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Objective: The main objective of current investigation was to develop a predictive disease model based
upon meteorological data, viz., maximum temperature, minimum temperature, rainfall, relative humid-
ity, and wind speed to predict stripe rust severity (%).
Methods: Five years’ data of stripe rust severity on three wheat varieties, namely SA-42, Sandal-73, and
Barani-70, continuously cultivated for five years (2013–2017), were collected from experimental trials of
Deputy Director of Agriculture Extension Layyah to develop a predictive disease model. For validation of
the model, a research trial was conducted in the Research Area of the Department of Plant Pathology,
Bahadar Sub-Campus Layyah, during the crop seasons of 2018–2019, following procedures similar to
those utilized in five years investigation. The data on epidemiological variables used in the present inves-
tigation was collected from the Pakistan Meteorological Observatory at Karor-Layyah. To evaluate the
association between meteorological factors and disease severity correlation and regression analysis
was performed.
Results: All meteorological variables contributed significantly in disease development and showed 89 %
variability in stripe rust severity (%). Root means square error (RMSE) and residual (%) were used to eval-
uate the model’s predictions. Both indices were below 20, showing that the model could accurately
predict the progression of disease. The regression equations of 5 years model (Y = -63.11 + 0.96x1 +
1.72x2 + 3.72x3 + 0.43x4) and 2 years model (Y = -40.2 + 1.80x1 + 1.18x2 + 2.29x3 + 0.39x4) validated each
other. Scatter plots indicated that environmental factors such as maximum temperature (12.8–22.5 �C),
minimum temperature (8.7–14.8 �C), relative humidity (50–85 %), and wind speed (1.3–4.5) influenced
the progression of stripe rust epidemic.
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Conclusion: Understanding the epidemiology of stripe rust will help us to forecast its progression, allow-
ing wheat growers to more precisely adapt plant protection measures.
� 2023 The Authors. Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction tivated for five years (2013–2017), were collected from the
The rusts pathogens arewheat’smost important andwidespread
pathogens that cause significant yield losses if uncontrolled (Singh
et al., 2008). For example, stripe rust epidemics can cause 6 million
tons of crop losses annually worldwide (Khanfri et al., 2018). Stripe
rust epidemics have repeatedly threatened the world grain produc-
tion (Hovmøller et al., 2010). Temperature ismost important for suc-
cessful germination and rapid outbreaks. According to Mert et al.,
(2016), temperature ranging from 13 to 16 �C is ideal for fungal
growth. Moisture plays a role in condensation, seed germination,
pathogen transmission, and organism survival. Rapilly and Foucault
(1976) reported that urediniospore attachment efficacy was
enhanced by high relative humidity. Urediniospores require 3 h of
wetness before germinating and infecting plants. Desiccation stops
urediniospore germination irreversibly (Rapilly and Foucault, 1976).

The stripe rust epidemics have caused a significant reduction in
grain yields in the past, still threaten the future production of
grains. The pathogen is polycyclic and infects several hosts, includ-
ing common wheat, durum wheat, triticale, wild emmer wheat,
Oregon grape (Mahonia aquifolium) and Barberry (Chen et al.,
2014). The 7–9 weeks or 10–12 weeks are the most critical periods
for disease development, and fast progress depends upon the
pathogen’s survival in the susceptible host and conducive environ-
mental conditions (Ali et al., 2020a). When emerging pathogen
races come into contact with susceptible hosts and favourable
environmental conditions, they can travel fast to new locations,
even if they are endemic to certain regions (Ali, 2018).

Foliar fungicides reduce disease pressure effectively when
sprayed before 5 % pathogen infection and again 3–5 weeks later,
depending on disease severity or the active ingredient. More than
40 fungicides have been registered to control disease epidemics,
the majority of which are in the QoI (strobilurin) and DMI (triazole)
classes. Both propiconazole (Tilt� in the DMI class) and pyra-
clostrobin (Headline� in the QoI class) have been used for over
three decades. Quilt Xcel� or Quilt� (propiconazole and azoxys-
trobin) are popular due to their dual DMI and QoI mechanisms of
action (Chen, 2014; Kang et al., 2019).

Several disease predictive models with varying data require-
ments and degrees of complexity have been developed to forecast
disease severity in wheat (El Jarroudi et al., 2017; Ali et al., 2017;
Newlands, 2018). A warning system for effective fungicide treat-
ments in wheat fields was developed in Luxembourg using a
weather-based disease forecasting model. Even though the results
were region-specific, the authors noted that the methodology and
assumption may be applied elsewhere. These models reduce envi-
ronmental concerns, economic costs, and yield losses while
enhancing fungicide effectiveness and timeliness (Newlands,
2018). Hence, the main objective of the present investigation was
to develop a predictive disease model for predicting stripe rust
severity using meteorological data from Layyah Pakistan.
2. Materials and methods

2.1. Development of disease predictive model based on five years data
set (2013–2017)

2.1.1. Disease severity data
Five years’ data of stripe rust severity on three wheat vari-

eties, namely SA-42, Sandal-73, and Barani-70, continuously cul-
2

evaluation Varietal Trials (EVT) experiments of the Deputy Direc-
tor Agriculture Extension Layyah (30�45’ N and 70� 44’ E). In
addition, for each year of data collection, the sowing date was
also recorded. The varieties SA-42, Sandal-73, and Barani-70,
along with other local and zonal check varieties and new elite
lines, were cultivated in 6 m rows with 45 cm row-to-row dis-
tance. A rust spreader row of Morocco variety was planted after
every 15th genotype.

The disease severity data were recorded in each 6 m row of the
genotypes SA-42, Sandal-73, and Barani-70. The data records
started from the beginning of the inoculation when the disease
symptoms not appear and continued at eight days until crop matu-
rity. Five times during the growing season, data were collected, and
the final observation was made on a flag leaf between crop devel-
opment stages (GS) 71 and 79 on the Zadok’s scale (Zadoks et al.,
1974). The modified Cobb scale was used to record the percentage
of disease severity (Peterson et al., 1948). These information on
disease severity were used in the statistical analysis and the pre-
dictive disease model.

2.2. Meteorological data

Daily environmental data recorded at the Pakistan Observatory
Meteorological Station of Karor-Layyah was used in current inves-
tigation. The data on meteorological variables that were predicted
to be connected to disease epidemics, such as maximum and min-
imum temperature, relative humidity, rainfall, and wind speed,
were collected for the same years that stripe rust severity data
were available of that location. The weekly means for 17 weeks
were calculated using the daily values of each epidemiological
variable starting from the day of sowing. The genotypes SA-42,
Sandal-73, and Barani-70, take 20 weeks from planting to maturity,
but during the final three weeks before harvest, meteorological fac-
tors have no impact on crop yield or pathogen infection.

2.3. Development of regression model

Stepwise regression models were carried out between the five
years (2013–2017), epidemiological variables (independent vari-
ables), and disease severity data (dependent variable). The correla-
tion also determined the impact of environmental conditions on
disease severity (Steel et al., 1997).

2.4. Model assessment

The model’s validity was determined using a method proposed
by Chatterjee et al (2000). Three steps were performed to evaluate
the model: (i) dependent variable (stripe rust severity) and regres-
sion coefficients were compared with physical theory, (ii) predictor
and observed variables were comparison, and (iii) collected new
data to check predictions. The error, represented as a percentage,
and the root mean square error were used to evaluate the predic-
tions by using the expression given below (Chatterjee et al., 2000).

RMSE ¼
Pn

i¼1 pi � oið Þ2
n

" #0:5

Error Percentage ¼ pi � oið Þ100 ð1Þ

http://creativecommons.org/licenses/by-nc-nd/4.0/
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The variables under study are represented by the predicted val-
ues (Pi), the observed values (Oi), and the overall number of obser-
vations (n).

2.5. Collection of new data

To collect the new data, a research trial was conducted in the
Research Area of the Department of Plant Pathology, Bahadar
Sub-Campus Layyah, throughout the crop seasons of 2018–2019,
using the same methodology as the previous five-year investiga-
tion, because the meteorological conditions and soil type of both
locations are similar. Three susceptible to moderately susceptible
wheat varieties SA-42— Sandal-73 and Barani-70—were sown dur-
ing the third week of November 2018–2019 under augmented
design, with 45 cm R � R distance and 15 cm P � P distance,
respectively.

To develop high disease pressure, one row of Morocco was
planted next to each row of cultivated genotypes on each side.
From mid-January to the last week of February, experimental plots
were artificially inoculated with urediniospores at a concentration
of 106/ml of distilled water. Inoculation was done twice a week
using the dusting and hypodermal needle injection techniques pro-
posed by Rao et al., (1989). The applied inoculum consisted of
stripe (80E85) rust races collected from Kaghan, Murree, Faisal-
abad, and farmer fields of Layyah. The crop was kept in healthy
condition by applying the suggested doses of nitrogen, phosphorus,
and potassium at 120, 30, and 60 kg ha�1, respectively, according
to the recommended practises for the region. Herbicides were also
applied at recommended amounts for the management of weeds.
Data recording procedures for stripe rust severity (%) and the epi-
demiological variables were the same as earlier experiments.

2.6. Model validation

The stripe rust severity of three wheat varieties cultivated at the
Bahadar Sub-Campus Layyah Research Area during crop seasons
2018–2019 was used to develop a two-year model to validate
the five-year model (2013–2017) through a comparison of regres-
sion coefficients (R2) produced by the F-test (Steyerberg, 2016).
The data relating to the meteorological factors for the periods
2018–2019 were collected from the Pakistan Observatory Meteo-
rological Station, Karor-Layyah. Meteorological factors exhibiting
a strong association with stripe rust severity on all three wheat
genotypes were plotted, and conducive disease development
ranges were also calculated.

2.7. Statistical analysis

The data were analyzed by using the SAS/STAT statistical soft-
ware V.9.01 Steel et al., 1997) and Minitab V.17 (Minitab Inc.,
USA). The meteorological variables and stripe rust severity data
was subjected to analysis of variance and correlation analysis. To
compare the means least significant difference (LSD) test was used
(p � 0.05). A stepwise multiple regression analysis was used to
develop a predictive model for stripe rust severity (Steyerberg,
2016). The coefficient of determination (R2) and R2 Adjusted were
determined using the expression below to assess the accuracy of
model’s prediction as well as the relationship between meteoro-
logical variables and stripe rust severity (Steyerberg, 2016):

R2 ¼ Regression sum of square
Total sum of square

¼ 1� Error sum of square
Total sum of square

R2
adj: ¼ 1�

1� R2
� �

n� 1ð Þ
n� k� 1ð Þ ð2Þ
3

Where, k and n represent independent variables and sample
size, respectively. By using following equations, Mallows Cp and
mean square error were also determined to examine the impact
of environmental conditions in the predictive-models
(Steyerberg, 2016):

Cp ¼ n� pð Þ MSE Reducedð Þ
MSE Fullð Þ � s

� �
þ p

MSE ¼ 1
n

Xn
i¼1

y1 � y
�
i

� �
ð3Þ

While n and p in the Cp equation represent the sample size and
regression model beta coefficients, respectively. Whereas, mean

square error (MSE) equation shows the predicted (y
�
i), observed

(yi), and number of data values (n).

3. Result

All the epidemiological variables showed positive correlation
with the stripe rust development during all five growing seasons
(2013–2015) (Fig. 1). Based on a five-year data set, a multiple
regression model (Y = -63.11 + 0.96x1 + 1.72x2 + 3.72x3 + 0.43x4)
indicated that major factors responsible for disease development
were minimum and maximum temperature, wind speed, and rela-
tive humidity. It is evident from the model equation that for one
unit change in minimum and maximum temperature, wind speed,
and relative humidity, there would be a probable change of 0.96,
1.72, 3.72, and 0.43 units in stripe rust development, respectively.
The model explained 85–90 % variability in disease development
(Table 1).

3.1. Model assessment

3.1.1. Comparison of the dependent variable (stripe rust severity) and
regression coefficients with physical theory

The model exhibited a higher R2 value (90.67) and a low stan-
dard error of estimate (5.65) that are considered fairly good,
mainly under natural environmental conditions when no studied
variables are controlled (See Appendix 1 in the supplementary file).
The regression model’s F-distribution was significant at P < 0.05
(See Appendix 2 in the supplementary file). Minimum and maxi-
mum temperature, wind speed, and relative humidity significantly
affected stripe rust severity at P < 0.05, and each demonstrated a
low standard error (Table 2). Regression-significant statistics, a
higher R2 value, and a lower standard error value showed that
the model accurately predicted the stripe rust severity.

3.2. Evaluation of model by comparing the observed and predicted
data

The model predictions were evaluated using error (%) and
RMSE. The majority of the data points for the five-year model
(2013–2017) were close to the reference line, with only a small
number deviating and leading to an error in the regression model.
Overall, the recorded 20 % residual represents a good match
between observed and projected data points (Fig. 2). All three
wheat varieties, SA-42, Sandal-73, and Barani-70, had higher R2

values greater than 89 % and lower RMSE values � 20, which indi-
cated that the model was effective at predicting the severity of the
stripe rust (%) (Fig. 3).

3.3. Model validation

In order to validate the five-year stepwise multiple regression
model, data from a two-year research trial at the Bahadar Sub-



Fig. 1. Pearson correlation indicating the interaction between environmental conditions and stripe rust severity during five years (2013–2017).

Table 1
Summary of stepwise regression model to predict stripe rust severity during five years 2013–2017

Parameter No. in Model Model R2 (%) C(p) MSE F value Prb. > F

Minimum Temperature (℃) 1 0.85 36.54 6.86 6.96 0.01*
Maximum Temperature (℃) 2 0.88 13.65 6.06 8.36 0.04*
Wind speed (km/h) 3 0.89 9.96 5.88 9.79 0.03*
Relative Humidity (%) 4 0.90 5.00 5.65 6.05 0.01*

*Significant at P � 0.05.

Table 2
Relevance of the multiple regression model, t statistics, and coefficients of estimates for the five years from 2013 to 2017 with a standard error

Parameters Coefficients Standard Error T-Value P-Value

Constant �63.11 9.46 �6.67 0.00*
Minimum Temperature (℃) 0.96 0.36 2.64 0.01*
Maximum Temperature (℃) 1.72 0.59 2.89 0.05*
Wind speed (km/h) 3.72 1.19 3.13 0.03*
Relative Humidity (%) 0.43 0.17 2.46 0.01*

*Significant at P � 0.05.

Y. Ali, S. Iqbal, H.M. Aatif et al. Journal of King Saud University – Science 35 (2023) 102591
Campus Layyah were used. The stripe rust severity (%) was signif-
icantly influenced by meteorological variables, as shown by the R2

values of both models I (90.67 %) and II (85.09 %). A strong proxim-
ity was recorded between the regression equations of both models
(Table 3).
4

3.4. Characterization of environmental factors conducive to stripe rust
severity (%) during 2018–2019

The environmental conditions conducive to the stripe rust epi-
demic were characterized on three wheat varieties, viz., SA-42,



Fig. 2. Normal probability plot for five years (2013–2017) model of stripe rust severity (%).

Fig. 3. Comparison of observed & predicted data points of stripe rust severity on three wheat varieties SA-42, Sandal-72, and Barani-70 during crop seasons of five years
(2013–2015).

Table 3
Comparison of two stepwise multiple regression models for validation of stripe rust severity (%)

No. of Model Regression Equations R2 (%) Adj. R2 (%) Prob. > F

I Y = -63.11 + 0.96x1 + 1.72x2 + 3.72x3 + 0.43x4 90.67 90.13 < 0.01*
Vs
II Y = -40.2 + 1.80x1 + 1.18x2 + 2.29x3 + 0.39x4 85.09 81.99 < 0.01*

Model (I) = Five years model; Model (II) = two years model; Y = stripe rust severity; x1 = minimum temperature; x2 = maximum temperature; x3 = wind speed; x4 = relative
humidity; Sig. at P � 0.05.

Y. Ali, S. Iqbal, H.M. Aatif et al. Journal of King Saud University – Science 35 (2023) 102591

5



Y. Ali, S. Iqbal, H.M. Aatif et al. Journal of King Saud University – Science 35 (2023) 102591
Sandal-73, and Barani-70, during two crop seasons, 2018–2019.
Temperature (minimum and maximum) contributed significantly
to the stripe rust severity (%) on all three wheat varieties. Maxi-
mum disease severity (%) was recorded during both growing sea-
sons by increasing minimum temperature ranging from 8.7 to
14.8 ℃ and maximum temperature ranging from 12.8 to 22.5 ℃,
respectively. The linear regression models provided the best expla-
nation for this relationship, as shown by the correlation coefficient
(r) values (Figs. 4-5). The significant correlation between wind
speed and stripe rust severity (%) was found. Stripe rust severity
(%) increased during the crop seasons, 2018 and 2019, as wind
speed increased from 1.3 to 4.5 km/h (Fig. 6). On all wheat vari-
eties, a strong correlation between stripe rust severity (%) and rel-
ative humidity was observed. In both crop seasons, the maximum
disease severity was noted between 50 and 85 % relative humidity;
this indicated that stripe rust severity increased as relative humid-
ity increased, as showed by their r values, which were respectively
0.84, 0.86, and 0.72 for the 2017–2018 crop season and 0.80, 0.96,
and 0.94 for the 2018–2019 crop season (Fig. 7). In both growth
seasons, a very low correlation was observed between rainfall
and stripe rust severity (%). By increasing rainfall ranging from
1.5 to 11.7 mm, disease severity also increased to some extent
and explained 20–53 % variability in disease development. Their
r values best explained this relationship, i.e., 0.20, 0.40, 0.53 during
2017–2018, and 0.25, 0.33, 0.46 in 2018–2019 (Fig. 8).
4. Discussion

Quantifying disease and weather relationships is likely to be
crucial in developing an early forecasting model for stripe rust in
wheat because environmental conditions have a significant impact
on the development of pathogens on any crop. Rusts diseases are
influenced mainly by relative humidity, temperature (minimum
and maximum), rainfall, and wind speed (Ali et al., 2020b; Lyon
and and Broders, 2017). However, the degree of correlation
explored here between stripe rust severity (%) and environmental
conditions was limited to rainfall. The positive relationship of tem-
perature with stripe rust severity showed that it could have a sig-
nificant role in the various stages of disease progress, viz., spore
germination and infection, latent period, spore liberation, and dis-
ease development (Mahapatra et al., 2018). Vallavieillie et al.,
(1995) described that under optimum temperature and non-
limiting humidity, Puccinia striiformis infection efficacy was ten
times greater. The positive association between disease severity
and relative humidity was due in part to its essential role in the
spread of urediniospores in clusters or individually. These spores
Fig. 4. Relationship between minimum temperature & stripe rust severity (%) recorded o
and 2018–2019 (B).

6

increase in clusters as relative humidity increases. High relative
humidity (70–80 %) favors the stronger attachment of uredin-
iospores with the leaves. Moreover, high relative humidity fre-
quently enhances the stripe rust severity by increasing the
infection incidence. Rapilly and Fournet (1968) stated that relative
humidity must be greater than 50 % for sporulation. Furthermore,
the production of urediniospores increased exponentially with
increasing relative humidity. Wind speed also influenced the dis-
ease severity by drying the urediniospores, ultimately reducing
the on-site spore germination and increasing the duration of spore
viability. More essentially, wind speed played a vital role in the dis-
persal of stripe rust severity.

The sexual stage of the pathogen life cycle starts with the pro-
duction of dikaryotic urediniospores (n + n) on primary hosts. This
phase causes cereal stripe rust epidemics. The pathogen later pro-
duces two-celled, thick-walled teliospores during the epidemic
phase. A mature teliospore cell has a karyogamy-generated diploid
(2n) nucleus. Even in similar conditions, Pst isolates form telia dif-
ferently (Jin et al., 2010; Wang and Chen, 2013; Chen et al., 2012).
The Pst teliospores lack dormancy and germinate fast (24 h) to
form a four-cell promycelium under free water conditions at
12 �C. A single haploid nucleus is produced during meiosis, which
transforms into a basidiospore after 48 h and emerges from the
sterigma after 60 h. These basidiospores infect Berberisand Maho-
niaspecies (72 h). A minimum dew period of 40 h is necessary
for basidiospore infection of barberry leaves (Rapilly, 1979).

The factors that persisted after stepwise multiple regression
analysis showed that the temperature, relative humidity, and wind
speed were the meteorological conditions that contributed most to
the spread of the disease. All four predictive models in the current
investigation showed 85–90 % variability in disease development
and will enable disease prediction in the ninth week of the crop,
providing enough time to take disease control measures. These
regression models greatly vary from the other disease predictive
models for forecasting stripe rust severity, which were usually
multivariable equations (Räder et al., 2007; Park and Wellings,
1992). The regression models such as these do not explain the
100 % of variability in disease development. Kumar (2014) devel-
oped the empirical models and explained 28–30 % unexplained
variability when only meteorological factors were used to forecast
disease severity. In the current investigation, only 10–20 % of the
disease severity variance remained unexplained, which is accept-
able considering the meteorological variables. As predictor factors,
biological traits and the initial inoculum in the field may help
reduce the variability that can’t be explained. However, users
may need access to such data, which makes it hard to use multiple
regression models in decision support systems. Predictive disease
n wheat varieties SA-42, Sandal-73, and Barani-70 during two years 2017–2018 (A)



Fig. 5. Relationship between maximum temperature & stripe rust severity (%) recorded on wheat varieties SA-42, Sandal-73, and Barani-70 during two years 2017–2018 (A)
and 2018–2019 (B).

Fig. 6. Relationship between wind speed (km/h) & stripe rust severity (%) recorded on wheat varieties SA-42, Sandal-73, and Barani-70 during two years 2017–2018 (A) and
2018–2019 (B).

Fig. 7. Relationship between relative humidity (%) & stripe rust severity (%) recorded on wheat varieties SA-42, Sandal-73, and Barani-70 during two years 2017–2018 (A) and
2018–2019 (B).
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models were primarily qualitatively validated by comparing the
observed and predicted data sets for the disease, by using the inde-
pendent data on disease severity. A similar method for the valida-
tion of prediction models was used by Kumar (1991). The
validation results of both Model-I and II showed similar coeffi-
cients of determination (R2) values (Table 3), indicating close asso-
ciation with one another for predicting disease severity.
7

In the present investigation that was confined to field results,
stripe rust severity levels of 70 % were recorded with the change
in environmental conditions. In an investigation on stripe rust,
Park (1991) reported that while pathogen infection decreased in
the lab from 100 % at 15.4 �C to 0.8 % at 21 �C, under field condi-
tions, a severe disease outbreak occurred at any temperature
between 19 and 30 �C. The moderate success of disease prediction



Fig. 8. Relationship between rainfall (mm) & stripe rust severity (%) recorded on wheat varieties SA-42, Sandal-73, and Barani-70 during two years, 2017–2018 (A) and 2018–
2019 (B).
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models may be due to stripe rust’s polycyclic nature, with multiple
pathogen generations per crop season. However, in the field, stripe
rust environmental conditions may be different than in the lab
(Grabow et al., 2016). Short, irregular deviations in environmental
conditions that impact how the disease develops later cause diffi-
culty in predicting stripe rust severity under field conditions.
Hakro and Khan (2012) reported that Pakistan’s plain regions lack
a local source for developing the stripe rust disease. It comes from
the mountains, Northern areas, and high lands of Baluchistan, sev-
eral kilometers away from plains areas. The stripe rust severity in
these areas depends on the multiplication of the inoculum of the
pathogen at the source (Hakro and Khan, 2012; Khushboo et al.,
2021).
5. Conclusion

The percentage of stripe rust severity and all meteorological
factors were significantly correlated. The five years stripe rust dis-
ease predictive model validated with a two years data set
explained 89 % variability in disease development. The maximum
temperature (12.8–22.5 ℃), minimum temperature (8.7–14.8 ℃),
relative humidity (50–85 %), and wind speed (1.3–4.5) demon-
strated significant effects on stripe rust severity (%). Predictive
models are helpful in reducing outbreaks of stripe rust because
the environment plays a significant role in the disease’s develop-
ment. The model predicts when to spray a crop to prevent the
spread of disease. Thus, understanding the epidemiology of stripe
rust will allow us to predict its epidemics, enabling wheat growers
to modify plant protection measures more precisely.
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