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Abstract In the present work, we have calculated the energy levels of GaAs parabolic quantum dot

under the combined effects of external pressure, temperature and magnetic field. The eigenenergies

have been obtained by solving the two electron quantum dot Hamiltonian using the exact diagonal-

ization method. The obtained results show that the energy levels of the quantum dot depend

strongly on the pressure and temperature. We have found that the energy levels enhance as the pres-

sure increases for fixed temperature and magnetic field while the quantum dot energy levels decrease

as the temperature increases for fixed pressure and magnetic field. The comparisons show that our

results are in very good agreement with the reported works.
� 2017 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is

an open access article under theCCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Quantum dots (QDs), or artificial atoms, are the subject of
interest research due to their physical properties and great
potential device applications such as quantum dot lasers, solar

cells, single electron transistors and quantum computers (Owji
et al., 2016; Boda and Chatterjee, 2016; Ciftja, 2013; Kastner,
1992). The application of a magnetic field perpendicular to the

dot plane will introduce an additional structure on the energy
levels and correlation effects of the interacting electrons that

are confined in a quantum dot.
Different approaches were used to study the electronic and

thermodynamic properties of the quantum dot .Theoretically,

many authors had solved the two electron QD Hamiltonian,
including the effect of an applied magnetic field, to obtain
the eigenenergies and eigenstates of the QD-system (Wagner
et al., 1992; Taut, 1994; Ciftja and Kumar, 2004; Ciftja and

Golam Faruk, 2005; Kandemir, 2005; Elsaid, 2000; Elsaid
et al., 2008; Nguyen and Peeters, 2008; Nammas et al., 2011;
Boyacioglu and Chatterjee, 2012; Helle et al., 2005; Schwarz

et al., 2002; Nguyen and Das Sarma, 2011) .The results of
these studies predicted the oscillations between spin-singlet
(S) and spin-triplet (T) ground states. The thermodynamic

quantities like: heat capacity ðCvÞ, magnetization ðMÞ and
magnetic susceptibility ðvÞ of the quantum dot had also been
calculated (Sanjeev Kumar et al., 2016; Avetisyan et al.,

2016; Boyacioglu and Chatterjee, 2012; Nguyen and Peeters,
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2008). The computed results show that the interacting model
behaves very differently from non-interacting electrons, and
the oscillations in these magnetic and thermodynamic curves

of the magnetization and heat capacity were attributed to the
spin singlet–triplet transitions in the ground state spectra of
the quantum dot. Experimentally, the magnetization of elec-

trons in GaAs/AlGaAs semiconductor QD as function of
applied magnetic field at low temperature 0.3 K had been mea-
sured (Schwarz et al., 2002). They had observed oscillations in

the magnetization. To reproduce the experimental results of
the magnetization, they found that the electron–electron inter-
action should be taken into account in the theoretical model of
the QD magnetization. Very recently, the effects of pressure

and temperature on the electronic and optical properties of a
quantum dot presented in external magnetic and electric fields
had been also considered (Owji et al., 2016; Dybalski and

Hawrylak, 2005).
In this work, we consider a two electron parabolic quantum

dot placed in a magnetic field and study the pressure and tem-

perature effects. We applied the exact diagonalization method
to solve the QD Hamiltonian and obtain the energy states for
various values of physical parameters: pressure, temperature,

parabolic confinement and magnetic field strength.
The rest of this paper is organized as follows: Section 2 pre-

sents the Hamiltonian of two interacting electron in a quantum
dot, and the diagonalization technique of the interacting quan-

tum artificial atom. We devoted the final section for numerical
results and conclusions.

2. Theory

In this section we describe in detail the theory of the two elec-
tron QD which consists of two parts, namely: quantum dot

Hamiltonian and exact diagonalization method of the GaAs
quantum dot.

2.1. Quantum dot Hamiltonian

In the effective mass approximation the Hamiltonian for two
interacting electrons confined in a QD by a parabolic potential

in a uniform magnetic field ~B ¼ Bk̂ can be written in a separa-

ble form as:

Ĥ ¼ ĤCM þ Ĥr ð1Þ

ĤCM ¼ 1

2M
~PR þQ

c
~Að~RÞ

� �2
þ 1

2
Mx2

0R
2 ð2Þ

Ĥr ¼ 1

2l
~pr þ q

c
~Að~rÞ

h i2
þ 1

2
lx2

0r
2 þ e2

�j~rj ð3Þ

where x0, M ¼ 2m�; l ¼ m�
2
and � are defined as the confining

frequency, total mass, reduced mass and the dielectric constant

for the GaAs medium, respectively. ~R ¼ r1
!þ r2

!

2
and ~r ¼ r2

! � r1
!

are the center of mass and relative coordinates, respectively.

xc ¼ eB
m� is the cyclotron frequency and A ¼ 1

2
B� r is the vector

potential, (Dybalski and Hawrylak, 2005).
The corresponding energy of the QD Hamiltonian in Eq.

(1) is:

Etotal ¼ ECM þ Er ð4Þ
The center of mass Hamiltonian given by Eq. (2) is a har-
monic oscillator type with well-known eigenenergies:

Encm ;mcm
¼ ð2ncm þ jmcmj þ 1Þ�hxþmcm

�hxc

2
ð5Þ

where ncm;mcm are the radial and angular quantum numbers,

respectively, while

x2 ¼ x2
0 þ x2

c

4
is the effective confining frequency.

However, the relative motion Hamiltonian part (Hr), given
by Eq. (3) does not have an analytical solution for all ranges of

x0 and xc. In this work, we applied the exact diagonalization
method to solve the relative part of the Hamiltonian and
obtained the corresponding eigenenergies Er.

The two electron wave function Wðr1!; r2
!Þ ¼ wðr1!; r2

!Þ
vðr1; r2Þ is a product of the spatial part wðr1!; r2

!Þ and the spin
part vðr1; r2Þ. The spatial part can be separated into a CM (2)

and relative (3) parts wave functions: w(r1
!
; r2
!Þ ¼ wCMð~RÞwrð r

!Þ.
The relative part wrð r

!Þ has a parity : ð�1Þm, under the par-
ticle permutation (u ! uþ 2p . Therefore, the spatial part has
an even parity for even m- quantum number, and in this case
the spin part must be a singlet state with total spin S= 0.The
total two-electron wave function becomes antisymmetric as the

Pauli exclusion principle requires. On the other hand, if the
spatial relative part has an odd parity for odd m-values, in this
case the spin part must be triplet with total spin S= 1. The

angular quantum number (m) and the total spin (S) are related

by the expression S ¼ ½1�ð�1Þm �
2

, (Wagner et al., 1992).

2.2. Exact diagonalization method

For non-interacting case the relative Hamiltonian in Eq. (3) is

a single particle problem with eigenstates jnrmri known as
Fock-Darwin states, (Fock, 1928; Ciftja and Kumar, 2004;
Ciftja and Golam Faruk, 2005).

nrmrj i ¼ Nnrmr

eimr/ffiffiffiffiffiffi
2p

p ðarÞjmr je�a2r2=2Ljmr j
nr

ða2r2Þ ð6Þ

where the functions Ljmr j
nr

ða2r2Þ are the standard associated

Laguerre polynomials. We calculated the normalization con-

stant Nnrmr
from the normalization condition of the basis,

hnrmrjnrmri ¼ 1, which resulted in,

Nnrmr
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nr!a2

ðnr þ jmrjÞ!

s
ð7Þ

We used a as a constant which has the dimensionality of an

inverse length

a ¼
ffiffiffiffiffiffiffiffi
mx
h

r
ð8Þ

The eigenenergies of the QD Hamiltonian which are
given by Eq. (4) consist of the sum of the energies for the
center of mass Hamiltonian (EcmÞ and the eigenenergies

ðErÞ which are obtained by direct diagonalization to the rel-
ative Hamiltonian part. For interacting case, we applied the
exact diagonalization method to solve Eq. (3) and find the

corresponding exact eigenenergies for arbitrary values of
xc and x0.

The matrix element of the relative Hamiltonian part using

the basis jnrmri can be written as,
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hnn0 ¼ hnr;mrjĤrjn0r;mri ¼ hnrmrj �
�h2

2l
r2 þ 1

2
lx2r2jn0rmri

þ hnrmrj e
2

r
jn0rmri ð9Þ

The first term in the right side of Eq. (9),which represents
the kinetic energy, is diagonalized as,

½ð2nþ jmrj þ 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ c2

4

� �s
� c
2
jmrj�dnn0 ð10Þ

where the coulomb matrix energy can be given as

kffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n0n!
ðn0 þ jmrjÞ!ðnþ jmrjÞ!

s
� Inn0 jmrj ð11Þ
Table 1 The ground state energies of QD (in R�
y) as a function

of dimensionless coulomb coupling parameter (k) obtained

from exact diagonalization method compared with reported

work of Ciftja and Kumar (2004).

k E(Present work) E (Ciftja and Kumar, 2004)

0 2.00000 2.00000

1 3.000969 3.00097

2 3.721433 3.72143

3 4.318718 4.31872

4 4.847800 4.84780

5 5.332238 5.33224

6 5.784291 5.78429

7 6.211285 6.21129

8 6.618042 6.61804

9 7.007949 7.00795

10 7.383507 7.38351

Table 2 The relative motion energy spectra (in R�
yÞ of the QD state

(xcÞ for two interacting electrons for xo ¼ 2
3
R� (the shaded energy va

of the QD).

xc½Ry� m= 0 m= 1

0 1.69891 2.00014

0.2 1.71352 1.91905

0.4 1.75622 1.87444

0.6 1.82399 1.86272

0.8 1.91275 1.87899

1 2.01822 1.91809

1.2 2.13655 1.97528

1.4 2.2645 2.04659

1.6 2.39955 2.12879

1.8 2.53975 2.21941

2 2.68364 2.31652

2.2 2.83014 2.41866

2.4 2.97845 2.52472

2.6 3.12795 2.63385

2.8 3.27821 2.74538

3 3.42889 2.85879

3.2 3.57975 2.97371

3.4 3.73059 3.0898

3.6 3.88129 3.20683

3.8 4.03174 3.3246

4 4.18187 3.44294
where c ¼ xc

x0
and k ¼ e2a

�hx0
are dimensionless parameters (Ciftja

and Kumar, 2004). By changing the coordinate transformation

to t-variable upon direct substitution of r ¼
ffiffi
t

p
a in the integra-

tion Inn0 ¼ Inrn0r , we can express the coulomb energy matrix ele-

ment into the integral form:

hnrmrj e
2

r
jn0rmri / Inn0 jmr j ¼

Z 1

0

dt tjmr je�tLjmr j
n ðtÞLjmr j

n0 ðtÞ 1ffiffi
t

p

ð12Þ
We evaluated the above coulomb energy matrix element in

a closed form by using the Laguerre relation given in the
Appendix A (Nguyen and Das Sarma, 2011) .This closed form

result of the coulomb energy reduces greatly the computation
time needed in the diagonalization process.

In our calculation, we used the basis jnrmri defined by Eq.

(6) to diagonalize the relative QD Hamiltonian and obtain its
corresponding eigenenergies Er.

To include the effects of the pressure (P) and temperature

(T) on the energy states we replace the dielectric constant�
with �r (P;T) and the effective mass m� with mðP;TÞ in the
QD Hamiltonian as given in Eq. (2) and (3), where �rðP;TÞ
and m�ðP;TÞ are the pressure and temperature dependent
dielectric constant and electron effective mass, respectively,
(Rezaei and Shojaeian Kish, 2012). For quantum dot made
of GaAs the dependency of �rðP;TÞ and m�ðP;TÞ is given in

Appendix B.
The pressure and temperature effective Rydberg (R�

yðP;TÞÞ
is used as the energy unit and given as follows:

R�
yðP;TÞ ¼

e2

2�ðP;TÞa�BðP;TÞ
ð13Þ

where a�BðP;TÞ is the effective Bohr radius and given as:

a�BðP;TÞ ¼ �ðP;TÞ�h2=ðm�ðP;TÞe2Þ ð14Þ
s (m= 0,1,2,3,4) against the magnetic field cyclotron frequency

lues show the angular momentum transitions of the ground state

m= 2 m = 3 m= 4

2.52193 3.10833 3.72267

2.34732 2.84068 3.36217

2.22178 2.63558 3.07805

2.14064 2.48721 2.86328

2.09757 2.38761 2.70824

2.08584 2.32833 2.60269

2.09923 2.30155 2.53712

2.13249 2.30058 2.50342

2.18132 2.32002 2.49499

2.24239 2.35558 2.50659

2.31308 2.40392 2.53414

2.3914 2.46248 2.57448

2.4758 2.52924 2.62515

2.56507 2.60265 2.68423

2.65829 2.68149 2.7502

2.75471 2.7648 2.82187

2.85376 2.8518 2.89829

2.95497 2.94189 2.97869

3.05798 3.03458 3.06246

3.16248 3.12945 3.14908

3.26822 3.22618 3.23815



Figure 1 The dependence of the energy spectra of non-interaction electrons on the magnetic field calculated at x0 ¼ 2
3
R� for (a)

Pressure = 0 and (b) Pressure P = 10 Kbar.
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so the effective Rydberg can be written as:

R�
yðP;TÞ ¼

e4m�ðP;TÞ
2ð�ðP;TÞÞ2 �h2 ð15Þ

The pressure and temperature values will be changed to
study the effects on the ground state energy of the QD Hamil-

tonian in a zero (xc ¼ 0Þ and finite magnetic field (xcÞ. Even-
tually, the ground state energies of the two electron-quantum
dot system will be calculated as function of temperature (T),

pressure (P), confining frequency and magnetic field (xcÞ.The
obtained results are displayed in the next section.

3. Results and conclusions

We present the results for two interacting electrons in a GaAs
material (effective Rydberg R� ¼ 5:825 meV) in Tables 1 and 2

and Figs. 1 to 6 . We have listed in Table 1, for the sake of
comparisons, the calculated ground state energy results, for
zero pressure, (P = 0.0 Kbar), zero temperature (T = 0.0 K)
and zero magnetic field (xc = 0.0 tesla) against the corre-

sponding ones given by Ciftja and Kumar (2004) . The results
show excellent agreement between both works. For finite mag-

netic field, and confinement energy strength x0 ¼ 2
3
R�, we have

presented our results, in Table 2, for T = 0.0, P= 0.0 and
various magnetic field strength. The energy values, in bold type
given in the table actually show the ground state energy of the

QD. For example the state with angular momentum m= 0 is
the ground state for the QD for the magnetic field strength of
range xc ¼ 0:0 to 0:6. As we continue increasing the magnetic

field strength the ground state switches to m= 1 in the mag-
netic field range xc ¼ 0:8 to 1:8.

To see the effects of the pressure (P) on the energy spectra
of the QD, we have plotted the energy levels for non-

interacting (Fig. 1a and b) and interacting (Fig. 2) electrons
both calculated at P = 10 Kbar. For independent electron
case, the comparison of the energy spectra in Figs. 1a

(P = 0.0 Kkbar) and Fig. 1b (P = 10Kbar) shows a clear
enhancement in the energy of the electron as a function of
magnetic field for pressure value P = 10 Kbar. This behavior



Figure 2 The computed energy spectra of quantum dot versus the strength of the magnetic field for x0 ¼ 0:5R�, T = 0 K, and

P = 10.0 Kbar. Angular momentum m ¼ 0; 1; 2; 3; 4.

Figure 3 The computed energy spectra of quantum dot versus the strength of the magnetic field for x0 ¼ 0:5R�, T = 0 K, m= 0 and

various pressures (P = 0 Kbar, solid; P = 10 Kbar, dashed; P = 20 Kbar, dotted and P = 30 Kbar, thick).
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can be explained by the help of the dependence of the effective
mass of the confined electron on the pressure given in Eq. (B2).

For fixed values of magnetic field and temperature, as the pres-
sure increases the effective mass of the electron increases also,

leading to a reduction in the kinetic energy term � �h2

2l� r2
� �

while the parabolic confinement 1
2
lx2

0r
2

	 

energy enhances.

In Fig. 2, we have displayed the computed energy states of
interacting electrons case against the magnetic field for con-
finement energy strength x0 ¼ 0:5R�, pressure P= 10.0 Kbar,
and temperature T = 0.0 K. The inclusion of the electron –

electron interaction term shows a significant effect on the
QD energy spectra. The plot obviously shows the state with
m= 0 remains aground state only for small range of magnetic

field. As we increase the magnetic field, the m = 0 state rises in
energy while the states with m ¼ �1;�2;�3; . . . decrease. As
the quantum number, jmj, increases the average separation
of the electrons increases also leading to a reduction in the cou-

lomb energy. The transition in the angular momentum of the
QD ground state from m ¼ 0 to m ¼ �1;�2;�3; . . . is associ-
ated with the total spin oscillations of the ground state between

the singlet (S= 0) and the triplet (S= 1) state (Wagner et al.,
1992). These transitions manifest themselves as cusps in the
heat capacity and magnetization curves of these thermody-

namic quantities, as we mentioned earlier in the introduction
(Sanjeev Kumar et al., 2016; Avetisyan et al., 2016; Helle
et al., 2005).

We have plotted, in Fig. 3, the ground state energy, m = 0,
against the magnetic field for pressure values (P = 0 Kbar, 10
Kbar, 20 Kbar and 30 Kbar and T = 0 K. The curves clearly
show the enhancement in the QD energy state as the pressure

increases. This energy-pressure behavior can be understood



Figure 4 The energy of the quantum dot system versus the magnetic field strength for x0 ¼ 0:5R�, P = 0 Kbar, m= 0 and various

temperatures(T = 0 K solid; T = 150 K dashed; T = 350 K dotted).

Figure 5 The energy of the QD system against the pressure for xo ¼ 0:5R�, xc = 0 and various temperatures (T = 0 K solid; T = 150 K

dashed; T = 350 K dotted).
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from the effective mass and dielectric constant pressure-

temperature relations. As the pressure increases the dielectric
constant, �ðPÞ, decreases for zero temperature and this leads

to an enhancement in the electron–electron coulomb interac-

tion, Vc � 1
�ðpÞr, in the QD-Hamiltonian. However, the effective

mass increases and thus the kinetic energy term decreases. This
coulomb energy and kinetic energy behavior terms lead to an

effective increase in the energy levels of the QD spectra. In
Fig. 4, we have shown the dependence of the ground state
energy m = 0 on the magnetic field and for various tempera-

ture values T = 0, T = 150 k T = 350 k and P = 0 Kbar.
The energy state shows strong dependence on the temperature.
For fixed value of magnetic field, the energy decreases as the
temperature increases. In Figs. 5 and 6 we vary both the pres-

sure and the temperature simultaneously while keeping the
magnetic field strength unchanged. The energy spectra, in

Fig. 5, increases as the pressure increases for low temperature
values. On the other hand the energy spectra decrease as the
temperature increases for high pressure values. This energy
behavior for various pressures as temperature increases is

shown in Fig. 6. The exact diagonalization method is used in
spanning the total Hamiltonian for the selected single electron
basis and extract the lowest eigenvalues (eigenenergies) of the

matrix. The procedure of increasing the number of linearly
independent eigenstates is converging to the exact results. In
each step the new energy results are compared with previous

results from a smaller apace, until satisfactory convergence is
achieved. The convergence issue is achieved in our numerical
calculations. For example the ground state energies were con-
verged to Er ffi 1:66R� as we increase the basis numbers from



Figure 6 The energy of the QD system against the temperature for xo ¼ 0:5R�, xc ¼ 0R� and various pressures (P = 0 Kbar, solid;

P = 2 Kbar, dashed; P = 5 Kbar, dotted and P = 7 Kbar, dashed-dotted). [The change of the slope at T = 200 K is not due to any

physical reason but a consequence of Eq. (B1)].
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sp = 5 to 20. In the present numerical calculations we diago-

nalize 20� 20 Hermitian matrix.

In conclusion, we have investigated the effects of pressure
and temperature on the energy levels of the QD as a function
of magnetic field. The exact diagonalization method is applied

to solve the two electron-QD Hamiltonian. The comparisons
show that our results are in very good agreement with other
reported works.

Appendix A. Properties of the Laguerre polynomials

The following Laguerre relation was used to evaluate the cou-
lomb energy matrix element given by Eq. (12) in a closed form

(Nguyen and Das Sarma, 2011):Z 1

0

ta�1e�ptLk
mðatÞLb

nðbtÞdt

¼ CðaÞðkþ 1Þmðbþ 1Þnp�a

mn

�
Xm
j¼0

ð�mÞjðaÞj
ðkþ 1Þjj

a

p

� � jXn
k¼0

ð�nÞkðaþ jÞk
ðbþ 1Þkk

b

p

� �k

ðA:1Þ
Appendix B. The pressure and temperature dependent dielectric

constant and electron effective mass

In this Appendix, we give the dependence relations of the phys-
ical parameters, like effective mass and dielectric constant, for
GaAs quantum dot on the pressure and temperature:

2rðP;TÞ ¼

12:74 expð�1:73� 10�3PÞ
exp½9:4� 10�5ðT� 75:6Þ� for T < 200K

13:18 expð�1:73� 10�3PÞ
exp½20:4� 10�5ðT� 300Þ� for T P 200K

8>>><
>>>:

ðB:1Þ
m�ðP;TÞ ¼ 1þ 7:51
2

EC
g ðP;TÞ þ

1

EC
g ðP;TÞ þ 0:341

 !" #�1

m0

ðB:2Þ

EC
g ðP;TÞ ¼ 1:519� 5:405� 10�4 T2

Tþ 204

� �
þ bPþ cP2

ðB:3Þ
where m0 is the free electron mass, EC

g ðP;TÞ is the pressure

and temperature dependent energy band gap for GaAs

quantum dots at u point, b = 1.26 �10�1eV GPa�1 and

c = �3.77 �10�3 eV GPa�2, (Rezaei and Shojaeian Kish,
2012).
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