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In this paper, we extend the maximum principle and the method of upper and lower solu-
tions to study a class of nonlinear fractional boundary value problems with the Caputo fractional
derivative 1 < 6 < 2. We first transform the problem to an equivalent system of equations, includ-
ing integer and fractional derivatives. We then implement the method of upper and lower solutions
to establish existence and uniqueness results to the resulting system. At the end, some examples are
presented to illustrate the validity of our results.
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1. Introduction

Differential equations with fractional order are generalization
of ordinary differential equations to non-integer order. In
recent years, a great interest was devoted to study fractional
differential equations, because of their appearance in various
applications in Engineering and Physical Sciences, see Hilfer
(2000), Luchko (2013), Mainardi (2010), Yang (2012), Yang
and Baleanu (2013). Therefore, numerical and analytical tech-
niques have been developed to deal with fractional differential

* Corresponding author.

E-mail addresses: arwab(@uaeu.ac.ae (A.B. Abdulla), m_alrefai@
uacu.ac.ae (M. Al-Refai), aalrawashdeh(@uacu.ac.ae (A. Al-Rawash-
deh).

Peer review under responsibility of King Saud University.

&

FLSEVIER Production and hosting by Elsevier

http://dx.doi.org/10.1016/.jksus.2015.05.001

equations (Agarwal et al., 2014; Al-Refai et al., 2014; Bhrawy
and Zaky, 2015a,b; Nyamoradi et al., 2014; Li et al., 2011;
Yang et al., 2013). The maximum principle and the method
of lower and upper solutions are well established for differen-
tial equations of elliptic, parabolic and hyperbolic types (Pao,
1992; Protter and Weinberger, 1984). Recently, there are sev-
eral studies devoted to extend, if possible, these results for frac-
tional differential equations (Agarwal et al., 2010; Al-Refai
and Hajji, 2011; Al-Refai, 2012; Furati and Kirane, 2008;
Lakshmikantham and Vatsala, 2008; Luchko, 2009). It is
noted that the extension is not a straightforward process,
due to the difficulties in the definition and the rules of frac-
tional derivatives. Therefore, the theory of fractional differen-
tial equations is not established yet and there are still many
open problems in this area. Unlike, the integer derivative, there
are several definitions of the fractional derivative, which are
not equivalent in general. However, the most popular ones
are the Caputo and Riemann-Liouville fractional derivatives.
In this paper, we prove the existence and uniqueness of
solutions to the fractional boundary value problem

1018-3647 © 2015 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University.
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Dyy+flt,y,))=0, 0<t<1,1<d<2, (1.1)
y(0) =a, y'(1) = b, (1.2)

where f is continuous with respect to 7 on [0, 1] and smooth
with respect to y and )/, and the fractional derivative is consid-
ered in the Caputo’s sense. Several existence and uniqueness
results for various classes of fractional differential equations
have been established using the method of lower and upper
solutions and fixed points theorems. The problem (1.1) with
f=/(t,y) and non-homogenous boundary conditions of
Dirichlet type was studied by Al-Refai and Hajji (2011),
where some existence and uniqueness results were estab-
lished using the monotone iterative sequences of upper and
lower solutions. In addition, the same problem (1.1) with
ft,y) =folt,y) + f1(t,¥) + f>(t,y) was studied by Hu et al.
(2013) wusing quasi-lower and quasi-upper solutions and
monotone iterative technique. The problem (1.1) with f=
f(t,y) and homogeneous boundary conditions of Dirichlet type
and Dg+ is the standard Riemann-Liouville fractional deriva-
tive discussed by Bai and Lu (2005). They used certain fixed
point theorems to establish the existence and multiplicity of
positive solutions for the problem.

To the best of our knowledge, the method of monotone
iterative sequences of lower and upper solutions has not been
implemented for the problem (1.1)—(1.2), where the nonlinear
term f'= f{¢,y,)') depends on the variables y and ). In order
to apply the method of lower and upper solutions, we need
some information about the fractional derivative of a function
at its extreme points. While some estimates were obtained by
Al-Refai (2012) for the fractional derivative 1 < ¢ < 2, these
estimates require more information about the function, unlike
the case when 0 < 6 < 1. Therefore, we transform the problem
(1.1)—(1.2) to an equivalent system of two equations and then
we apply the method of lower and upper solutions to the new
system.

This paper is organized as follows. In Section 2, we pre-
sent some basic definitions and preliminary results. In
Section 3, we establish the existence and uniqueness of solu-
tions for an associated linear system of fractional equations
using the Banch fixed point theorem. In Section 4, we estab-
lish the existence and uniqueness of maximal and minimal
solution to the problem. Some illustrated examples are pre-
sented in Section 5. Finally, in Section 6, we present some
concluding remarks.

2. Preliminary results

The left Caputo fractional derivative of order o >0, for
n—1<a<n, neN of a function f'is defined by

d]
(0300 = (157 5 0
_ {l"(nloc) Jo (1 —8)" () ds, n—1<a<neN,
1),

a=neN,

where I' is the well-known Gamma function and /i is the left
Riemann-Liouville fractional integral defined by

ﬁ Jo (6= )" fs)ds, o> 0,

2.1
f), o=0. @1

UMIOES {

For more details about the definition and properties of frac-
tional derivatives, the reader is referred to Ortigueira (2011),
Podlubny (1993). In the following, we transform the problem
(1.1)~(1.2) to a system of differential equations, consisting of
a fractional derivative and an integer derivative. Let y, =y,
and y, = y7 = Dy. Using the fact that D).y = D}:'(Dy) for
1 < 0 < 2, the system (1.1)—(1.2) is reduced to

Dy, —y,=0, 0<zt<1, (2.2)
Diiy, +f(t,y1,0,) =0, 0<r<1,0<a<, (2.3)
11(0) = a, y,(1) = b, (2.4)

where o = 0 — 1. For the above system we initially require that
¥1,¥, € C'[0,1] and fis continuous with respect to the variable
¢t and smooth with respect to the variables y, and y,.

We have the following definition of lower and upper solu-
tions for the system (2.2)—(2.4).

Definition 2.1 (Lower and Upper Solutions). A pair of func-
tions (vi,v2) € C'[0,1] x C'[0,1] is called a pair of lower
solutions of the problem (2.2)-(2.4), if they satisfy the
following inequalities

Dv; — v, <0, 0<l<1, (
Dyiva+ f(t,vi,m) <0, 0<t<],0<a<, (
v (0) <a, w(l)<b. (

NN

5)
6)
)

Analogously, a pair of functions (w;,w,) € C'[0,1] x C'[0, 1]
is called a pair of upper solutions of the problem (2.2)(2.4),
if they satisfy the reversed inequalities. In addition, if
vi(t) < wi(2) and vy(r) < wo(2),¥t € [0, 1], we say that (v, ;)
and (w;, w,) are ordered pairs of lower and upper solutions.

The following important results will be used throughout the
text.

Lemma 2.1. Al-Refai (2012). Let f € C'[0, 1] attain its absolute
minimum at 1y € (0, 1], then

—o

o ZO
(DG)(to) < =2

Lemma 2.2. Changpin and Weihua (2007). If f € C"[0,1] and
n—1<oa<neZ", then (D} f)(0) =0.

[f(ty) —f(0)] <0, forall 0 < o<1

We have the following new positivity result.

Lemma 2.3 (Positivity Result). Let (t) be in C'[0,1] that
satisfies the fractional inequality

Dyio(t) + u(H)w(t) >0,0<t <1, 0<a<1, (2.8)
where p(t) > 0 and p(0)#0. Then w(t) > 0, Vt € [0,1].

Proof. Assume by contradiction that (f) <0, for some
t €10,1]. As w(?) is continuous on [0, 1], w(¢) attains an abso-
lute minimum value at 7, € [0, 1] with w(%) < 0. If 7, € (0, 1],
then by Lemma 2.1, we have

I'(1 —a)(Dj:w) (1) < ty*[w(ty) — w(0)] < 0.

Since I'(1 —a) >0, for 0 < o <1, we have (D w)() <0,
and hence
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Dy (o) + p(te)w(ty) < 0,

which contradicts (2.8). If £ =0, then by Lemma 2.2,
(Dg+)(0) = 0, and as u(0)70, we get

(D )(0) + u(0)w(0) <0,

which contradicts (2.8). Hence the statement of the lemma is
proved. [

Let F[0,1] denote the set of all-real valued functions on
[0, 1]. We consider the order < on F[0, 1] x F[0, 1], defined by

(fi./2) < (81,8) if and only if, f(x) <g(x) and
f>(x) < g,(x) for all x € [0, 1]. We have the following definition
of comparable solutions of the problem (2.2)(2.4).

Definition 2.2 (Comparable Solutions). Assume that (uy,u,) #
(v1,v2) are two solutions of the problem (2.2)-(2.4). We say
that (u;,uz) and (v, v;) are comparable solutions, if either
(Lt],l/tz) S (V[7 VQ) or (V17V2) S (ul,uz).

The following result states the uniqueness of comparable
solutions to the problem (2.2)—(2.4).

Theorem 2.1. (Uniqueness of Comparable Solutions) Let
(01 (1),32(1) € C'[0, 1] x C'[0,1] and (x1 (1), x2(1)) € C'0, 1]
C'0,1] be comparable solutions of the problem (2.2)-(2.4).
Assume  that  for any hy,hy € C'0,1]  there  holds
%(r, hi,hy) <0, and %(thhz) <gq, for some q < 0. Then
(41,92) = (1, 2), for all 1 € [0, 1]

Proof. Since (y,,y,) and (x|, x;) are solutions of the problem
(2.2)—~(2.4), we have

D(xi—y)=x2—y,, 0<1<1,
Dy (x2 —yy) +flt,x1,%2) —f(t,91,0,) =0, 0< <1, 0<a< I

with p;(0) = x1(0) = a, y,(1) = x2(1) =b. As (y,),) and
(x1,x,) are comparable solutions, we assume without loss of
generality that (y,,,) < (x1,x2). Let z; =x; —y, >0, and

Z; = X — ¥, > 0. Applying the mean value theorem for the last
equation we obtain

DZ] = Iy, 0<t< 1, (29)

0, 0,
Dt L on+ L p)m =0,

O<t<],0<ax<,
| 0y,

(2.10)

with z;(0) =0 and z(1) =0, where p, = py, + (1 — wW)xi,
0.35emp, = vy, + (1 =v)x; and 0 < p, v < 1.

As z; € C'[0,1] by Lemma 2.1, D;.z(0) =0, and by the
continuity of z;(¢) and zy(¢) for ¢ € [0,1], the last equation
yields

0= D5y 22(0) + - (0)21(0) + 5 (p2)22(0) = - )0,

Since oo—i(t,yl,yz) < ¢ < 0, we have z,(0) = 0.

dy

Because %’1 (t,y1,92) <0,and z; > 0, the Eq. (2.10) leads to

o
0y,

(pZ)ZZ = —g(pl)zl > 0.

Dg+ ) + ay
1

(2.11)

We  have %(z,yl,yz) <g<0, and 2z >0, thus

%(pz)zz < ¢z, <0, and the Eq. (2.11) leads to
o af oL
0§D0‘22+W(p2)22 < Djizy + qz,. (2.12)
2

Applying the fractional integral operator Ij. to the last
inequality, we have

0 < 1§ Dj 22 + gl 22 = 23(1) — 22(0) + ¢l 22
Since z,(0) = 0, we have

0 < z5(8) 4+ q(Ig:22)(1), Ve € [0, 1]. (2.13)

In the following, we prove that z,(f) = 0, Vz € [0, 1]. Assume
by contradiction that z,(¢) # 0 in [0,1]. Since z;(1) =0, we
have at r =1,

0 < z(1) +¢(f5: 22)(1) = q(f-22)(1)

-1 1 — )" 'z (s) ds
s [ =9 m s

Since z; is continuous on [0, 1], and z,(¢) # 0 on [0, 1], then the
definite integral in the last equation is positive. Thus,
(l3:z2)(1) >0, which together with ¢ <0, leads to
q(l5+22)(1) <0, which contradicts Eq. (2.14). Hence the
assumption made is not correct and therefore
2(1) =0, V€ [0,1].

Substituting the last result in Eq. (2.9) yields Dz, =0,
which together with z;(0) =0, leads to z; =0, Vz € [0,1].
Thus, x; =y, and x» =y, and the result of the theorem is
proved. [

(2.14)

3. The linear system of fractional differential equations

In this section, we study the existence and uniqueness of solu-
tions to the following linear initial and boundary value
problems

Dy, (1) =g(1), 0 <1< 1,
{y1<0> —a, 3-1)
{D§+y2(t) +u,()=f1), 0<t<1,0<a<1, (32)
»(1) = b,

where yu is a positive constant and D is the Caputo fractional
derivative. These results will be used later on to establish the
existence and uniqueness of solutions of the monotone itera-
tive sequences of the nonlinear system (2.2)—(2.4). The exis-
tence and uniqueness of solution for the problem (3.1) is
guaranteed provided g(7) is continuous on [0, 1]. We apply
the Banach fixed point theorem to prove the existence and
uniqueness of solutions to the problem (3.2). We have

Lemma 3.1. Let f(t) be in C[0,1]. Then y,(t) € C'[0,1] is a

solution to the problem (3.2) if and only if, it is a solution to the
integral equation

() =b+ / G(1,5)[uys(s) — f1s)] ds, (33)

where



106

A.B. Abdulla et al.

(1=9)*"" —(1=s)*"!
(o) ’

(1—5)*"!
C(a)

0<s<t<l,

G(1,s) = (3.4)

O<r<s<1.

Proof. Applying the fractional integral operator /i to the first
equation in the system (3.2), we get

12(1) = 12(0) + ul L5 32) (1) = (L:1) (1),

which can be written as

I ! o—1
720 = 120) ~ s / (1 — 57 yy(s) ds
1

+m/0 (t—9)"" fls)ds.

By substituting 7 = 1, in the last equation, we have

b= = 1,0 ~ s [ (=9 (o)
1 ! o—1
+@/0 (I —s)" fls)ds.
Thus,

(@)

70 = b+l [ (=9 )
1! el
—m/o (1 —s)" fls)ds,

and

l0) =+ s / <1fs>°‘“yz<s>dsfﬁ / (1 — 5" (s)ds

U ! oa—1 1 ! a—1
—m/()(z—s) y2<s>ds+m/0<z—s> 11s)ds

1 : o—1
ey / (192(5) —A(5))(1 — 5" ds

! l o—1
_m/() (y2(s) = () (1 = 5)" " ds. (3.5)

The last equation can be written as

() =b+ / G(1,5) [y (s) — f(s))d,

where G(t,s) is defined in (3.4).
Conversely, let y,(¢) € C'[0, 1] satisfy Eq. (3.3). Then y,
satisfies Eq. (3.5), which can be written as

() =b +ﬁ / (v(s) — A1) (1 — )" ds — (I (uys
o

Applying the fractional derivative operator D yields
(DG y2)(1) = =(Dgi L+ (y, = N)(1) = =y (1) +110).

Thus, (D y,)(7) + wp,(1) = f(1). At t =1, from Eq. (3.5), we
have y,(1)=5b, which completes the proof of the
Theorem. [

In the following theorem, we establish the existence and
uniqueness result of the system (3.2) using the Banach fixed
point theorem.

Theorem 3.1. Suppose that f(t) € C[0,1] and the constant u
satisfies

2u
— <1
I'e+1)

then problem (3.2) possesses a unique solution.

0< (3.6)

Proof. For every x € C[0, 1], define

Tx=>b+ /0 G(1,s)[ux(s) — f(s)] ds.

Since G(t,s) is Riemann integrable, it is clear that 7 is self
mapping on C|0, 1]. To show that problem (3.2) has a unique
solution, we show that T is a contraction. Let x,(7) and x,(7)
be in C[0, 1], then we have

(Tx2)( \*H/ (t,8)(x1 — x2) ds

< 1 — ol maxocc / 1G(1,5)ds = [[x1 — x|

main/g{/ogufv)“f f‘“d+/ <H o }

maxo<< {—1+ 1 +2(1 —1)"}

[ Tx) — Txy|| = max|(Tv1)

[ =~
=||x1 — X2 =—
PRI+ 1)

2u
Ta+1)

< 1, we have that T is a contraction, therefore by

< = X2||

Since (m +1
the Banach fixed point theorem, the equation Tx = x has a
unique solution, and hence by Lemma 3.1, the proof is com-

pleted. O

4. Existence and uniqueness results

4.1. Monotone sequences of lower and upper solutions

In this section, we construct monotone iterative sequences of
lower and upper solutions to the system (2.2)-(2.4). Then we
use these sequences to establish an existence result

Given pairs V = (v1 ,v2 ) and W= (w w2 ) of lower and
upper solutions, respectively, to the problem (2.2)—(2.4) with
V < W. We define the set
[V, W] = {(l,h) € C'[0,1] x C'[0,1] : v

<h < wg )}.

We assume that the nonlinear term f{¢,y,,y,) satisfies the fol-
lowing conditions on [V, W]:

V< < wl ,v(20

(A1) The function f(z,h;,h,) is decreasing with respect to A,
that is g5 (¢, hy) <O for all (h,hy) € [V, W], and
te[0,1].

(A2) There exists a positive constant ¢, such that

L (t,hy,hy) < c, for all (hy,hy) € [V, W], and ¢ € [0,1].

1)/1 2

The following theorem describes the monotone iterative
sequences of lower and upper pairs of solutions.

Theorem 4.1. Assume that the conditions (Al) and (A2) are
satisfied and consider the iterative sequence

Uk = (y( y ) k > 0 which is defined by
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Dy (1) =y, 0<1<1 (4.1)
308 () + e () = 470 = ey AT,

0<t<l,0<ax<l, (4.2)

with  (0) = ay, (1) = by. (4.3)

We have

1LIfUO =V = (v © vg ) and ay, by are increasing sequences

with a; < a, by <b, then U® = (0 ) = " o) =
V® s an increasing sequence of lower pairs of solutions to
the problem (2.2)—(2.4).

2. If U0 =w = (w( ) wg )) and ay, by are decreasing
sequences with ay > a, by > b, then U® = (ylk),ygk )=
(w(lk), w(zk)) = W is a decreasing sequence of upper pairs of
solutions to the problem (2.2)—(2.4). Moreover,

3. (o}, 0f) < (W, wi?) V> 0.

Proof.

1. First, we use mathematical induction to show that

U® = (0, o) is an increasing sequence. For k = 1, we
have

D (1) =y, 0<r<1 (4.4)
Dj. v(zl (1) + cvgl) = cvgo) -, vgo), v<20)),

0<r<l,0<ax<l, (4.5)

with  W(0) = a;, vP(1) = b,. (4.6)

Since V = (v§°), (0)) is a pair of lower solution, we have

DV W <0, 0<r<1 (4.7)
D2y +f(zv§°> N<0,0<1<1,0<a<]l, (4.8)
and v\(0) = ay < a, (1) = by < b. (4.9)

Letz; = vﬁl) — vﬁo) and by substituting Eq. (4.4) in Eq. (4.7),
we have

0> DV — D\ = —p(W\") =) = —Dz,.

Thus Dz, > 0, with z,(0) = a; — @y > 0. Since Dz, > 0, this
means z; is non-decreasing which together with z;(0) > 0,

implies that z; > 0, and hence vﬁl) > v(lo). To prove that

vgl) > v(zo), let z, = v(zl) — v(20) and by substituting Eq. (4.5)

in Eq. (4.8), we have

0> Dj. V(O) — D+ Vé cvgl) + cvgo)

=-Dj. (V2 — v(zo)) — c(v(zl) - vgo)) =—Dj.z; — ¢z,

Therefore Dj.z; 4 cz; > 0. By applying the positivity
lemma, we have 22 > 0, and hence v<2) > v(zo)
that U < U® for k=0,1,2,...
and (4.5), we have

. Now, assume
,n. From Eq’s. (4.4)

n+1 n n n—1
DO ) =),

Da ( n+l) (n)) +C( (n+1) (n)) _ C(V(Zn) 9y
+ AU ) = Al ).

n—1
)

n+l)

Let z; = vﬁ v\ and using the induction hypothesis, we

have
Dz =W =W >0,

which together with z,(0) > 0, proves that v/""™" >\") by
the positivity lemma.Let z, = vJ""") — ") and applying the
induction hypothesis, the conditions (Al) and (A2) and

the mean value theorem, we have

U

Dyezr+ ez =y =)+ 0 =) 5 (1)
V1

n— n (?f n n <af )
(n=1) (n) (n—1) () )

+ —(pr) = (v v —(py) — ¢

057 ) o) = 087 =) (57 (02

. af
-1y _ oy 9 0

+ 1)0},1@1)7 )

Loy = (1=

where  p; = """+ (1 — )’
with 0 < p,v < 1.

Again, by the positivity lemma, we have z, > 0 and hence
v(z"“) > v(zn). Hence, U% < ytk+h),

Second, we prove that (vﬁl‘), v, for all k>0 is a pair of

lower solutions. Since the sequence {V\"'} is increasing

and Dv(lk) = vgkfl), we have Dv&k) — vgk) = vgkfl) — vgk) <0,
which together with v\(0) = a; < a, proves that v\ is a

lower solution. From Eq. (4.2), we have

Dng + e = Y — e, WY W)

k k-1 oo (k=1) (k-1
= —(5 =) =SV,
By adding f{z, vl ,vg ), applying the mean value theorem

and using the fact that the sequences {v\"'} and {v"} are
increasing, we have

Dl (0, ) = << - >

where p, :Clv(lk) +(1 —Cl)V(lk ) P2 = Cz"z +(1 —évz)"(zkfl),
and 0<{(,, < l Applying the conditions (A1) and (A2),
we have Dj. v 4 (e, v) <0, which together with

(zk (1) = by < b, proves that v;k) is a lower solution.
2. Similar to the proof of (1). First, we apply induction argu-

ments to prove that the two sequences {w\"'} and {w\"} are
decreasing. Then, we use these results to show that

(Wi, w¥) is a pair of upper solutions for each k > 0.

3. Since V = (v, 0)") and W = (W\”, w") are ordered pairs

of lower and upper solutions, we have v(lo) < wﬁ")

and
u<20) < w?. Hence the result is true for n = 0. Assume that

vﬁk) < wﬁk) and vgk) < w(zk), for all k=0,1,2,...,n. we have

Dvgnﬂ) _ U(Zn) and Dw<ln+1) _ W;n). Thus
Dw(anrl) _ Dv(ln+l) _ w;n) _ v(zn) > 0.
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Let z; = wg"“) ("“ , thus Dz; > 0, which together with yi (1) =a+ /tyz(s) ds, 0 <1 <1, (4.11)
wg"“)(O) > ('”1)(0), implies z; >0, and  hence 0 )

W™ 2. We have 7)== [ (1= A 00 ds

Dy (s =) ey =) 0<t<l,0<a<l, (4.12)

= ey =)+ A ) = Al ).

(n+1)

Let z, = wi"™ — """ Then z, satisfies

Dyizy + ez = c(w2 - Vzn)) + /1, v(l"), 13 N =1, w(l"),wg")).

Applying the mean value theorem to the last equation
yields

Djizy+ ¢z, = c(wd) — ")+ (P (" —w") +

K _ 4 ) _ 0
(V7 — W )( (p2) > v, (p1)(n 1)
(4.10)

for some p; ="+ (1= C)wl”, py = God” — (1= C)wd
and 0<{,,{, <1. By the induction hypothesis wﬁ") > vg")
and w{” >{" and the conditions (A1) and (A2), we have
Djizy 4+ ¢z, >0, which proves that z,>0. Therefore,
(n+1) > Vgl+1)

Wy , and the proof is completed. [

Remark 4.1. The existence and uniqueness of solutions to the
sequences defined in (4.1)—(4.3) is guaranteed by Theorem 3.1
provided that ¢ <1T(1 + a).

Now, we state the convergence result of the two sequences
of ordered pairs of lower and upper solutions described in
Theorem 4.1.

Theorem 4.2. Assume that the conditions (Al) and (A2) are
satisfied, and consider the two iterative  sequences

o = (v(ll‘) vgk)) and Wk = (w nz ) obtaznedﬁom (4.1)-
(4.3), with U0 =y = (vﬁ‘”,vg")) and U = w = (vt’§0)7vvgo)),
respectively. Then the two sequences converge pointwise to
V* = (vi,v5) and W* = (wi,w3), respectively with V* < W*.

(k)

Proof. The two sequences v, ®)

and v,  are increasing and

bounded above by wio) and w(zo), respectively. Hence, they con-
verge pointwise to v; and v}, respectively. By applying similar

arguments, the two sequences w§k> 2

(0)

and w; "’ are decreasing and

bounded below by v, and v(zo), respectively. Hence, they con-
verge pointwise to w; and wj, respectively.

Since ng) < w(lk) and vgk) < w(zk)7 Vk > 0, then vj < wj and

* *
v; <ws;. O

4.2. Existence and uniqueness of solutions

Applying standard arguments, one can verify the following
result.

Lemma 4.1. 4 pair of functions (y,(1),y,(1)) € C'[0,1]x
C'0, 1] is a solution to the problem(2.2)~(2.4), if and only if, it
is a solution to the system of integral equations

where 1= b +ﬁ fol (1- S)a_lf(saY1(5)’J’2(5))d5~

The following theorem proves the existence of solutions of
the problem 4.11,4.12.

Theorem 4.3 (Existence
W = (w’l‘7w§) be the
o = (v(1 ,v2 ) and W = (w w ) deﬁned by (4.1)-(4.3)
with V() :(1 ,véo)) and WO :( 2 71150)), respectively.
Assume that limy_ar = a and limy_ by = b. Then V* and
W* are solutions to 4.11,4.12.

Result). Let V' = (vi,v;) and
limits of the two sequences

Proof. We have that

DVl _ (k 7
and DY + vl = el — e D )

(4.13)
(4.14)

Applying the integral operator I+ for Eq. (4.13), we have
w39 0) = I (1), where v\ (0) = g.

Taking the limit and using the fact that v(lk)
wise to vj, we have

converges point-

vi=a+ lim I ().
k—00
Since v(zk) converges pointwise to v;, bounded and Riemann
integrable, then by the dominated convergence theorem, we
have
t
vT:a—i-Iof(v;):a—i-/ vids, 0 <t <1, (4.15)
0

which proves that v} is a solution to Eq. (4.11).

Similarly, applying the fractional integral operator I, for
the Eq. (4.14), we have

v = 9(0) + el (8) = el () = B (L vV YY)

Taking the limit and using the facts that v(,k) and vg” converge
pointwise to vj and vj, respectively, they are bounded and
Riemann integrable, and f'is continuous, we have

Vs = v5(0) + el (13) = el (03) — I (f(2,v;,v3)),

which yields

v3(1) = v3(0) — L5+ (A2, v1, v3)). (4.16)
Now, at =1 we have v}(1) = v;(0) — ([ f(r,v},v3))(t = 1),
and thus

ﬁleLwVVmﬁmmm»w

Substitute Eq. (4.17) in Eq. (4.16) to obtain the result. By sim-
ilar arguments, one can show that (w}, w}) is also a solution to
the problem 4.11,4.12. [

v5(0) = b+ (4.17)



Solutions for a class of non-linear fractional boundary value problems 109

Remark 4.2. Since in general, we do not guarantee that
v, W e C'0,1] x C'[0, 1], we refer to V" and W* by the min-
imal and maximal solutions, respectively.

Theorem 4.4 (Existence  and  Uniqueness  Result). Let
V= (vi,v5) € C'0,1] x C'[0,1] and W* = (w',w3) € C'[0,1] x
C'[0,1] be as in Theorem 4.3 and assume that they satisfy the
conditions in Theorem 2.1 with %(I,yl,)@) <gq.for some
q<0.Then vi =w; and vy=wj and the problem (2.2)~(2.4) has
a unique solution on [V, W].

Proof. Since V*, W* € C'[0,1] x C'[0,1] and satisfy v; < w’
and v; < wj, then (vi, v;) and (w}, w}) are comparable solution
for the problem (2.2)-(2.4). Since %([,yhyz) <g<0, by
Theorem 2.1, we have vj = w} and v} = wi. O

5. Illustrated examples

In this section, we present two examples to illustrate the valid-
ity of our results.

Example 5.1. Consider the linear fractional boundary value
problem

D‘ y(t) = \/_y()—%y’(t), 0<t<l, (5.1)
with  »(0) =1, y'(1) =0. (5.2)
We first transform the problem to the following system

Dy, (1) = y,(1) =0, 0 <1 <1, (5.3)
D‘ ()——\/y()+1y7()70,0<t<1, (5.4)
with  y,(0) =1, »,(1) =0, (5.5)

where y,(1) =y(r) and y,(¢)=)/(r). Tt is clear that
VO = (% W) = (1,0) satisfies the definition of pair of lower
solutions given in Eqg’s. (2.5)—+2.7). We now show that
WO = (W W) = (1 +1,1) is a pair of upper solutions. We

have
D(t+1)—t=1-1t>0,0<1t<1,
2 | 1 1 1 1 4 1 1
d D tmm e e A Ay
and By 1=g Pog it rg ' TatTa" s

>0, for0<zr<1,

which together with wﬁo) (0)=1 and w(zo)(l) =1,
that W = (r+1,1) is a pair of upper solutions of the sys-
tem (5.3)—(5.5). In the last equation, we use the fact that
tr—41>-1 for 0 <¢<1. Since vl0 =1<

prove

1 P
@>1 and —

14+0=wl" ) —0<r=wl", vie[0,1], we have V"
and W are ordered pairs of lower and upper solutions.
Now, from Eq. (5.4), we have ft,y1,3,) = I\ny (1)+
i 72(1) satisfying %(H’la}’z) =-}Vi<oand (l Yi)a) =
1, hence we can choose ¢=5<1T'(1 +oc),0 <a<l and the result

and v2

in Theorem 4.3 guarantees the existence of the minimal and
maximal solutions to the problem.

Example 5.2. Consider the non-linear fractional boundary
value problem

D y(t) — (1) —%y’(l) =0,0<r<1, (5.6)
with  »(0) =0, y'(1) = 1. (5.7)
We transform the problem to the following system

Dy, (t) —y,() =0,0< 1t < 1, (5.8)
Dhys() =310 ~ () =0, 0 < 1< 1, (59)

with  3,(0) =0, y,(1) = 1, (5.10)

where y,(f) =p(¢) and y,(¢)=)'(r). Tt is clear that
VO = (% WO = (o, 0) is a pair of lower solutions. We now
show that W© = (w!? W) =
tions. We have

(£2,t) is a pair of upper solu-

Dt —t=2t—t=1t>0,0<t<I,

! 10 20
and D0+t—l _gt_\/_Eﬁ_t
1 [ 2 19 1
——t=t|——=—-r—=-£]>0,0<t<1,
8 (ﬁ 8 )

which together with w!”(0) =0 and w{"’ (1) = 1, prove that
W = (£2,1) is a pair of upper solutions of the system (5.8)-
(5.10). In the last equation we use the fact that ). Since

W=0<w? =rand W =0<wl =1, vie [0 1] we have
® and W are ordered pairs of lower and upper solutions.
Now, from Eq. (5.9), we have f{z, yl,yz) = —p}(t) — 1 ,(¢) sat-
isfying -2 P L (1,31,5,) = =5yt <0 and 0‘} (,y1,,) = —+, hence
we can choose ¢ = Z and the result in Theorem 4.4 guarantees
the existence of unique solution to the problem in [V, V],

6. Concluding remarks

In this paper, a class of boundary value problems of fractional
order 1 <0 <2 has been discussed, where the fractional
derivative is of Caputo’s type. We proved that, under certain
condition on the non-linear term in the equation, the problem
has no comparable solutions. To establish existence and
uniqueness results using the method of lower and upper solu-
tions, we transform the problem to an equivalent system of dif-
ferential equations including the fractional and integer
derivatives. We generated a decreasing sequence of upper solu-
tions that converges to a maximal solution of the system, as
well as, an increasing sequence of lower solutions that con-
verges to a minimal solution of the system. A new positivity
result has been implemented to prove the monotonicity and
convergence of the two sequences. Under the condition
d’if (,y1,»,) < g <0, we guarantee that the maximal and min-
imal solutions coincide, and hence a uniqueness result is estab-
lished. We have applied the Banach fixed point theorem to
show that these sequences are well-defined and have unique
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solutions. The presented examples illustrate the validity of our
results. Because of the non-sufficient information about the
fractional derivative 1 < 0 <2 of a function at its extreme
points, the current results cannot be obtained without trans-
forming the original problem to a system of fractional deriva-
tives of less order.
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