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Objectives: This study aims to explore factors influencing the number of axillary lymph nodes in women
diagnosed with primary breast cancer by choosing an efficient model to assess excess of zeros and
overdispersion presented in the study population.
Methods: It is based on a retrospective analysis of hospital records among 5196 female breast cancer
patients in Pakistan. Zero-inflated and hurdle modelling techniques are used to assess the association
between under-study factors and the number of involved lymph nodes in breast cancer patients.
Count data models including Poisson and negative binomial, zero-inflated models (zero-inflated
Poisson and zero-inflated negative binomial), and hurdle models (hurdle Poisson and hurdle negative
binomial) were applied. Performance evaluation of models was compared based on AIC, BIC, and zero
counts capturing.
Results: The zero-inflated negative binomial model provided an acceptable fit. Findings indicate women
who had a larger tumor in size suffered from the greater number of axillary involved lymph nodes from
high-risk patients’ group, also tumor grades II and III contributed to higher numbers of lymph nodes.
Women’s ages do not have any significant influence on nodal status.
Conclusions: Our analysis showed that the zero-inflated negative binomial is the best model for predict-
ing and describing the number of involved nodes in primary breast cancer when overdispersion arises
due to a large number of patients with no lymph node involvement. This is important for accurate pre-
diction both for therapy and prognosis of breast cancer patients.
� 2022 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Count data usually occur in all disciplines, one approach to
model such data is logistic regression after converting count into
binary values. Such dichotomization conversion approach is suf-
fered from the loss of information (Suissa and Blais, 1995). As a
result, Poisson becomes the most adaptive regression model for
analyzing count response data (Consul and Famoye, 1992), without
dichotomization. The major drawback of Poisson distribution is the
limitation of equal mean and variance, which cannot be fulfilled in
many real-world scenarios. If neglected the assumption of equal
mean and variance, Poisson regression produces biased estimates
and misleading results (Winkelmann and Zimmermann, 1995),
researchers have recommended the application of negative bino-
mial distribution to relax this constraint; negative binomial distri-
bution accounts for over-dispersion in count data by an additional
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parameter (Hilbe, 2001). When overdispersion occurs due to a
large number of zeros, analyzing such data using conventional
count models (Poisson and negative binomial) is inappropriate.
Zero-inflated models have proven their usefulness in this regard,
by modelling the count response variable as a mixture of direct
mass at the excess of zeros and count components. The zero-
inflated Poisson (ZIP) model (Lambert, 1992; Böhning et al.,
1999; Hall, 2000; Lee et al., 2001) is the most applied one in the lit-
erature of excess zeros count data. It assumes that the count com-
ponent is displayed by the Poisson distribution. If count response
data exhibit high variability due to excess of zeros and overdisper-
sion, a negative binomial distribution is assumed to fit such data
under mixture modelling technique, usually known as zero-
inflated negative binomial (ZINB) model (Hall, 2000; Yesilova
et al., 2010; Yau et al., 2003). One can also apply hurdle count mod-
els, if excess zeros only occur due to sampling variability in the
data (Mullahy, 1986), it means hurdle count models consider the
source of overdispersion only due to excess of zeros. The hurdle
models, originally introduced by Mullahy (1986), are two-
component models: the first component is modelled the probabil-
ity of excess zeros and, the second component accounts for the
non-excess zeros and non-zero counts. For the hurdle Poisson
(HP) model, it is postulated that the positive count component is
modelled via truncated Poisson distribution (Zorn, 1996; Moloas
and Lesaffre, 2010). In case of overdispersion and excess zeros;
the positive count component is modelled by the truncated nega-
tive binomial distribution, which is called the hurdle negative
binomial (HNB) model (Rose et al., 2006).

Zero-inflated and hurdle along with other count models have
been successfully employed in medical and health researches
(Yau et al., 2003; Rose et al., 2006; Gilthorpe et al., 2009; Lee
et al., 2006). The number of involved lymph nodes outcome vari-
able falls under the category of count data, such count data exhibit
many zero observations when there is no lymph node involvement
at the initial diagnosis stage of breast cancer, which has a strong
indication to apply zero-inflated and hurdle models. A study
described patients may have a large number of negative nodal sta-
tus at an early stage due to reporting error (Afifi et al., 2007). Fur-
thermore, chances of false-negative recorded nodes cannot be
neglected because of the non-dissection of complete axillary
lymph nodes (Hur et al., 2002).

The main objective of the research reported in this article is to
apply Poisson (P), negative binomial (NB), zero-inflated Poisson
(ZIP), zero-inflated negative binomial (ZINB), hurdle Poisson (HP),
and hurdle negative binomial (HNB) models to analyze factors that
may influence the number of involved nodes particularly in a case
where there are chances of a high proportion of no involvement of
lymph nodes exist. Poisson, negative binomial, and ZI and hurdle
parameterizations for the Poisson and negative binomial distribu-
tions were fitted to breast cancer data. The complete modelling
methodology is presented and results were compared.
2. Materials and methods

2.1. Study design

This study is based on a retrospective analysis of data from hos-
pital records. Overall, 5196 primary breast cancer women who reg-
istered at Mayo hospital Lahore, Pakistan, from 2013 to 2019 are
included in the analysis. Information about the age at diagnosis,
cancer type, histological grade, estrogen receptor (ER), proges-
terone receptor (PR), human epidermal growth factor receptor 2
(Her2), and tumor size are included. The number of involved lymph
nodes is taken as the response variable, negative nodal status data
indicated by zeros. Complete information of predictors and
2

response were available for all selected cases. Exclusion criteria
were incomplete information, patients who had a secondary tumor
or had metastasis from other organs to the breast at the time of
registration, unknown pathological nodal status (Nx), immeasur-
able primary tumor (Tx), and Paget’s disease of the nipple without
tumor. The association between the understudy factors mentioned
above, and the number of involved nodes assessed using zero-
inflated and zero-hurdle models. Age at diagnosis, cancer type,
tumor size, estrogen receptor (ER), progesterone receptor (PR),
human epidermal growth factor receptor 2 (Her2), tumor grade,
all predictors and their forms were chosen with the help of clini-
cians and oncologists.

In this data, age at diagnosis (in years) is divided into three cat-
egories (�35, 36─45, and � 46). Age is mostly categorized in the
literature related to breast cancer, because breast cancer risk fac-
tors have different effects on younger and older women. Different
authors have defined a variety of age cutoffs due to a variety of rea-
sons (Chollet-Hinton et al., 2016). Cancer type is represented by
binary variable (0 = Lobular Carcinoma and other, 1 = Ductal Carci-
noma), estrogen receptor (ER), progesterone receptor (PR), and
human epidermal growth factor receptor 2 (Her2) are also repre-
sented by binary variables (0 = Negative, 1 = Positive), tumor grade
is represented categorically (I, II, and III), and tumor size was clas-
sified into three categories (�1.9 cm, 2─4.9 cm, and� 5 cm). Along
with the aim of this study, which is the comparison of different
count models, it is also of major interest to find out predictors that
have a significant impact on the number of involved nodes.

2.2. Modelling framework

The modelling framework of count models are emerged from
generalized regression models (Agresti, 1996), while generalized
linear models are extended form of the simple linear regression
model, which is written as:.

y ¼ a0 þ a1x1 þ a2x2; � � � ;ajxj þ e ð1Þ
where, x1; x2; � � � ; xj are independent variables, a0 is intercept and,
a1;a2; � � � ;aj are slope parameters, and, e is a random error, which
follows the normal distribution. This (1) can also be written as:

kj ¼ a0 þ a1x1 þ a2x2; � � � ;ajxj ð2Þ
The function kj is a linear function of the regressors, it can be

denoted by g lj

� �
; called the link function, which transforms the

expectation of the response variable, and can also be written in
log link function as:.

g lj

� �
¼ log kj

� � ¼ a0 þ a1x1 þ a2x2; � � � ;ajxj ð3Þ

For count data,e random error from the equation (1) often fol-
lows a Poisson distribution (Zar, 1999), and response variable y
has nonnegative whole integers, also maximum likelihood tech-
niques are applied to assess the best-fitted model. If the variance
of observed y is greater than the expected value ofy, over-
dispersion occurs. According to Agresti (1996), if the over-
dispersed parameter is calculated and multiplied with estimated
standard errors, over-dispersion can be explained. In terms of
count models, NB distribution has an extra parameter to account
for over-dispersion (Crawley, 1997).

The number of involved nodes is considered to be a count out-
come discrete variable, the Poisson regression model is the most
common technique employed to model such count data. The prob-
ability mass function of the Poisson distribution is given as:.

P yj; k
� � ¼ e�kkyj

yj!
yj ¼ 0;1;2;3 ð4Þ
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where random variable yj; is the count response and parameter k is
the mean, and also variance. Poisson distribution has conditions of
independent events and equality of mean and variance (Consul and
Famoye, 1992). Due to the limitation of equal mean and variance,
the Poisson distribution is not appropriate to fit the observed
involved lymph nodes count response, since the variance of the
counts, which is the number of involved lymph nodes, is much lar-
ger than their mean.

A solution to this overdispersion can be solved by applying a
gamma-Poisson mixture distribution, which is known as the NB
distribution. Its probability mass function is given as:.

P yj; k; s
� � ¼ C s�1 þ yj

� �
Cðs�1ÞCðyj þ 1Þ

s�1

s�1 þ k

� �s�1

k
kþ s�1

� �yj

ð5Þ

The mean and variance of the negative binomial distribution
areE yð Þ ¼ ks, and Var yð Þ ¼ ks 1þ kð Þ: s is the dispersion parameter,
ifs ¼ 0, negative binomial approaches to the Poisson model (Hilbe,
2001).
2.3. Zero-inflated models

For a better fit, an over-dispersed model that incorporates
excess zeros is divided into two types, true and false zeros
(Cheung, 2002), via zero-inflated models. True zeros are included
in the study, which is part of the natural process, classified into
structural and random zeros. False zeros are occurred due to obser-
vers’ poor experience, caused due to sampling errors or errors in
the experimental design (Tang et al., 2018). In breast cancer,
patients’ study excess zeros are assessed because of that group of
patients who are ‘‘not-at-high risk” during the observation period,
or who are ‘‘at-risk”. For example, the number of lymph nodes
involvement is an important factor in breast cancer prognostic
and prevention research, but at a specific time some patients
may not involve any lymph nodes, but later the chances of lymph
nodes involvement may increase. It is also possible that there
would be zero number of involved lymph nodes at a diagnostic
stage, but still, that group may be at high risk. The negative nodal
status is divided into two groups of patients, one with a very low-
risk of involved nodes (structural zeros), and the other with a high-
risk of involved nodes (random zeros). Zero-inflated models are
used to account for overdispersion due to excess of zeros and
unobserved heterogeneity among women diagnosed with breast
cancer as a primary disease. Under zero-inflated modelling tech-
niques, true zeros are described through logistic regression and
false zeros via the zero-inflated part of the count model.

Zero-inflated models add additional probability mass to the
outcome of excess zeros. It yields two states mixture distribution
with PMF of ZIP model, which is given by:.

Pr yj; kj
� � ¼ pj þ 1� pj

� �
e�kj ; yj ¼ 0; 0 � p � 1

1�pð Þe�kj ðkjÞyj
yj!

; yj � 1

8<
: ð6Þ

The ZINB distribution is used to account for both over-
dispersion and excess of zeros. For extra zeros, it gives weight p,
while 1� pð Þ weight is assigned to the negative binomial distribu-
tion, where a range of p is 0 to1. The mixture form of ZINB distri-
bution can be written as:.

Pr yj; kj; s
� � ¼

pj þ 1� pj
� �ð1þ skjÞ�s

�1
; 0 < p < 1

1� pj
� � C yjþ1

sð Þ skjð Þyj
yj!

1
sð Þ1þskyjþ1

s
; yj > s

8><
>: ð7Þ

where a � 0 is an over-dispersion parameter.
3

2.4. Hurdle models

The hurdle count models are two-part models. In the first part,
zeros are modelled through logistic regression, and in the second
part, the positive counts are explained through a zero-truncated
Poisson or negative binomial distribution. HP model addresses,
excess zeros in the first part, and truncated positive outcomes in
the second part via zero-truncated Poisson distribution. The HP
model can be written as:.

Pr yj ¼ 0
� � ¼ 1� p; 0 � p � 1

Pr Y ¼ yj
� � ¼ p

expð�kjÞk
yj
j

yj !
; k � 0; yj ¼ 1;2;3

ð8Þ

here, k is the mean of the Poisson model.
The HNB is appropriate to model the data which exhibit over-

dispersion due to only excess zeros (Cameron and Trivedi, 1999;
Chipeta et al., 2014), so it does not account for unobserved hetero-
geneity which exists in our breast cancer data. The HNB model is
given as:.

Pr y ¼ 0ð Þ ¼ 1� p;0 � p � 1

Pr Y ¼ yð Þ ¼ p

1� s
kþs

� �s Cðyþ sÞ
C sð Þy!

k
kþ s

� 	y s
kþ s

� 	s
;

s; k > 0; y ¼ 1;2;3; � � �
ð9Þ

here, mean is k and variance is k 1þ k
s

� �
.

2.5. Model assessment and evaluation

Comparison of fitted models is done via measures of fit, which
describe the performances of fitted models for a given data set,
the good model is selected, based on log-likelihood, the Akaike
information criteria (AIC), and the Bayesian information criteria
(BIC).

AIC ¼ �2 log � likelihoodð Þ þ 2ðdf Þ ð10Þ

BIC ¼ �2 log � likelihoodð Þ þ n dfð Þ ð11Þ
where, df represents degrees of freedom of the fit, and n is the total
number of observations in the data. The AIC criteria use penalize
function as if add a variable, sampling variability also increases,
and the BIC criteria impose a stronger penalty in the inclusion of
additional variables to the model, a lower AIC and BIC values indi-
cate that the model is to better fit for the understudy data
(Vrieze, 2012; Pan, 2001). According to Vrieze (2012), model selec-
tion criteria between AIC and BIC depends upon the complexity of
the true model. An information criteria difference, which is less
than 4 shows indifference between two models, between 4 and
10 differences indicate that one model is moderately superior to
the other, and a difference greater than 10 suggests that, one model
is, in reality better than the other (Chipeta et al., 2014). For statisti-
cal analyses, the level of significance was chosen at 5%, and all mod-
elling frameworks and analyses were carried out using Political
Science Computational Laboratory (PSCL) package (Jackman, 2008)
in R statistical software (The R Foundation for Statistical Computing,
Version 3.6.2.).

2.6. Ethical approval

The study was approved by the Advanced Studies and Review
Board, University of the Punjab, Lahore (Pakistan). After that, the
letter of support written by the departmental head was submitted
to the selected hospital. Prior to data collection, written consent
was obtained from the head of the oncology department and con-
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fidentiality was maintained by coding, from data collection to anal-
ysis. No written consent was needed because the analysis is based
on routinely collected data, for which the hospital has already
informed patients.
3. Results

3.1. Sample characteristics and lymph node involvement

The analysis is based on 5196 female patients with breast can-
cer, of which more than half (54.5%) were invasive ductal carci-
noma. The median age at diagnosis was 48 years. The patients
were almost equally distributed among the histological grades
(I, II, III). About half of the patients were ER-positive (51.2%), PR-
positive (51.0%), and Her2 positive (53.0%). The majority of the
patients (70.2%) had a tumor size between 2 and 4.9 cm (Table 1).

Fig. 1 shows that a large proportion of individuals, i.e. overall,
2406 breast cancer patients (46,3%) had no lymph node involved
at the diagnostic stage. There was overwhelming evidence of
over-dispersion, which was confirmed by the presence of excess
zeros (Fig. 1).
3.2. Model comparison

The comparison of models is presented in Table 2, using the val-
ues from the AIC and BIC for assessment basis. Although the zero-
inflated negative binomial (ZINB) has a superiority over the hurdle
negative binomial in terms of small AIC and BIC (AIC = 16,559,
BIC = 16,710), in terms of zero-capturing (2,406) the hurdle nega-
tive binomial (HNB) model showed good performance
(AIC = 16,587, BIC = 16,737). The difference between results of
(AIC and BIC values) ZINB and HNB models is greater than 10, so
the best model to fit the understudy data is ZINB, as it has the low-
est AIC and BIC values.

The Poisson count model was not appropriate for this data set,
because it only captured 1,262 numbers of zeros, same is with the
NB model which captured 1,335 zeros out of a total 2,406. ZIP and
ZINB were much better in capturing the zero counts 2,395 and
2,393 respectively. The best models to capture zeros were HP
Table 1
Descriptive statistics of 5,196 patients with breast cancer.

n (%)

Tumor type
IDC 2,832 (54.5%)
Other 2,364 (45.5%)

Baseline age (inyears)
�35 736 (14.2%)
36–45 1,092 (21.0%)
�46 3,368 (64.8%)

Tumor grade
I 2,021 (38.9%)
II 1,618 (31.1%)
III 1,557 (30.0%)

Estrogen receptor (ER)
Positive 2,662 (51.2%)
Negative 2,534 (48.8%)

Progesterone receptor (PR)
Positive 2,652 (51.0%)
Negative 2,544 (49.0%)

Human epidermal growth factor receptor 2 (Her2)
Positive 2,754 (53.0%)
Negative 2,442 (47.0%)

Tumor size (in cm)
�1.9 963 (18.5%)
2–4.9 3,650 (70.2%)
�5 583 (11.2%)

4

and HNB, both captured 2,406 zeros which were equal to the
observed number of zeros (Table 3).

Also, it is important to consider that all patients were at risk of
nodes involvement, so due to sampling zeros, inflated models are
technically suitable to predict nodes involvement frequency
among women diagnosed with primary breast cancer. It is impor-
tant to be noted that the ZIP and ZHP models account for overdis-
persion due to excess zeros, but if overdispersion exists due to
unobserved heterogeneity or progressive dependency in nodal
involvement data, ZINB and HNB models give a better fit.

After a comparison of models, the ZINB model was used as the
best-fitted model to count lymph nodes data in primary breast
cancer patients and determination of factors that contributed to
involved lymph node status.

3.3. Modelling and interpreting main effects

The final model ZINB, accounts for excess zeros count response
data, having a mean number of involved nodes (ð1� pÞk), and
varianceð1� pÞk 1þ pkþ k

s

� �
.

Table 4 provides the estimates of regression coefficients
corresponding to various factors for the ZINB model with a5%
level of significance. The NB (count) part of the ZINB model
exhibits the risk of a greater number of lymph nodes, given that
women are in a high-risk group. It is noted that patients of
tumor grade II OR ¼ 1:002; 95%CI : 0:944� 1:064ð Þ and III
OR ¼ 1:323;95%CI : 1:248� 1:402ð Þ had a higher risk of having
more involved lymph nodes as compared to grade I patients.
ER-negative OR ¼ 0:951; 95%CI : 0:913� 0:993ð Þ, and
PR-negative OR ¼ 0:897; 95%CI : 0:856� 0:939ð Þ patients had a
lower risk of having a greater number of nodes than ER and
PR-positive patients. Results show that greater tumor size
2� 4:9 cm OR ¼ 2:068; 95%CI : 1:836� 2:329ð Þ and � 5cm
OR ¼ 5:230; 95%CI : 4:625� 5:913ð Þ have a higher likelihood of
having a larger number of involved axillary nodes than
� 1:9cm: Baseline age and Her2 status have not been signifi-
cantly associated with nodal status.

Table 4 also containsORs from the logistic part of the ZINBmodel,
this part shows the probability of negative nodal status, given that
breast cancer patients are in a low-risk group.Womenof tumor type
other than ductal carcinoma OR ¼ 6:868; 95%CI : 5:632� 8:376ð Þ
had a greater chance to exist in the negative nodal status group.
Patients of tumor grade I hadmore chances of having no lymphnode
involvement. ER, PR andHer2-positivewomen significantly increase
the likelihood of not having any number of axillary lymph nodes
involvement at the initial stage of breast cancer. Women who had
tumor size� 1:9cmweremore likely to not have any number of pos-
itive lymph node than those who had higher tumor size 2� 4:9cm
ðOR ¼ 0:496;95%CI : 0:394� 0:626Þ and � 5cmðOR ¼ 0:036;
95%CI : 0:022� 0:059Þ. Baseline age has no significant impact on
the negative nodal status.
4. Discussion

Breast cancer, a commonly diagnosed malignancy in females,
represents a major public health issue worldwide (Barnard et al.,
2015). Previous studies have shown a large absolute number of
incident breast cancer cases in developing countries, in which
abnormal growth starts in breast tissues with the risk of spreading
to other body parts (Barnard et al., 2015). This malignancy is clas-
sified into two major types, ductal and lobular carcinoma. Ductal
carcinoma – which most breast cancers belong to – starts in the
ducts; lobular carcinoma starts in the milk-producing parts of
the breast (lobules). Significant prognostic factors of poor survival
are higher age, nodal involvement, higher tumor grade, advanced



Fig. 1. Frequency of number of nodes.

Table 2
Model assessment for all models.

Model selection criterion Poisson NB ZIP ZINB Hurdle P Hurdle NB

df (degree of freedom) 11 12 22 23 22 23
Log-likelihood �10378 �9375 �8307 �8257 �8318 �8271
AIC 20,778 18,774 16,658 16,559 16,680 16,587
BIC 20,849 18,851 16,803 16,710 16,824 16,737

Table 3
Zero count capturing in the understudy models.

Observed Poisson NB ZIP ZINB Hurdle P Hurdle NB

2406 1262 1607 2395 2393 2406 2406
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clinical stage, greater tumor size, and metastasis (Barnard et al.,
2015; Gann et al., 1999; Olivotto et al., 1998; Ravdin et al., 1994).

The presence or absence of auxiliary lymph nodes has been rec-
ognized as an important predictor of breast cancer risk. Studies
have shown node-positive patients had lower survival rates than
node-negative ones (Chua et al., 2001; Fisher et al., 1983). Further-
more, it is studied that a higher number of positive lymph node
involvements contributes to an increased risk of complications
(Chua et al., 2001; Fisher et al., 1983). Many studies show the asso-
ciation between various factors and the progression of breast can-
cer; all of them highlight the importance of lymph node
involvement in breast carcinoma (Harden et al., 2001; Sakorafas
et al., 2000). The research applied statistical distributions for
involved lymph nodes in breast cancer, this study highlighted the
problem of overdispersion due to temporal dependency in axillary
involved nodes (Guern and Vinh-Hung, 2008).

Data involving the number of lymph nodes often contains sur-
plus zeros, which indicates overdispersion in the data, therefore
such data must be fitted by zero-inflated and zero-hurdle models.
To estimate false zeros in the axillary involved lymph node data, it
is to be noted that some negative nodal status might be observed
among women who were at a ‘‘low risk” group of breast cancer
and some among women who were at a ‘‘high risk” group of breast
cancer. It is because not all women possess an equal intensity of
breast cancer while having different tumor types, tumor grade,
the status of ER, PR, Her2, and tumor size. With this logical consid-
eration, the ZINB model is employed as a final model. The better fit
5

of the ZINB model over the HNB model suggests that overdisper-
sion is due to unobserved heterogeneity among women regarding
the intensity of breast cancer and a larger number of negative
nodal status as well.

In this study, not only fitted and compared several count mod-
els to investigate the number of involved nodes in primary breast
cancer patients, but we also explained the significance of applying
zero-inflated models in case when there exist both true and false
zeros. Results of data analysis recommended the effectiveness of
zero-augmented (zero-inflated and hurdle) models as compared
to generalized linear (Poisson and negative binomial) models.
Due to the excess of zeros and over-dispersion examined in this
study, zero-augmented negative binomial models (ZINB and
HNB) performed better than zero-augmented Poisson models
(ZIP and HP). The ZINB and HNB models are similar in identifying
factors associated with the number of involved lymph nodes. The
ZINB model has been found to provide the best fit for modelling
the involved lymph nodes data as a response variable and patients’
age, tumor type, tumor grade, molecular subtypes, and tumor size
as the explanatory variables in primary breast cancer patients. Our
model selecting logic is the same as the results presented in the
articles (Rose et al., 2006; Baughman, 2007), it is also suggested
that model selection should be based on study objectives.

The best model ZINB was used to determine significant factors,
which influence the number of involved lymph nodes in breast
cancer patients. Women with higher tumor grades (II and III),
estrogen and progesterone receptors positive, and higher tumor



Table 4
Estimates for ZINB model for number of lymph nodes in breast cancer study.

Parameter Lymph nodesOR
(95% CI)

Zero-inflation portion Lymp nodes
OR (95% CI)

Intercept 1.626 (1.416–1.867) 3.538 (2.527–4.952)
Tumor type
IDC 1 1
Other 1.010 (0.955–1.068) 6.868 (5.632–8.376)

Age (in years)
�35 1 1
36–45 0.995 (0.926–1.070) 1.089 (0.838–1.417)
�46 1.020 (0.958–1.085) 1.040 (0.831–1.302)

Tumor grade
1 1 1
11 1.002 (0.994–1.064) 0.374 (0.309–0.454)
111 1.323 (1.248–1.402) 0.453 (0.372–0.550)

Estrogen receptor
Positive 1 1
Negative 0.951 (0.913–0.993) 0.544 (0.460–0.642)

Progesterone receptor
Positive 1 1
Negative 0.897 (0.856–0.939) 0.276 (0.229–0.334)

Her2.neu receptor
Positive 1 1
Negative 0.969 (0.928–1.014) 0.429 (0.363–0.508)

Tumor size (in cm)
�1.9 1 1
2–4.9 2.068 (1.836–2.329) 0.496 (0.394–0.626)
�5 5.230 (4.625–5.913) 0.036 (0.022–0.059)
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size are factors contributing to a greater number of positive
involved lymph nodes. Age at diagnosis does not have any signifi-
cant impact on nodal involvement in primary breast cancer.
4.1. Limitations

Some limitations may be noted. First, the use of a single case
study may be viewed as a limitation; a simulation study can be
conducted to strengthen our conclusions. Second, we were not able
to account a longitudinal assessment that may reveal other aspects
related to ‘‘high risk” and ‘‘low risk” groups of understudy data.
Apart from these future tasks, this study is trying to fill the statis-
tical modelling gap to analyze patterns of nodal involvement in
primary breast cancer patients, using a large data set collected in
Pakistan. Mayo hospital Lahore is one of the best governmental
hospitals where patients come from all over Pakistan.
4.2. Conclusions

Zero-inflated models assume zeros can be both true or false
zeros, such zeros are estimated by binary and count components,
while hurdle models (HP and HNB) assume that all zeros are true
zeros and all patients belong to the same high-risk group. We
believe that our study successfully quantified the ‘‘high and low
risk” breast cancer patients by incorporating time-independent
covariates which are associated with the presence of involved
lymph nodes, so the zero-inflated negative binomial model was
the best choice. Also, we applied hurdle models, which have suc-
cessfully demonstrated the advantage of fitting count nodal data,
it has two components; a binary logit model for positive counts,
and a negative binomial model for truncated below at 1.

In short, the conclusion is, this paper provides the evidence to
support that involved node count data at primary breast cancer
are rightly skewed with excess zeros, so should be modeled by
the zero-augmented negative binomial models. Between ZINB
and HB models, the ZINB model is considered to be the best model
6

for describing the number of involved nodes in primary breast can-
cer patients.
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