝗒𝜈+1)) ≤ 𝐹 (𝜓(𝗒𝜈 , 𝗒𝜈−1)), ∀𝜈 ∈ N.

It implies

𝐹 (𝜓(𝗒𝜈 , 𝗒𝜈+1)) ≤ 𝐹 (𝜓(𝗒𝜈 , 𝗒𝜈−1)) −𝜏 ≤ ⋯ ≤ 𝐹 (𝜓(𝗒0, 𝗒1)) −𝜈 𝜏 , ∀𝜈 ∈ N. (3.1)

Put 𝜆𝜈 ∶= 𝜓(𝗒𝜈 , 𝗒𝜈+1). From (3.1) lim𝜈→∞ 𝐹 (𝜆𝜈 ) = −∞. By the property
(𝐹1), we get that

𝜆𝜈 → 0 as 𝜈 → ∞.

Now, let 𝜃 ∈ (0, 1) such that lim𝜈→∞ 𝜆𝜃𝜈𝐹 (𝜆𝜈 ) = 0. By (3.1), for all 𝜈 ∈ N:

𝜆𝜃𝜈𝐹 (𝜆𝜈 ) − 𝜆𝜃𝜈𝐹 (𝜆0) ≤ −𝜈 𝜆𝜃𝜈𝜏 ≤ 0. (3.2)

Letting 𝜃 → ∞ in (3.2), we have

lim
𝜈→∞

𝜈 𝜆𝜃𝜈 = 0.

Thus, lim𝜈→∞ 𝜈
1
𝜃 𝜆𝜈 = 0, then series ∑∞

𝜈=1 𝜆𝜈 is convergent. Therefore
{𝗒𝜈} is a -Cauchy sequence in 𝛺. Since, 𝛺 is a closed subset of
(M, ⊥, 𝜓) and the space is  , so 𝗒 ∈ 𝛺 with {𝗒𝜈} → 𝗒 as 𝜈 → ∞.
Since 𝛱 is ⊥-continuous, 𝛱𝗒𝜈 → 𝛱𝗒, which means that 𝜓(𝗒𝜈 , 𝛱𝗒𝜈 ) →
𝜓(𝗒, 𝛱𝗒) as 𝜈 → ∞. Hence,

𝜓(𝗒, 𝛱𝗒) = 𝜓(𝛺 , 𝛤 ).
Assume that,

𝜓(𝗒∗, 𝛱𝗒∗) = 𝜓(𝛺 , 𝛤 ).
Since 𝛱 is ⊥-proximally preserving, we get

𝗒⊥𝗒∗.

Since 𝛱 is an    , we get

𝜏 + 𝐹 (𝜓(𝗒, 𝗒∗)) ≤ 𝐹
(

𝜓(𝗒, 𝗒∗)
)

.

Since 𝐹 strictly increasing, then

𝜓(𝗒, 𝗒∗) ≤ 𝜓(𝗒, 𝗒∗).

Therefore, 𝗒 = 𝗒∗. Hence, 𝛱 has a unique   . □
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Example 3.3. Let M = R2 and Euclidean metric 𝜓 with ⊥ defined
by (𝗒1, 𝗒2)⊥(𝜗1, 𝜗2), if 𝗒1, 𝜗1, 𝗒2, 𝜗2 ≥ 0. Clearly, (M, ⊥, 𝜓) is a  .
Let 𝐹 ∶ R+ → R by 𝐹 (𝜎) = ln 𝜎. To verify the axioms (𝐹1)–(𝐹3). Let
𝜎1 < 𝜎2. Then

𝐹 (𝜎1) < 𝐹 (𝜎2). (3.3)

Therefore, 𝐹 is strictly increasing. Assume that

lim
→∞

𝜎𝜈 = 0.

Then 𝜎𝜈 =
1
𝜈 . Now

lim
→∞

𝐹 (𝜎𝜈 ) = −∞.
Conversely, assume that

lim
→∞

𝐹 (𝜎𝜈 ) = −∞.

Then 𝜎𝜈 =
1
𝜈 . Now

lim
→∞

𝜎𝜈 = 0.
Thus, 𝐹 satisfies axiom (𝐹2). We can find that 𝜃 ∈ (0, 1) implies that

lim
→∞

𝜎𝜃𝐹 (𝜎) = 0.
Therefore, 𝐹 fulfilled the axioms (𝐹1)–(𝐹3). Let 𝛺 = {(e, 0) ∶ e ≥ 0}
and 𝛤 = {(e, 1) ∶ e ≥ 0}. We have 𝛺 = 𝛺0 and 𝛤 = 𝛤0. Let 𝛱 ∶ 𝛺 → 𝛤
by

𝛱(e, 0) =
(

e

2
, 1
)

,

for each (e, 0) ∈ 𝛺. It is clear that (𝛺 , 𝛤 ) satisfies 𝛱 is ⊥-continuous, ⊥-
proximally preserving and 𝛱(𝛺0) ⊆ 𝛤0. Let 𝗒1, 𝜗1, 𝗒2, 𝜗2 ∈ 𝛺 such that
𝜓(𝗒1, 𝛱 𝜗1) = 𝜓(𝗒2, 𝛱 𝜗2) = 𝜓(𝛺 , 𝛤 ) = 1. Take 𝜗1 = (e1, 0), 𝜗2 = (e2, 0),
𝗒1 = ( e12 , 0) and 𝗒2 = ( e22 , 0) for some e1, e2 ≥ 0. Then (𝛺 , 𝛤 ) satisfies the
⊥--property. Clearly,

𝜓(𝗒1, 𝗒2) ≤ 𝑒−𝜏𝜓(𝜗1, 𝜗2).
Consequently, 𝛱 is an     with 𝑒−𝜏 = 16

7 or 𝜏 = ln 7
16 .

From Theorem 3.2 of all axioms are verified. Hence, 𝛱 has a unique
  (0, 0).

If 𝛺 = 𝛤 , then our result reduces to Theorem 3.3 in Sawangsup et al.
(2020).

Corollary 3.4. Let (M, ⊥, 𝜓) be a   and 𝛺 be a non-void closed
ubset of (M, ⊥, 𝜓). Let 𝛱 ∶ 𝛺 → 𝛺 satisfy the following conditions:
CB1) 𝛱 is ⊥-preserving;
CB2) we can find that 𝜏 > 0 implies that

𝜏 + 𝐹 (𝜓(𝛱 𝜗1, 𝛱 𝜗2)) ≤ 𝐹
(

𝜓(𝜗1, 𝜗2)
)

,

with 𝜗1⊥𝜗2 and 𝜗1 ≠ 𝜗2;
CB3) 𝛱 is ⊥-continuous.
Then, 𝛱 possesses one fixed point.

Now, we give our best proximity result on    .

Theorem 3.5. Let (M, ⊥, 𝜓) be a   and (𝛺 , 𝛤 ) be non-void closed
ubsets of (M, ⊥, 𝜓). Let 𝛺 is relatively compact in context with 𝛤 and
∶ 𝛺 → 𝛤 satisfy as follows:

CH1) 𝛱(𝛺0) ⊆ 𝛤0 and (𝛺 , 𝛤 ) satisfies the ⊥--property;
CH2) 𝛱 is ⊥-proximally preserving;
CH3) 𝛱 is an    ;
CH4) there exists 𝗒0, 𝗒1 ∈ 𝛺0 such that

𝜓(𝗒1, 𝛱𝗒0) = 𝜓(𝛺 , 𝛤 ),
and 𝗒0⊥𝗒1;

CH5) 𝛱 is ⊥-continuous.

Then, ∃ a unique 𝗒 ∈ 𝛺 such that 𝜓(𝗒, 𝛱𝗒) = 𝜓(𝛺 , 𝛤 ).

4 
Proof. By Lemma 3.1, we have 𝜓(𝗒, 𝛱𝗒) = 𝜓(𝛺 , 𝛤 ). So let for any 𝜈 ≥ 0,
𝜓(𝗒𝜈 , 𝗒𝜈+1) > 0. Since, 𝛱 is an    , we derive that

𝜏 + 𝐹
(

𝜓(𝛱𝗒𝜈 , 𝛱𝗒𝜈+1)
)

≤ 𝐹
(

𝜓(𝛱𝗒𝜈−1, 𝛱𝗒𝜈 )
)

.

Therefore,

𝜏 + 𝐹 (𝜓(𝛱𝗒𝜈 , 𝛱𝗒𝜈+1)) ≤ 𝐹 (𝜓(𝛱𝗒𝜈 , 𝛱𝗒𝜈−1)), ∀𝜈 ∈ N.

Consequently,

𝐹 (𝜓(𝛱𝗒𝜈 , 𝛱𝗒𝜈+1)) ≤ 𝐹 (𝜓(𝛱𝗒𝜈 , 𝛱𝗒𝜈−1)) − 𝜏
⋮

≤ 𝐹 (𝜓(𝛱𝗒0, 𝛱𝗒1)) − 𝜈 𝜏 , ∀𝜈 ∈ N. (3.4)

Put 𝛿𝜈 ∶= 𝜓(𝛱𝗒𝜈 , 𝛱𝗒𝜈+1). From (3.4) lim𝜈→∞ 𝐹 (𝛿𝜈 ) = −∞. By the
roperty (𝐹1), we get that

𝛿𝜈 → 0 as 𝜈 → ∞.

Now, let 𝜃 ∈ (0, 1) such that lim𝜈→∞ 𝛿𝜃𝜈𝐹 (𝛿𝜈 ) = 0. By (3.4), for all 𝜈 ∈ N:

𝛿𝜃𝜈𝐹 (𝛿𝜈 ) − 𝛿𝜃𝜈𝐹 (𝛿0) ≤ −𝜈 𝛿𝜃𝜈 𝜏 ≤ 0. (3.5)

As 𝜃 → ∞ in (3.5), we deduce that

lim
𝜈→∞

𝜈 𝛿𝜃𝜈 = 0.

Thus lim𝜈→∞ 𝜈
1
𝜃 𝛿𝜈 = 0, then series ∑∞

𝜈=1 𝛿𝜈 is convergent. Therefore,
{𝛱𝗒𝜈} is a -Cauchy sequence in 𝛤 . Since, 𝛤 is a closed subset of
M, ⊥, 𝜓) and the space is  , so {𝛱𝗒𝜈} converges to some element
in 𝛤 . Also,

𝜓(𝗏, 𝛺) ≤ 𝜓(𝗏, 𝛱𝗒𝜈 )

≤ 𝜓(𝗏, 𝗒𝜈+1) + 𝜓(𝗒𝜈+1𝛱𝗒𝜈)

= 𝜓(𝗏, 𝗒𝜈+1) + 𝜓(𝛺 , 𝛤 )
≤ 𝜓(𝗏, 𝗒𝜈+1) + 𝜓(𝗒, 𝛺).

Therefore, 𝜓(𝗏, 𝛱𝗒𝜈 ) → 𝜓(𝗏, 𝛺). Since 𝛺 is relatively compact in context
with 𝛤 , the sequence {𝗒𝜈} has a subsequence 𝗒𝜈𝗄 converges to 𝗒 ∈ 𝛺.
Hence,

𝜓(𝗒, 𝗏) = lim
𝜈→∞

𝜓(𝗒𝜈𝗄+1 , 𝛱𝗒𝜈𝗄 ) = 𝜓(𝛺 , 𝛤 ).
Since 𝛱 is a ⊥-continuous mapping,

𝜓(𝗒, 𝛱𝗒) = lim
𝜈→∞

𝜓(𝗒𝜈+1, 𝛱𝗒𝜈 ) = 𝜓(𝛺 , 𝛤 ).
Assume that, 𝗒∗, so that

𝜓(𝗒∗, 𝛱𝗒∗) = 𝜓(𝛺 , 𝛤 ).
Since 𝛱 is ⊥-proximally preserving, we get

𝗒⊥𝗒∗.

Since 𝛱 is an    ,

𝜏 + 𝐹 (𝜓(𝛱𝗒, 𝛱𝗒∗)) ≤ 𝐹
(

(𝜓(𝛱𝗒, 𝛱𝗒∗))
)

.

Since 𝐹 strictly increasing,

𝜓(𝛱𝗒, 𝛱𝗒∗) ≤ 𝜓(𝛱𝗒, 𝛱𝗒∗).

Thus, 𝛱𝗒 = 𝛱𝗒∗. Hence, 𝛱 has a unique   . □

Example 3.6. Let M = R2 and the metric

𝜓((𝗒1, 𝗒2), (𝜗1, 𝜗2)) = |𝗒1 − 𝜗1| + |𝗒2 − 𝜗2|.

with ⊥ defined by (𝗒1, 𝗒2)⊥(𝜗1, 𝜗2), if 𝗒1, 𝜗1, 𝗒2, 𝜗2 ≥ 0. Clearly, (M, ⊥, 𝜓)
is a  . Let 𝐹 ∶ R+ → R by 𝐹 (𝜎) = ln 𝜎. Clearly, for any
𝜃 ∈ (0, 1), 𝐹 fulfills the axioms (𝐹1)–(𝐹3). Let 𝛺 = {(0, e) ∶ e ∈ R}
and 𝛤 = {(2, e) ∶ e ∈ R}. We have 𝛺0 = 𝛺 and 𝛤0 = 𝛤 . Clearly, 𝛺 is
relatively compact in context with 𝛤 . Let 𝛱 ∶ 𝛺 → 𝛤 by

𝛱(0, e) =
(

2, e
)

,

2
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for each (0, e) ∈ 𝛺. It is clear that (𝛺 , 𝛤 ) satisfies 𝛱 is ⊥-continuous, ⊥-
proximally preserving and 𝛱(𝛺0) ⊆ 𝛤0. Let 𝗒1, 𝜗1, 𝗒2, 𝜗2 ∈ 𝛺 such that
𝜓(𝗒1, 𝛱 𝜗1) = 𝜓(𝗒2, 𝛱 𝜗2) = 𝜓(𝛺 , 𝛤 ) = 2. Take 𝗒1 = (0, 1), 𝜗1 = (0, 2),
𝗒2 = (0, 4) and 𝜗2 = (0, 8). Then (𝛺 , 𝛤 ) satisfies the ⊥--property.
Clearly,

𝜓(𝛱𝗒1, 𝛱𝗒2) ≤ 𝑒−𝜏𝜓(𝛱 𝜗1, 𝛱 𝜗2).
Consequently, 𝛱 is an     with 𝑒−𝜏 = 17

7 or 𝜏 = ln 7
17 . From

Theorem 3.5 of all axioms are verified. Hence, 𝛱 has a unique  
0, 0).

In what follows, we present our best proximity result on    .

Theorem 3.7. Let (M, ⊥, 𝜓) be a   and (𝛺 , 𝛤 ) be non-void closed
ubsets of (M, ⊥, 𝜓). Let 𝛱 ∶ 𝛺 → 𝛤 satisfy the following conditions:
(H1) 𝛱(𝛺0) ⊆ 𝛤0 and (𝛺 , 𝛤 ) satisfies the ⊥--property;
(H2) 𝛱 is ⊥-proximally preserving;
(H3) 𝛱 is a    ;
(H4) there exists 𝗒0, 𝗒1 ∈ 𝛺0 such that

𝜓(𝗒1, 𝛱𝗒0) = 𝜓(𝛺 , 𝛤 ),
and 𝗒0⊥𝗒1;

(H5) 𝛱 is ⊥-continuous.
Then, ∃ a unique 𝗒 ∈ 𝛺 such that 𝜓(𝗒, 𝛱𝗒) = 𝜓(𝛺 , 𝛤 ).

Proof. By Lemma 3.1, we have 𝜓(𝗒, 𝛱𝗒) = 𝜓(𝛺 , 𝛤 ). So let for any 𝜈 ≥ 0,
𝜓(𝗒𝜈 , 𝗒𝜈+1) > 0. Since, 𝛱 is a    , we have that

𝜏 + 𝐹 (𝜓(𝗒𝜈 , 𝗒𝜈+1)) ≤ 𝐹
(

𝜎 𝜓(𝗒𝜈−1, 𝗒𝜈 ) + t𝜓(𝗒𝜈−1, 𝗒𝜈 ) + 𝓁𝜓(𝗒𝜈 , 𝗒𝜈+1)

+ 𝛽 𝜓(𝗒𝜈−1, 𝗒𝜈+1)
)

≤ 𝐹
(

𝜎 𝜓(𝗒𝜈−1, 𝗒𝜈) + t𝜓(𝗒𝜈−1, 𝗒𝜈 ) + 𝓁𝜓(𝗒𝜈 , 𝗒𝜈+1)

+ 𝛽[𝜓(𝗒𝜈−1, 𝗒𝜈 ) + 𝜓(𝗒𝜈 , 𝗒𝜈+1)]
)

= 𝐹
(

(𝜎 + t + 𝛽)𝜓(𝗒𝜈−1, 𝗒𝜈) + (𝓁 + 𝛽)𝜓(𝗒𝜈 , 𝗒𝜈+1)
)

.

Since 𝐹 is strictly non-decreasing, we deduce

𝜓(𝗒𝜈 , 𝗒𝜈+1) ≤ (𝜎 + t + 𝛽)𝜓(𝗒𝜈−1, 𝗒𝜈 ) + (𝓁 + 𝛽)𝜓(𝗒𝜈 , 𝗒𝜈+1).

Thus

𝜓(𝗒𝜈 , 𝗒𝜈+1) ≤
(

𝜎 + t + 𝛽
1 − 𝓁 − 𝛽

)

𝜓(𝗒𝜈 , 𝗒𝜈−1), ∀𝜈 ∈ N.

From 𝜎 + t + 𝓁 + 2𝛽 = 1 and 𝓁 ≠ 1, we have that 1 − 𝓁 − 𝛽 > 0, and so
𝜓(𝗒𝜈 , 𝗒𝜈+1) ≤

(

𝜎 + t + 𝛽
1 − 𝓁 − 𝛽

)

𝜓(𝗒𝜈 , 𝗒𝜈−1) = 𝜓(𝗒𝜈 , 𝗒𝜈−1), ∀𝜈 ∈ N.

Consequently,

𝜏 + 𝐹 (𝜓(𝗒𝜈 , 𝗒𝜈+1)) ≤ 𝐹 (𝜓(𝗒𝜈 , 𝗒𝜈−1)), ∀𝜈 ∈ N.

It implies

𝐹 (𝜓(𝗒𝜈 , 𝗒𝜈+1)) ≤ 𝐹 (𝜓(𝗒𝜈 , 𝗒𝜈−1)) −𝜏 ≤ ⋯ ≤ 𝐹 (𝜓(𝗒0, 𝗒1)) −𝜈 𝜏 , ∀𝜈 ∈ N. (3.6)

Put 𝜆𝜈 ∶= 𝜓(𝗒𝜈 , 𝗒𝜈+1). From (5.1) lim𝜈→∞ 𝐹 (𝜆𝜈 ) = −∞. By the properties
(𝐹1), we get that

𝜆𝜈 → 0 as 𝜈 → ∞.

Now, let 𝜃 ∈ (0, 1) such that lim𝜈→∞ 𝜆𝜃𝜈𝐹 (𝜆𝜈 ) = 0. By (5.1), for all 𝜈 ∈ N:

𝜆𝜃𝜈𝐹 (𝜆𝜈 ) − 𝜆𝜃𝜈𝐹 (𝜆0) ≤ −𝜈 𝜆𝜃𝜈𝜏 ≤ 0. (3.7)

Letting 𝜃 → ∞ in (5.2), we have

lim
→∞

𝜈 𝜆𝜃𝜈 = 0.

Thus, lim𝜈→∞ 𝜈
1
𝜃 𝜆𝜈 = 0, then series ∑∞

𝜈=1 𝜆𝜈 is convergent. Therefore
{𝗒𝜈} is a -Cauchy sequence in 𝛺. Since, 𝛺 is a closed subset of
M, ⊥, 𝜓) and the space is  , so 𝗒 ∈ 𝛺 with {𝗒𝜈} → 𝗒 as 𝜈 → ∞.
ince 𝛱 is ⊥-continuous, 𝛱𝗒𝜈 → 𝛱𝗒, which means that 𝜓(𝗒𝜈 , 𝛱𝗒𝜈 ) →
(𝗒, 𝛱𝗒) as 𝜈 → ∞. Hence,
5 
𝜓(𝗒, 𝛱𝗒) = 𝜓(𝛺 , 𝛤 ).
Assume that,

𝜓(𝗒∗, 𝛱𝗒∗) = 𝜓(𝛺 , 𝛤 ).
Since 𝛱 is ⊥-proximally preserving, we get

𝗒⊥𝗒∗.

Since 𝛱 is a    , we get

𝜏 + 𝐹 (𝜓(𝗒, 𝗒∗)) ≤ 𝐹
(

(𝜎 + 2𝛽)𝜓(𝗒, 𝗒∗)).
Since 𝐹 strictly increasing,

𝜓(𝗒, 𝗒∗) ≤ (𝜎 + 2𝛽)𝜓(𝗒, 𝗒∗).
Therefore, 𝗒 = 𝗒∗. Hence, 𝛱 has a unique   . □

Example 3.8. Let M = R2 and Euclidean metric 𝜓 with ⊥ defined by
(𝗒1, 𝗒2)⊥(𝜗1, 𝜗2), if 𝗒1, 𝜗1, 𝗒2, 𝜗2 ≥ 0. Clearly, (M, ⊥, 𝜓) is a  . Let
𝐹 ∶ R+ → R by 𝐹 (𝜎) = ln 𝜎. Clearly, for any 𝜃 ∈ (0, 1), 𝐹 fulfills the
axioms (𝐹1)–(𝐹3). Let 𝛺 = {(e, 0) ∶ e ≥ 0} and 𝛤 = {(e, 1) ∶ e ≥ 0}. We
have 𝛺 = 𝛺0 and 𝛤 = 𝛤0. Let 𝛱 ∶ 𝛺 → 𝛤 by

𝛱(e, 0) =
(

e

3
, 1
)

,

for each (e, 0) ∈ 𝛺. It is clear that (𝛺 , 𝛤 ) satisfies 𝛱 is ⊥-continuous, ⊥-
proximally preserving and 𝛱(𝛺0) ⊆ 𝛤0. Let 𝗒1, 𝜗1, 𝗒2, 𝜗2 ∈ 𝛺 such that
𝜓(𝗒1, 𝛱 𝜗1) = 𝜓(𝗒2, 𝛱 𝜗2) = 𝜓(𝛺 , 𝛤 ) = 2. Take 𝜗1 = (e1, 0), 𝜗2 = (e2, 0),
𝗒1 = ( e13 , 0) and 𝗒2 = ( e23 , 0) for some e1, e2 ≥ 0. Then (𝛺 , 𝛤 ) satisfies the
⊥--property. Clearly,

𝜓(𝗒1, 𝗒2) ≤ 𝑒−𝜏 (𝜎 𝜓(𝜗1, 𝜗2) + 𝜓(𝜗2, 𝗒1)).
Consequently, 𝛱 is an     with 𝑒−𝜏 = 13

5 or 𝜏 = ln 5
13 , 𝜎 = 1 and

t = 𝓁 = 𝛽 = 0. From Theorem 3.7 of all axioms are verified. Hence, 𝛱
has a unique   (0, 0).

Next, we present our best proximity result on    .

Theorem 3.9. Let (M, ⊥, 𝜓) be a   and (𝛺 , 𝛤 ) be non-void closed
ubsets of (M, ⊥, 𝜓). Let 𝛱 ∶ 𝛺 → 𝛤 satisfy the following conditions:
(C1) 𝛱(𝛺0) ⊆ 𝛤0 and (𝛺 , 𝛤 ) satisfies the ⊥--property;
(C2) 𝛱 is ⊥-proximally preserving;
(C3) 𝛱 is    ;
(C4) there exists 𝗒0, 𝗒1 ∈ 𝛺0 such that

𝜓(𝗒1, 𝛱𝗒0) = 𝜓(𝛺 , 𝛤 ),
and 𝗒0⊥𝗒1;

(C5) 𝛱 is ⊥-continuous.
Then, we can find a unique 𝗒 ∈ 𝛺 implies that 𝜓(𝗒, 𝛱𝗒) = 𝜓(𝛺 , 𝛤 ).

Proof. By Lemma 3.1, we have 𝜓(𝗒, 𝛱𝗒) = 𝜓(𝛺 , 𝛤 ). So let for any 𝜈 ≥ 0,
𝜓(𝗒𝜈 , 𝗒𝜈+1) > 0. Since, 𝛱 is a    , we derive that

𝜏 + 𝐹
(

𝜓(𝛱𝗒𝜈 , 𝛱𝗒𝜈+1)
)

≤ 𝐹
(

𝜎 𝜓(𝛱𝗒𝜈−1, 𝛱𝗒𝜈 ) + t𝜓(𝛱𝗒𝜈−1, 𝛱𝗒𝜈 )

+ 𝓁𝜓(𝛱𝗒𝜈 , 𝛱𝗒𝜈+1) + 𝛽 𝜓(𝛱𝗒𝜈−1, 𝛱𝗒𝜈+1)
)

≤ 𝐹
(

𝜎 𝜓(𝛱𝗒𝜈−1, 𝛱𝗒𝜈 ) + t𝜓(𝛱𝗒𝜈−1, 𝛱𝗒𝜈 )

+ 𝓁𝜓(𝛱𝗒𝜈 , 𝛱𝗒𝜈+1) + 𝛽[𝜓(𝛱𝗒𝜈−1, 𝛱𝗒𝜈 )

+ 𝜓(𝛱𝗒𝜈 , 𝛱𝗒𝜈+1)]
)

≤ 𝐹
(

(𝜎 + t + 𝛽)𝜓(𝛱𝗒𝜈−1, 𝛱𝗒𝜈 ) + (𝓁 + 𝛽)𝜓(𝛱𝗒𝜈 , 𝛱𝗒𝜈+1)
)

.

Since 𝐹 strictly increasing,

𝜓(𝛱𝗒𝜈 , 𝛱𝗒𝜈+1) ≤ (𝜎 + t + 𝛽)𝜓(𝛱𝗒𝜈−1, 𝛱𝗒𝜈 ) + (𝓁 + 𝛽)𝜓(𝛱𝗒𝜈 , 𝛱𝗒𝜈+1),

and thus

𝜓(𝛱𝗒 , 𝛱𝗒 ) ≤
(

𝜎 + t + 𝛽
)

𝜓(𝛱𝗒 , 𝛱𝗒 ), ∀𝜈 ∈ N.
𝜈 𝜈+1 1 − 𝓁 − 𝛽 𝜈 𝜈−1
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From 𝜎 + t+ 𝓁 + 2𝛽 = 1 and 𝓁 ≠ 1, we deduce that 1 − 𝓁 − 𝛽 > 0 and so
𝜓(𝛱𝗒𝜈 , 𝛱𝗒𝜈+1) ≤

(

𝜎 + t + 𝛽
1 − 𝓁 − 𝛽

)

𝜓(𝛱𝗒𝜈 , 𝛱𝗒𝜈−1) = 𝜓(𝛱𝗒𝜈 , 𝛱𝗒𝜈−1), ∀𝜈 ∈ N.

Therefore,

𝜏 + 𝐹 (𝜓(𝛱𝗒𝜈 , 𝛱𝗒𝜈+1)) ≤ 𝐹 (𝜓(𝛱𝗒𝜈 , 𝛱𝗒𝜈−1)), ∀𝜈 ∈ N.

Consequently,

𝐹 (𝜓(𝛱𝗒𝜈 , 𝛱𝗒𝜈+1)) ≤ 𝐹 (𝜓(𝛱𝗒𝜈 , 𝛱𝗒𝜈−1)) − 𝜏
⋮

≤ 𝐹 (𝜓(𝛱𝗒0, 𝛱𝗒1)) − 𝜈 𝜏 , ∀𝜈 ∈ N. (3.8)

Put 𝛿𝜈 ∶= 𝜓(𝛱𝗒𝜈 , 𝛱𝗒𝜈+1). From (3.8) lim𝜈→∞ 𝐹 (𝛿𝜈) = −∞. By the
properties (𝐹1), we get that

𝛿𝜈 → 0 as 𝜈 → ∞.

Now, let 𝜃 ∈ (0, 1) such that lim𝜈→∞ 𝛿𝜃𝜈𝐹 (𝛿𝜈) = 0. By (3.8), for all 𝜈 ∈ N:

𝛿𝜃𝜈𝐹 (𝛿𝜈 ) − 𝛿𝜃𝜈𝐹 (𝛿0) ≤ −𝜈 𝛿𝜃𝜈 𝜏 ≤ 0. (3.9)

As 𝜃 → ∞ in (3.9), we deduce that

lim
→∞

𝜈 𝛿𝜃𝜈 = 0.

Thus, lim𝜈→∞ 𝜈
1
𝜃 𝛿𝜈 = 0, then series ∑∞

𝜈=1 𝛿𝜈 is convergent. Since, 𝛤 is a
closed subset. Therefore, {𝛱𝗒𝜈} is a -Cauchy sequence in 𝛤 . Hence,
𝛱𝗒𝜈} converges to 𝗏 in 𝛤 . Also,

𝜓(𝗏, 𝛺) ≤ 𝜓(𝗏, 𝛱𝗒𝜈)

≤ 𝜓(𝗏, 𝗒𝜈+1) + 𝜓(𝗒𝜈+1𝛱𝗒𝜈)

= 𝜓(𝗏, 𝗒𝜈+1) + 𝜓(𝛺 , 𝛤 )
≤ 𝜓(𝗏, 𝗒𝜈+1) + 𝜓(𝗒, 𝛺).

Therefore, 𝜓(𝗏, 𝛱𝗒𝜈 ) → 𝜓(𝗏, 𝛺). Since 𝛺 is relatively compact in context
ith 𝛤 , the sequence {𝗒𝜈} has a subsequence 𝗒𝜈𝗄 converges to 𝗒 ∈ 𝛺.
ence,

𝜓(𝗒, 𝗏) = lim
𝜈→∞

𝜓(𝗒𝜈𝗄+1 , 𝛱𝗒𝜈𝗄 ) = 𝜓(𝛺 , 𝛤 ).
Since 𝛱 is a ⊥-continuous mapping,

𝜓(𝗒, 𝛱𝗒) = lim
𝜈→∞

𝜓(𝗒𝜈+1, 𝛱𝗒𝜈 ) = 𝜓(𝛺 , 𝛤 ).
Assume that,

𝜓(𝗒∗, 𝛱𝗒∗) = 𝜓(𝛺 , 𝛤 ).
Since 𝛱 is    ,

𝜏 + 𝐹 (𝜓(𝛱𝗒, 𝛱𝗒∗)) ≤ 𝐹
(

(𝜎 + 2𝛽)𝜓(𝛱𝗒, 𝛱𝗒∗)
)

.

Since 𝐹 strictly increasing,

𝜓(𝛱𝗒, 𝛱𝗒∗) ≤ (𝜎 + 2𝛽)𝜓(𝛱𝗒, 𝛱𝗒∗).

Thus 𝛱𝗒 = 𝛱𝗒∗. Hence, 𝛱 has a unique   . □

Example 3.10. Let M = R2 and the metric

𝜓((𝗒1, 𝗒2), (𝜗1, 𝜗2)) = |𝗒1 − 𝜗1| + |𝗒2 − 𝜗2|.

with ⊥ defined by (𝗒1, 𝗒2)⊥(𝜗1, 𝜗2), if 𝗒1, 𝜗1, 𝗒2, 𝜗2 ≥ 0. Clearly, (M, ⊥, 𝜓)
is a  . Let 𝐹 ∶ R+ → R by 𝐹 (𝜎) = ln 𝜎. Clearly, for any
𝜃 ∈ (0, 1), 𝐹 fulfills the axioms (𝐹1)–(𝐹3). Let 𝛺 = {(0, e) ∶ e ∈ R}
and 𝛤 = {(2, e) ∶ e ∈ R}. We have 𝛺0 = 𝛺 and 𝛤0 = 𝛤 . Clearly, 𝛺 is
relatively compact in context with 𝛤 . Let 𝛱 ∶ 𝛺 → 𝛤 by

𝛱(0, e) =
(

2, e
3

)

,

for each (0, e) ∈ 𝛺. It is clear that (𝛺 , 𝛤 ) satisfies 𝛱 is ⊥-continuous, ⊥-
proximally preserving and 𝛱(𝛺0) ⊆ 𝛤0. Let 𝗒1, 𝜗1, 𝗒2, 𝜗2 ∈ 𝛺 such that
𝜓(𝗒1, 𝛱 𝜗1) = 𝜓(𝗒2, 𝛱 𝜗2) = 𝜓(𝛺 , 𝛤 ) = 2. Take 𝗒1 = (0, 1), 𝜗1 = (0, 3),
𝗒2 = (0, 2) and 𝜗2 = (0, 6). Then (𝛺 , 𝛤 ) satisfies the ⊥--property.

Clearly,

6 
𝜓(𝛱𝗒1, 𝛱𝗒2) ≤ 𝑒−𝜏 (𝜎 𝜓(𝛱 𝜗1, 𝛱 𝜗2) + 𝜓(𝛱 𝜗2, 𝛱𝗒1)).

Consequently, 𝛱 is an     with 𝑒−𝜏 = 15
7 or 𝜏 = ln 7

15 , 𝜎 = 1 and
= 𝓁 = 𝛽 = 0. From Theorem 3.9 of all axioms are verified. Hence, 𝛱

has a unique   (0, 0).

4. Application to fractional differential equations

Fractional differential equations could be the perfect way to model
omplex systems: powerful and versatile. Their description of memory
ffects, non-local behavior, and anomalous diffusion has made them
rreplaceable in various fields. Moreover, FDEs can describe systems

possessing non-local behavior. In such systems, the behavior at one
point depends on values at other points in the domain. Such properties
generally induce complex dynamics with nonlinear behaviors. FDEs can
describe such systems more precisely compared to their conventional
integer-order models, for example see Rezapour et al. (2024), Thabet
et al. (2023), Boutiara et al. (2023) and Abdeljawad et al. (2023).

Consider the Caputo fractional derivative using fractional differen-
tial equation.

Dδ
0+ν(𝚣) + h(𝚣, ν(𝚣)) = 0, 0 < 𝚣 < 1, (4.1)

where, 1 < δ ≤ 2, ν(0) + ν′(0) = 0, ν(1) + ν′(1) = 0 are the boundary
conditions with h ∶ [0, 1] × [0,∞) → [0,∞) is continuous. Let M =
([0, 1],R). Define

𝜓(ν, μ) = sup
𝚣∈[0,1]

|ν(𝚣) − μ(𝚣)|,

∀ ν, μ ∈ M with ⊥ is defined as

ν⊥μ ⟺ ν(𝚣)μ(𝚣) ≥ ν(𝚣) or ν(𝚣)μ(𝚣) ≥ μ(𝚣),

for all 𝚣 ∈ [0, 1]. Then (M, ⊥, 𝜓) is a complete  . Let 𝛺 =
([0, 1],R+). Note that ν ∈ 𝛺 solves (5.1) whenever ν ∈ 𝛺 is the solution
of

ν(𝚣) = 1
𝛤 (δ) ∫

1

0
(1 − 𝚝)δ−1(1 − 𝚣)h(𝚝, ν(𝚝))𝑑𝚝

+ 1
𝛤 (δ − 1) ∫

1

0
(1 − 𝚝)δ−2(1 − 𝚣)h(𝚝, ν(𝚝))𝑑𝚝

+ 1
𝛤 (δ) ∫

𝚣

0
(𝚣 − 𝚝)δ−1h(𝚝, ν(𝚝))𝑑𝚝.

Theorem 4.1. Let the mapping 𝛱 ∶𝛺 → 𝛺 as:

𝛱ν(𝚣) = 1
𝛤 (δ) ∫

1

0
(1 − 𝚝)δ−1(1 − 𝚣)h(𝚝, ν(𝚝))𝑑𝚝

+ 1
𝛤 (δ − 1) ∫

1

0
(1 − 𝚝)δ−2(1 − 𝚣)h(𝚝, ν(𝚝))𝑑𝚝

+ 1
𝛤 (δ) ∫

𝚣

0
(𝚣 − 𝚝)δ−1h(𝚝, ν(𝚝))𝑑𝚝,

suppose the conditions:
(i) for all ν, μ ∈ 𝛺 , h ∶ [0, 1] × [0,∞) → [0,∞), and 𝜏 > 0 satisfies

|h(𝚝, ν(𝚝)) − h(𝚝, μ(𝚝))| ≤ 𝑒−𝜏 |ν(𝚝) − μ(𝚝)|,

sup
𝚣∈[0,1]

|

|

|

|

1 − 𝚣

𝛤 (δ + 1) +
1 − 𝚣

𝛤 (δ)
+ 𝚣δ

𝛤 (δ + 1)
|

|

|

|

= 𝜂 < 1,

holds. Then, Eq. (5.1) has a unique solution.

Proof. Clearly, 𝛱 is ⊥-preserving and ⊥-continuous. Let ν, μ ∈ 𝛺 and
consider

|𝛱ν(𝚣) −𝛱μ(𝚣)|

=
|

|

|

|

1
𝛤 (δ) ∫

1

0
(1 − 𝚝)δ−1(1 − 𝚣)(h(𝚝, ν(𝚝) − h(𝚝, μ(𝚝))))𝑑𝚝

+ 1 1
(1 − 𝚝)δ−2(1 − 𝚣)(h(𝚝, ν(𝚝) − h(𝚝, μ(𝚝))))𝑑𝚝
𝛤 (δ − 1) ∫0
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+ 1
𝛤 (δ) ∫

𝚣

0
(𝚣 − 𝚝)δ−1(h(𝚝, ν(𝚝) − h(𝚝, μ(𝚝))))𝑑𝚝||

|

|

≤ 1
𝛤 (δ) ∫

1

0
(1 − 𝚝)δ−1(1 − 𝚣)

|

|

|

|

(h(𝚝, ν(𝚝) − h(𝚝, μ(𝚝))))||
|

|

𝑑𝚝

+ 1
𝛤 (δ − 1) ∫

1

0
(1 − 𝚝)δ−2(1 − 𝚣)

|

|

|

|

(h(𝚝, ν(𝚝) − h(𝚝, μ(𝚝))))||
|

|

𝑑𝚝

+ 1
𝛤 (δ) ∫

𝚣

0
(𝚣 − 𝚝)δ−1

|

|

|

|

(h(𝚝, ν(𝚝) − h(𝚝, μ(𝚝))))||
|

|

𝑑𝚝

≤ 1
𝛤 (δ) ∫

1

0
(1 − 𝚝)δ−1(1 − 𝚣)𝑒−𝜏 |ν(𝚝) − μ(𝚝)|𝑑𝚝

+ 1
𝛤 (δ − 1) ∫

1

0
(1 − 𝚝)δ−2(1 − 𝚣)𝑒−𝜏 |ν(𝚝) − μ(𝚝)|𝑑𝚝

+ 1
𝛤 (δ) ∫

𝚣

0
(𝚣 − 𝚝)δ−1𝑒−𝜏 |ν(𝚝) − μ(𝚝)|𝑑𝚝

= 𝑒−𝜏 |ν(𝚣) − μ(𝚣)|
(

1
𝛤 (δ) ∫

1

0
(1 − 𝚝)δ−1(1 − 𝚣)𝑑𝚝

+ 1
𝛤 (δ − 1) ∫

1

0
(1 − 𝚝)δ−2(1 − 𝚣)𝑑𝚝 + 1

𝛤 (δ) ∫

𝚣

0
(𝚣 − 𝚝)δ−1𝑑𝚝

)

= 𝑒−𝜏 |ν(𝚣) − μ(𝚣)|
(

1 − 𝚣

𝛤 (δ + 1) +
1 − 𝚣

𝛤 (δ)
+ 𝚣δ

𝛤 (δ + 1)
)

≤ 𝑒−𝜏 |ν(𝚣) − μ(𝚣)| sup
𝚣∈[0,1]

(

1 − 𝚣

𝛤 (δ + 1) +
1 − 𝚣

𝛤 (δ)
+ 𝚣δ

𝛤 (δ + 1)
)

= 𝜂 𝑒−𝜏 |ν(𝚣) − μ(𝚣)|
≤ 𝑒−𝜏 |ν(𝚣) − μ(𝚣)|,
so, we have
|

|

|

|

𝛱ν(𝚣) −𝛱μ(𝚣)
|

|

|

|

≤ 𝑒−𝜏 |ν(𝚣) − μ(𝚣)|,

i.e.,

sup
𝚣∈[0,1]

|

|

|

|

𝛱ν(𝚣) −𝛱μ(𝚣)
|

|

|

|

≤ 𝑒−𝜏 sup
𝚣∈[0,1]

|ν(𝚣) − μ(𝚣)|,

thus, we have

𝜏 + 𝐹 (𝜓(𝛱ν(𝚣), 𝛱μ(𝚣))) ≤ 𝐹 (𝜓(ν(𝚣), μ(𝚣))),

where 𝐹 ∶ R+ → R by 𝐹 (𝜎) = ln 𝜎. From Corollary 3.4, Eq. (5.1) has
a unique solution. □

5. Application in production-consumption equilibrium

Throughout this part, we discuss the existence & uniqueness of
solutions to integral equations by using Corollary 3.4.

Our results are applied to the dynamic market equilibrium problem,
n important economics topic, where we solve an initial value problem

and develop a mathematical model. Daily pricing trends and prices
show an important effect on markets for both production 𝓁𝜏 and
consumption 𝓁c, despite price movements. Consequently, the economist
is interested in knowing the current price ν(𝚣). Let us consider

𝓁𝜏 =𝚝1 + 𝜑1ν(𝚣) + 𝜂1
dν(𝚣)
d𝚣 + 𝜎1

d2ν(𝚣)
d𝚣2

,

𝓁c =𝚝2 + 𝜑2ν(𝚣) + 𝜂2
dν(𝚣)
d𝚣 + 𝜎2

d2ν(𝚣)
d𝚣2

,

initially ν(0) = 0, dν
d𝚣 (0) = 0, where 𝚝1, 𝚝2, 𝜑1, 𝜑2, 𝜂1, 𝜂2, 𝜎1 and 𝜎2

are constants. A state of dynamic economic equilibrium occurs when
market forces are in balance, meaning that the current gap between
production and consumption stabilizes, that is, 𝓁𝜏 = 𝓁c. Thus,

𝚝1 + 𝜑1ν(𝚣) + 𝜂1
dν(𝚣)
d𝚣 + 𝜎1

d2ν(𝚣)
d𝚣2

= 𝚝2 + 𝜑1ν(𝚣) + 𝜂2
dν(𝚣)
d𝚣 + 𝜎2

d2ν(𝚣)
d𝚣2

,

𝚝1 − 𝚝2) + (𝜑1 − 𝜑2)ν(𝚣) + (𝜂1 − 𝜂2)
dν(𝚣)
d𝚣 + (𝜎1 − 𝜎2)

d2ν(𝚣)
d𝚣2

= 0,

𝜎
d2ν(𝚣)
d𝚣2

+ 𝜂
dν(𝚣)
d𝚣 + 𝜑ν(𝚣) = −𝚝,

d2ν(𝚣)
+
𝜂 dν(𝚣)

+
𝜑
ν(𝚣) = − 𝚝 ,
d𝚣2 𝜎 d𝚣 𝜎 𝜎

7 
where 𝚝 = 𝚝1 − 𝚝2, 𝜑 = 𝜑1 − 𝜑2, 𝜂 = 𝜂1 − 𝜂2, and 𝜎 = 𝜎1 − 𝜎2.
Our initial value problem is now represented as follows:

ν′′(𝚣) + 𝜂
𝜎
ν′(𝚣) + 𝜑

𝜎
ν(𝚣) = − 𝚝

𝜎
, with ν(0) = 0 and ν′(0) = 0. (5.1)

Now, we study the production and consumption duration time w,
problem (5.1) is equivalent to
ν(𝚣) = ∫

w

0
(𝚣, 𝚣∗)(𝚣∗, 𝚣, ν(𝚣))d𝚣, (5.2)

where Green function (𝚣, 𝚣∗) is

(𝚣, 𝚣∗) =
⎧

⎪

⎨

⎪

⎩

𝚣ℏ
𝜑
2𝜂 (𝚣∗ − 𝚣), 0 ≤ 𝚣 ≤ s ≤ w,

sℏ
𝜑
2𝜂 (𝚣 − 𝚣∗), 0 ≤ s ≤ 𝚣 ≤ w,

and ∶ [0,w] × 2 → R is a continuous function. Let M = ([0,w],R).
Define

𝜓(ν, μ) = sup
𝚣∈[0,1]

|ν(𝚣) − μ(𝚣)|.

for all ν, μ ∈ M with ⊥ is defined as

ν⊥μ ⟺ ν(𝚣)μ(𝚣) ≥ ν(𝚣) or ν(𝚣)μ(𝚣) ≥ μ(𝚣),

for all 𝚣 ∈ [0,w]. Then (M, ⊥, 𝜓) is a complete  . Let 𝛺 =
([0,w],R+).

Define 𝛱 ∶𝛺 → 𝛺 is given by

𝛱(ν(𝚣)) = ∫

w

0
(𝚣, 𝚣∗)(𝚣∗, 𝚣, ν(𝚣))d𝚣. (5.3)

Let us consider, the solution to the dynamic market equilibrium prob-
em, which is represented as (5.1), is a fixed point of 𝛱(5.3). Now, the

current price ν(𝚣) is given by (5.1).

Theorem 5.1. Consider the operator 𝛱 ∶𝛺 → 𝛺 (5.3) in a complete
  (M, ⊥, 𝜓), satisfying

(i) we can find 𝚣 ∈ [0,w], 𝜏 > 0 and 𝑎, 𝑎′ ∈ 𝛺 such that
|(𝚣∗, 𝚣, ν1(𝚣)) −(𝚣∗, 𝚣, ν2(𝚣))| ≤

𝑒−𝜏

w
|ν1(𝚣) − ν2(𝚣)|;

(ii) a continuous function ∶ 2 → R that satisfies
sup

s∈[0,w]∫

w

0
(𝚣, 𝚣∗)d𝚣 ≤ 1.

Then, the dynamic market equilibrium problem (5.1) has exactly one
solution.

Proof. Clearly, 𝛱 is ⊥-preserving and ⊥-continuous. Now

|𝛱(ν1(𝚣)) −𝛱(ν2(𝚣))|

=
|

|

|

|

∫

w

0
(𝚣, 𝚣∗)(𝚣∗, 𝚣, ν1(𝚣))d𝚣 − ∫

w

0
(𝚣, 𝚣∗)(𝚣∗, 𝚣, ν2(𝚣))d𝚣

|

|

|

|

≤ ∫

w

0
(𝚣, 𝚣∗)d𝚣∫

w

0

|

|

|

|

(𝚣∗, 𝚣, ν1(𝚣)) −(𝚣∗, 𝚣, ν2(𝚣))
|

|

|

|

𝑑𝚣

≤ 𝑒−𝜏 |ν1(𝚣) − ν2(𝚣)|.
So, we have
|

|

|

|

𝛱ν(𝚣) −𝛱μ(𝚣)
|

|

|

|

≤ 𝑒−𝜏 |ν(𝚣) − μ(𝚣)|,

i.e.,

sup
∈[0,1]

|

|

|

|

𝛱ν(𝚣) −𝛱μ(𝚣)
|

|

|

|

≤ 𝑒−𝜏 sup
𝚣∈[0,1]

|ν(𝚣) − μ(𝚣)|,

thus, we have

𝜏 + 𝐹 (𝜓(𝛱ν(𝚣), 𝛱μ(𝚣))) ≤ 𝐹 (𝜓(ν(𝚣), μ(𝚣))),

where 𝐹 ∶ R+ → R by 𝐹 (𝜎) = ln 𝜎. From Corollary 3.4, Eq. (5.2) has
a unique solution. □
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6. Conclusions

In this article, we presented the notion of orthogonal 𝐹 -proximal
ontractions (of the first and second kind), generalized orthogonal 𝐹
proximal contractions (of the first and second kind), then established
  results on  . Moreover, we presented best examples of our
utcome results. Moreover, an application to the fractional bound-
ry value problem in the Caputo sense and Production-Consumption
quilibrium problem was carried out to highlight the utility of our
esults.

Khalehoghli et al. (2020) proved fixed point theorems in 𝑅-s. In
the future, it is an open problem to prove the best proximity theorems
n 𝑅-.
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