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This article presents exact solution for pressure driven flow formation of electrically conducting fluid in a
parallel plate channel formed by two horizontal parallel plates with electrokinetic effects and induced
magnetic field. Using the Poisson-Boltzmann, Navier-Stokes equations and induction equation, the gov-
erning electric potential, momentum, induced magnetic field and energy equations for the present article
are presented and transformed to their corresponding dimensionless form using suitable parameters. The
governing dimensionless equations are solved exactly and graphical representation are presented. During
the cause of graphical illustration, it is found that the role of electrokinetic effects and Hartmann number
is to decrease the electric potential, fluid velocity, induced magnetic field and fluid temperature. A special
case is found and discussed when the value of Hartmann number equals the Debye-Hiickel parameter. It
is interesting to note that heat transfer is independent on governing parameters for large value of Debye-
Hiickel parameter.
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1. Introduction

Electrokinetic phenomenon is significant in laboratory, indus-
trial and engineering applications such as the removal of contam-
inants in soil and imposing electric ion on flow formation. This
phenomenon involves the passing of low-voltage direct current
electric field across the boundary on a fluid. Other applications
can be found in medical field for cardiopulmonary resuscitation
and development of battery cells.

When a liquid containing small amount of ions is brought in
contact with a solid boundary, the like charges repel while the
unlike charges attract. This situation leads to the formation of
EDL (electric double layer) closed to the wall containing excess
counter ions. Reuss (1809) and Probstein (1994) are the earliest
scientists to discover the electrokinetic effects. Reuss (1809) in
an experiment on porous clay found that particles dispersed in
water migrate due to the constant application of electricity. Later,
Helmholtz (1879) developed the EDL theory which relates the elec-
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tric and flow parameters for electrokinetics. With increasing inter-
est in understanding electrokinetic flows, many numerical
investigations have been carried out. Patankar an Hu (1998) pre-
sented numerical simulation of microfluidic injection using elec-
troosmotic forces through intersection of two channels. Ren and
Li (Debye and Hiickel, 1923) studied electrosomotic flows in
microchannels with axially non-uniform zeta potentials and vary-
ing cross-sections. Yang and Li (1998) used the Debye-Hiickel
approximation (Ren and Li, 2001) to develop a numerical algorithm
for elecrokinetically-driven Newtonian liquid flows. They con-
cluded that for a liquid solution of low ionic concentration and a
solid surface of high zeta potential the liquid flow in rectangular
microchannels is significantly influenced by the presence of the
EDL field and hence deviates from the flow characteristics
described by classical fluid mechanics.

Many researches have been committed to study the combined
effect of pressure and electrokinetic effects on flow formation in
channel (Zade et al., 2007; Mukhopadhyay et al., 2009; Soong
and Wang, 2003; Matin and Khan, 2016). Mukhopadhyay et al.
(2009) examined the fully developed hydrodynamic and thermal
transport in combined pressure and electrokinetically driven flow
with asymmetric boundary condition. They established that both
flow and heat transfer characteristics are significantly affected by
the asymmetries in wall boundary conditions for both purely elec-
troosmotic and combined pressure-driven and electroosmotic
flow.
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Nomenclature

b spacing between the parallel plates
Co concentration of ions in bulk fluid

Ey electrostatic intensity

F Faraday’s constant

g acceleration due to gravity

G, dimensionless parameter

Hy dimensional induced magnetic field
H vectorial induced magnetic field

H dimensionless induced magnetic field
] dimensionless induced current flux
Jo dimensionless induced current density
M Hartmann number

Nu Nusselt number

P dimensionless pressure

q heat flux

q, dimensionless heat flux

R universal gas constant

T dimensional temperature

Tref ref. temperature of the fluid

u axial velocity

U constant ref. velocity

u mean velocity

U dimensionless axial velocity

v vectorial velocity profile

z valence number of ions in the solution
X,y axial and transverse coordinates respectively
X dimensionless axial coordinate

Y dimensionless transverse coordinate
o dimensionless pressure gradient

€ fluid permittivity

= {»/{; (dimensionless)

zeta— potential (electrokinetic potential of the walls in
the double layer)

electrostatic potential

externally imposed electrostatic potential
Debye-Huckel parameter

Debye length

dimensional EDL potential
dimensionless EDL potential
thermal expansion coefficient
fluid thermal conductivity

fluid dynamic viscosity

magnetic permeability

fluid density

electrical conductivity of the fluid
skin-friction

dynamic viscosity at T =Ty
kinematic viscosity

fluid density

charge density

dimensionless temperature
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Subscripts

value at the wally =0

value at the wall y =1
purely electrokinetic solution
bulk value

purely pressure driven flow
special case solution

LT IR —O

The study of electromagnetic induction has found many appli-
cations in design of electrical appliances such as inductors, trans-
formers, alternators, electric motors and generators. The use of a
magnetic field to control the motion of an electrically conducting
fluid has been investigated under different conditions: with
respect to geometry of the channel in which the fluid is flowing,
the nature of the conducting fluid, source of the applied magnetic
field, degree of ionization of the fluid and strength of the magnetic
field. Rossow (1957) examined the flow of an incompressible
boundary layer over a flat plate when the magnetic field is applied
transversely to the direction of flow. He found that heat transfer is
reduced by the application of magnetic field. Other important
applications of electromagnetic and fluid interaction include, con-
version of heat energy to electrical energy, ion propulsion studies,
radio wave propagation in the ionosphere and controlled nuclear
fusion, protection of internal surface of channels and nozzles from
high temperature and high speed fluids (Ibrahim, 1967).

In the absence of induced magnetic field, (Jha and Oni, 2017; Jha
et al,, 2015) analysed the significance of Hartmann number on flow
formation in different geometries. In the above sited articles, this
assumption is only valid for very small magnetic Reynold number.
To present a precise solution, the induced magnetic field should not
be neglected. In view of this, Jha and Aina (2016) studied the role of
induced magnetic field on MHD natural convection flow in a verti-
cal microchannel formed by two electrically non-conducting infi-
nite vertical parallel plates. Other relate articles are Jha and Sani
(2013) and Gosh et al (2010). Other related works on combined
pressure and electrokinetic effect in the presence of uniform mag-
netic field carried out both numerically and experimental studies
can be seen in (Das and Mitra, 2012; Ganguly, 2015; Sarkar, 2014;
Sarkar and Ganguly, 2018; Sarkar et al., 20173, b, c).

In all the mentioned articles above, to the best of authors’ find-
ings, none of these articles have considered the induced magnetic
field generated once the magnetic Reynolds number is high. This
present article is aimed at investigating the combined role of
induced magnetic field and electrokinetic in flow formation of an
electrically conducting fluid in a conducting or non-conducting
infinite parallel plates. The governing equations are developed
and solve exactly, graphical and tabular represented are also pre-
sented to understand the role of basic governing parameters.

The novelty of the proposed work is to analyse the impact of
induced magnetic field on flow formation and heat transfer in com-
bined pressure and electrokinetically driven flow of conducting
fluid in a horizontal channel. Furthermore, the role of conducting/
non-conducting channel walls on rate of heat transfer is exten-
sively discussed. A similar problem is discussed by Mukhopadhyay
et al. (2009) in the absence of induced magnetic field.

2. Mathematical formulation

Consider a laminar, fully developed forced convection flow of an
electrically conducting, viscous, incompressible fluid in a conduct-
ing or non-conducting parallel plates channel with electrokinetic
effects in the presence of transversely applied magnetic field. The
X— axis is taken parallel along the plates while the y—axis is normal
to it as depicted in Fig. 1. The following assumptions are made in
order to obtain exact solution in this present article:

i. The flow is assumed to be driven by combined constant
pressure gradient and external voltage gradient.

ii. A uniform magnetic field strength Hy is applied perpendicu-
larly to the direction of flow
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dp
dx
S0, 90
Hy
Fig. 1. Schematic of the problem.
iii. The plates are taken to be either conducting or non- dzlp )
conducting; Case I, both walls are non-conducting, Case II, avz Ky =0 @)
the wall y = 0 is conducting while y = b is non-conducting, .
Case III, the wall y =0 is non conducting while y =b is Subject to
Y(0)=1y(1)=¢ 3)

conducting.

iv. The walls are negatively charged and the liquid contains an
ideal solution of fully dissociated symmetric salt, the EDLs
formed on the walls do not overlap, and the temperature
variation over the channel cross section is negligible com-
pared with the absolute temperature.

v. The charge distribution in the EDL follows Boltzmann
distribution, hence the ion convection effects are
negligible.

vi. The wall potentials are considered low enough for Debye-
Hiickel linearization to be valid.

vii. The external voltage is significantly higher than the flow
induced voltage.

viii. Except otherwise stated, all thermophysical parameters are
assumed constant.

2.1. Electric potential distribution

Following above assumptions, the electrical potential
distribution is obtained from Poison-Boltzmann equation
(Mukhopadhyay et al., 2009) as:

2, 2F2Co . (ZFY
Ve = p Smh(RT) (1)

The potential ¢ is due to combination of externally imposed
field and EDL potential v'.

For fully developed flow, the external potential gradient is in
the axial direction only, since the wall potentials are assumed
low enough for Debye-Hiickel linearization to be valid, Eq. (1) in
dimensionless form becomes:

The details of this derivation can be found in (Mukhopadhyay
et al., 2009; Matin and Khan, 2016)

3. Velocity and induced magnetic field
The momentum and induced magnetic field equations are

obtained from the Navier-Stokes equations and induction equation
respectively as:

pf<{i¥+ (V'V)V) =P UV + pbt i (V x H) < H

(4)

_
oH T R
57Vx(va>+GEVH (5)

Considering the steady fully developed flow (V:u(y)?—i-

OT’ + O?) and (ﬁ = Hx(y)T + Ho7> + O?) in the presence of
induced magnetic field, pressure gradient and electrokinetic effect,
the governing momentum equation becomes:

d*u dH, dp d*y
HW"'ﬂeHOW—a‘Fd—yngx—o (6)

While the induced magnetic field equation is obtained from
magnetic induction equation as (Gosh et al., 2010):

1 d*H, du

o dy gy =0 7
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Using suitable dimensionless parameters, Eqs. (6-7) become:

d*U e dH dp

Mgy g TG =0 (8)

d’H du

ar Tdy ” )
subject to the following dimensionless boundary conditions:

uly)=0, A dI;g(Y) +BHY)=0, at Y=0 (10)

Uy)=0, A, dzg,y)—s-BzH(Y) =0, at Y=1 (11)

where the constant s A;,A,,B;and B, assume value zero or one to
indicate the electrical conductivity or electrical non-conductivity
of the walls (Jha and Aina, 2016; Jha and Sani, 2013; Gosh et al.,
2010). For Case I (B; =B, =1 and A; = A, = 0) signifies that the
both walls are electrically non-conducting, Case Il (A; =B, =1
and B; = A, = 0) indicates that the lower wall situated at Y =0 is
electrically conducting while the upper wall situated at Y =1 is
electrically non-conducting, Case Ill (A; =B, =0 and B; = A, =1)
shows that the lower wall situated at Y =0 is electrically non-
conducting while the upper wall situated at Y =1 is electrically
conducting.

Since the flow is fully developed, it is usual to assume constant
pressure gradient which is obtained from the fluid conservation:

U= /1 UY)dy =1 (12)

3.1. Energy equation

Due to the constant flux at the walls, the energy equation is
obtained in dimensional form as (Mukhopadhyay et al., 2009)

aT T S
el M. 2 13
ox x ay?  pCp (13)

Following (Mukhopadhyay et al., 2009), the energy equation in
dimensionless form with the associated boundary conditions are
given as:

d’0 U (1+q,
ﬁ‘ﬁ( 5 +SE>,SE (14)
do(y) do(y)

T =-1at Y=0, and -y ¢

The following dimensionless parameters are used in this cur-
rent article, and given as follow:

aty=1 (15)

2 _OIHD [y o x oy u, (T=Tey)
M l,[ k) 7b7X7b7U7u0797 qlb/k )
p . ZFy b . eRT 71'?
= —27 g l// b = _7 A’D = 2 2
pug RT D 2F*Z°C,
2F222C0b2 H,
G2 eRT 7H ou, bH()U() (16)

It should be mentioned that in the absence of the magnetic field
(M =0), all of the flow and heat transfer mathematical model
reported above are consistent with those reported earlier by
Mukhopadhyay et al. (2009).

3.2. Exact solution for the models

The electric potential, velocity profile, induced magnetic field,
pressure gradient and temperature distributions of Egs. (2, 8, 9,
12, 14) are solved with their corresponding boundary conditions
respectively to obtain the following exact solutions:

[¢sinh (kY) + sinh {k(1 — Y)}]

w(Y) = S (17)
U(Y) = C5 cosh (MY) + C4 sinh (MY) — # s—)lz
N G[¢sinh (kY) + sinh {k(1 - Y)}] (18)
(M2 - Kz) sinh (k)
Y dP  {Cscosh(MY) + Cysinh (MY)}
HY) =5~ v
_ Gy[¢cosh (kY) — cosh {k(1 - Y)}] L CsY 4 Co (19)
K<M2 - K2> sinh (k)
dP  DsM + D, sinh (M) + D4(cosh (M) — 1) 20
dX ~ D;(M — sinh (M)) + D3(1 — cosh (M)) (20)
oy A [{C3 cosh (MY) + C4sinh (MY)}  Y? dP
=g W "o dX
. Golésinh (k) + sinh {se(1 - )}}} SgY? SV v
K2 (M2 1<2> sinh (k) 2 T
(21)

1+
A=< zqr+55>

The dimensionless skin-friction on both walls are obtained from
Eq. (18) and given by:

To :g—u :C4M+62K[é_—co5h(;€)] (22)
Yly-o (M2 - ;c2> sinh (k)

=2 M{Ccosh (M) + Cysinh (v} — C2EECOSh(K) — 1)
d¥ly- (M2 - K2> sinh (k)

(23)

Two important parameters for flow formation with induced
magnetics field are induced current density (J,) and induced flux
density (J) which are respectively obtained as:

dH

Jy==Gy=U - s (24)

1
]:/ JdY=1-0Cs (25)
"o
Another significant quantity in fluid and thermodynamics is the
heat transfer coefficient. The heat transfer between the heated

plats and the electrically conducting fluid is represented by Nusselt
number and obtained as:

Nug = -2¥=0 Ny — _ _dvly=1 2
-0 T -0, 20
where 0,, is the bulk temperature defined as:
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JUWeMdY 4
Om="r———=Y E (27)
Jluwmay 5
0

where C;s, D;sandE;s are constants defined in appendix

4. Results and discussion

This article investigate the combined role of transversely
applied magnetic field and electrokinetic effect on pressure driven
flow in a parallel plates channel with induced magnetic field.

4.1. Special cases

From the solutions obtained from Egs. (18) - (23), a discontinu-
ity point is observed when the Hartmann number (M) is equal to
the Debye-Hiickel parameter (x). These quantities are possible to
have the same magnitude in real life. Hence in such scenario, the
exact solutions obtained in Egs. (18) - (23) become invalid. To
remove this discontinuity, we substitute M = k in the dimension-
less Egs. (8) - (15) and resolve. Although a degeneracy occur and is
removed by using suitable complementary solution for the non-
homogeneous part. On solving, the following expressions are
obtained for velocity, pressure gradient and induced magnetic
field:

. 1 dp
Us(Y) = Co cosh (kY) + Cyo sinh (kY) — 2 dX
- % [Cy sinh (kY) + C, cosh (kY)] (28)

dP  (2K? —2K?Dy3)ksinh (k) — Gy [Cacosh(ic) + Cysinh(i)] (cosh(x) — 1)ksinh(x)

dXs 2{sinh(s)(sinh (k) k) (1~ cosh (1c))*
(29)
Hy(Y) = % g—)lz - % [Co sinh (KY) + Cyo cosh (kY))
+ % [C1{#? cosh (kY) — sinh (kY)}
+C {1 sinh (xY) — cosh (kY)}] + C11Y + Cy2 (30)

From the velocity and induced magnetic field, all other param-
eters such as temperature, skin-friction, induced flux density and
Nusselt number can be obtained when the value of Hartmann
number is equal to the Debye-Hiickel parameter.

For purely forced convection flow, i.e. G, = 0, from Eqs. (18-23)
the velocity, pressure gradient and induced magnetic field reduce
to:

1 dP .
Up(Y) = W(TXP{COSh (MY) + [cosech(M) — coth (M)] sinh (MY) — 1}
(31)
Y dpP C5 cosh (MY) + C4 sinh (MY
oY) = g — L OSEELSMAOL ey 4 i
(32)
dpP 1 (33)

dX, ~ Dy(sinh (M) — M) — D5(1 — cosh (M))

0,(Y) = A 1 dP |{cosh (MY) + [cosech(M) — coth (M)]sinh (MY)} Y:
P UM X M? 2

SeY?
7ET+C17Y+C18 (34)

In similar manner, for purely electrokinetic flow, the pressure
gradient becomes zero (&£ = 0) and the fluid is driven by purely
asymmetric external voltage gradient and hence the velocity and
induced magnetic field becomes:

Ue(Y) = G {cosh (MY) + [¢cosech(M) — coth (M)] sinh (MY)
(v )
[¢sinh (kYY) + sinh {x(1 - Y)}]
B sinh (k) } (35)
G,

H.(Y)= {cosh (MY) + [¢cosech(M) — coth (M)] sinh (MY)

0 -w)
[£cosh (kY) — cosh{Kk(1-Y)}]
+ -
K sinh (k)

}+C19Y+C20 (36)

To have a clearer understanding on flow formation in the chan-
nel, graphs and tabular representations are carried out on fluid
velocity, induced magnetic field, temperature distribution, skin-
friction, induced current density and Nusselt number. Throughout
the current research, the Debye-Hiickel parameter is taken over
the range of 0 < k <30 to capture various physical situations
ranging from small EDL to large EDL, 0 <M < 10 for Hartmann
number, the asymmetric external voltage gradient called zeta
potential is assumed over 0 < ¢ < 1. Three cases of induced mag-
netic field are considered; case I, when both walls are non-
conducting and has caption (a) in figures, case II, the wall Y =0
is electrically conducting and has caption (b) in figures while for
case Il the wall Y =1 is electrically conducting with caption (c)
in figures. It has been stated in literature that mathematical solu-
tion cannot be obtained for the case when both walls are simulta-
neously conducting; this is because of non-existence of solution for
this case.

Fig. 2 presents the combined role of Debye-Hiickel parameter
(x) and dimensionless zeta potential (¢) on dimensionless electro-
static potential in the channel. It is found that the EDL potential is
higher at the walls due to the supply of external voltage at the
walls but decreases with increase in x. This is due to the fact that
increasing k decreases the Debye-length (EDL size) which in turn
decrease EDL potential. A careful look at this figure shows that
the electrostatic potential is zero for large value of k around the
centre of the channel; where EDL is minimum.

Fig. 3 depicts the effect of k and Hartmann number (M) on
dimensionless fluid velocity in the channel. It is clear from this fig-
ure that fluid motion increases with increase in x at the region

—+—x=50
0.9 —«x=10.0

—* k=200

0.8 1

0.4+

£=1.0,05,00
0.3+ i
0.2+ 1

0.1r 4

0 L - & ¥ el L L
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Y

Fig. 2. Electrostatic potential for different values of xandé.
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——x=5.0
1.4} k=10.0

k=200

M =8.0, 2.0
0.6 R

0.4} 1

0.2 B

0 | | | | | | | | |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Y

Fig. 3. Velocity profile for different values of kandM at ¢ = 0.5.

close to the plates, while the reverse trend is noticed at the center
of the channel. This can be explained by externally applied voltage
gradient at the walls which increases the kinetic energy at the EDL
and hence increase fluid velocity at the walls. From the same fig-
ure, similar trend is also followed for variation of Hartmann num-
ber on fluid velocity in the channel. It is interesting to note that
two points of inflexion occur in channel which can be attributed
to the constantly applied pressure gradient in the channel.

On the other hand, Fig. 4 shows the impact of zeta potential on
dimensionless fluid velocity in the channel. It is obvious that fluid
velocity is highest at the center of the channel for purely asymmet-
ric wall voltage gradient (¢ = 0). Contrary to previous figure, a
point of connection is observed which can be attributed to the vari-
ation of zeta potential whose location in the channel is strictly
dependent on k. It is good to state that at this point, fluid velocity
is independent on ¢.

Figs. 5a, 5b and 5c portray dimensionless induced magnetic
field when both walls are non-conducting, the wall Y = 0 only is
conducting and the wall Y = 1 only is conducting respectively for
different values of x at fixed value of M and ¢. Dimensionless
induced magnetic field is observe to monotonically decrease with
increase in electrokinetic parameter (x) in the channel for all cases
for 0 <Y < 0.5 while the reverse situation occurs for Y > 0.5. This
can be explained due to the fact that x is inversely proportion to
EDL length and therefore decreases the induced magnetic field.
For all cases, a point of intersection is noticed at the center of the

0.8+ B

0.6F £=1.0,05,0.0 b

04} g

02 ——=50

—«=100

k=200

0 01 02 03 04 05 06 07 08 09 1
Y

Fig. 4. Velocity profile for different values of xkandé¢ at M = 6.0.

0.08
0.06} ,
0.041 X ]

0.021$

0.04} a 2 7

S 7 ‘
-0.06 + i
-0.08 & L L L L L L L L =

0.9r B
0.8+ B

0.7 4

« =40, 20,10,5 4

0.4+ B

0.2+ B

01} g

0 Il Il Il Il Il Il Il Il Il
0 0.1 0.2 0.3 0.4 05 06 0.7 08 0.9 1

Y

Fig. 5b. Induced magnetic field for different values of xatM = 6.0, ¢ = 1.0.

x =40, 20, 10, 5

-1k I I I I I I I I I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Y

Fig. 5¢. Induced magnetic field for different values of xatM = 6.0,¢ = 1.0.

channel and at this point, induced magnetic field is independent
of electrokinetic parameter (x). A critical look at Figs. 5b and 5c
suggests that they are converses of each other. Therefore the mag-
nitude of induced magnetic field is the same irrespective of the
electrically conducting plates.
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0.08 ——£=00

———¢=05
0.06- i=10
0.04 ]

Fig. 6a. Induced magnetic field for different values of.Mand¢ = 1.0atx = 5.0.
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——£=00

——— =05

—e— =10

0.9

0.8+

04} g

0.2r M = 0.5, 6.0 1

0.1F 4

0 | | | | | | | |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Y

Fig. 6b. Induced magnetic field for different values of Mand¢ = 1.0atk = 5.0.

Figs. 6a and 6b present the combined role of Hartmann number
(M) and zeta potential (¢) of dimensionless induced magnetic field
in the channel for the three cases. For the case when both walls are
electrically non-conducting (case I), the generated magnetic field
increases with increase in zeta potential and Hartmann number
but decreases along the plates for Y > 0.2.

From Fig. 6b on the other hand, induced magnetic field
decreases along the plates monotonically from Y =0to Y =1 but
it is evidence to note that the role of magnetic field and zeta poten-
tial is to increase dimensionless induced magnetic field. This is
attributed to the fact that increase in Hartmann number (M)
increases the magnetic field strength which in turn enhances
induced magnetic field. For brevity, the behaviour of case Il and
Il are similar and hence Fig. 6¢ is neglected.

The effects of Debye-Hiickel parameter (x) and Hartmann num-
ber (M) on dimensionless induced current density is illustrated in
Figs. 7a and 7b for case I and Il respectively. This figures show that
the highest induced current density is obtained at the center of the
channel when « is very small and the case when one of the wall is
conducting. It is obvious from both figures that induced current
density is enhanced at the walls with increase in x and M.

Fig. 8 gives a contour variation of temperature distributions in
the channel as a function of k at fixed value of M and ¢. It is
observed that dimensionless temperature distribution decreases
with increase in k. This phenomena is expected as continuous
increase of x continually decreases EDL length and hence reduces

581

0.5 —+—k=50
— k=100
" k=200
0 L |
=
M =1.0, 6.0, 12.0
-0.5¢ B
_1' + L L L L L L L L L
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Y
Fig. 7a. Induced current density for different values of.xandMat¢ = 1.0.

15
—+—x=5.0
k=10.0
—* =200
1, -
_;O
0.5 M= 1.0, 6.0, 12.0 7
0. L L L L L L L L L
0 01 02 03 04 05 06 07 08 09 1

Fig. 7b. Induced current density for different values of.kandMat¢ = 1.0.

L

N
251
20+ i

[N

Fig. 8. Temperature distribution for different values of x at

M=10,6=10,q, = 1.0,S; = 0.5.

(0—-6(1))

the temperature distribution in the channel. A clearer view of vari-
ation of temperature distribution with Mandx is presented in
Fig. 9. This figure shows that the maximum fluid temperature are
achieved at the walls where the external voltage gradient is
applied. In addition, fluid temperature decreases with increase in
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Fig. 9. Temperature distribution for different values of x and Mat¢é =1.0,q, =
1.0,S; = 0.5.
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Fig. 10. Temperature distribution for different values g, and éatM =2.0,k =
5.0,S; = 0.5.

M and the lowest temperature distribution is found at the center of
the channel.

Fig. 10 displays temperature distributions as a function of zeta
potential and wall heat flux at fixed value of M and k. It is under-
standable from this figure that the role of zeta potential is to
increase temperature distribution at the region closer to the plate
Y = 0 while the converse result is obtained for other region in the
channel. Also, fluid emperature decreases with increase in heat flux
variation at the region Y = 0 whereas heat flux parameter has little
significant at other region for q, = —0.5.

One of the important parameter in the study of fluid formation
in an enclosed surface is the skin friction. It is defined as the drag
force to which fluid hits the walls of the parallel plates. Figs. 11 and
12 reveal variation of skin friction with Debye-Hiickel parameter
(), zeta potential (¢) and Hartmann number (M) at the lower
and upper plates respectively. In both figures, skin-friction is found
to increase with increase in Mand x. This is due to the fact that
increasing Hartmann number increases magnetic field strength
which in turn increase collision between the plate surfaces and
the fluid.

Fig. 11 further shows that the role of zeta potential at this sur-
face is to decrease skin-friction while the reverse trend is observed
at the wall Y = 1.

26 -

0 1 2 3 4 5 6 7 8 9

Fig. 11. Skin-friction for different values M, k and ¢éatY = 0.

24
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1B ——x=50 -
— k=100
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Fig. 12. Skin-friction for different values M, k and ¢atY = 1.

Nusselt number

Fig. 13. Nusselt number for different values of k and ¢ at M = 5.0,q, = 1.0, S = 2.0.

Over the years, there have been intense interest in understand-
ing the rate of heat transfer between fluid and surfaces of solid
object. This is due to its industrial and domestic applications.
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Fig. 14. Nusselt number for different values of g.andx at M = 5.0, ¢ = 1.0, Sg = 2.0.
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Fig. 15. Nusselt number for different values of g.andx at M = 5.0,¢ = 1.0,S¢ = 2.0.

Figs. 13, 14 and 15 represent the rate of heat transfer represented
by Nusselt number as a function of governing parameters. Fig. 13
depicts the significance of Debye-Hiickel parameter (k) for sym-
metric and asymmetric wall zeta potential (¢) at both surfaces of
the channel in the presence of induced magnetic field. For small
values of k, the Nusselt numbers at both walls are very sensitive
to both ¢ and k. But as k¥ — oo, The Nusselt numbers at the walls
become independent of ¢ and k regardless of the surface consid-
ered. In addition, the Nusselt number is seen to first increase with
x and then reaches its peak and the start decreasing for small inter-
val of k but attained a stable value for high values of k regardless of

Table 1

the asymetric in heat flux. This behaviour is observed to happen for
any value of zeta potential. As explained in (Mukhopadhyay et al.,
2009; Seth and Singh, 2016), this scenario is due to variation of the
difference between wall and bulk fluid temperatures.

Similar trend is obtained for variation of Nusselt number with
heat flux parameters at the wall Y = 0 in Fig. 14. It has been estab-
lished from literature (Mukhopadhyay et al., 2009; Maynes and
Webb, 2004) that Nusselt number for electrokinetic flow has a
non-monotone pattern with negative value due to the fact that
for some configurations, where the forward and reverse flows are
equivalent, leading to insignificant bulk flow, the smallness of
the mean velocity leads to a very high mean temperature, as it is
obvious from the definition of bulk mean temperature.

Fig. 15 on the other hand shows a monotone behaviour for
variation of Nusselt number with heat flux parameter (g,) in the
presence of induced magnetic field at the wall Y = 1. It is found
that Nusselt number decreases with increase « for the case of sym-
metric wall heat flux and increases otherwise until a uniform heat
transfer coefficient is attained for large value of k. This behaviour
can be attributed to the fact that for large value of «, a small EDL
is setup and the temperature difference between the fluid and
the heated wall becomes uniform which in turn results to a zero
Nusselt number regardless the value of g,.

Table 1 presents numerical computations for induced current
flux (J) and Nusselt number at the surfaces of the plates. It is obvi-
ous that induced current flux is independent on Hartmann number
or electrokinetic effect when one of the wall is electrically conduct-
ing. In addition, the negative value of Nusselt number can be
attributed to the fact that the fluid considered is a heat generating
one, this implies the fluid generates more heat than the heat sup-
plied at the walls and has negative heat transfer coefficient. Similar
behaviour is found in (Mukhopadhyay et al., 2009). It is good to
state that numerical comparison of (Mukhopadhyay et al., 2009)
cannot be made with this present work. This is because the pres-
sure gradient was prescribed in their work; which is not a valid
assumption for fully developed flow formation. In the current arti-
cle, the constant pressure gradient is calculated using the conser-
vation of mass in order to present a more scientific and physical
situation.

5. Conclusion

An exact solution is presented for pressure driven flow forma-
tion in a parallel channel plates with electrokinetic effects in the
presence of induced magnetic field in this article. Using the Pois-
son-Boltzmann equation, Debye-Hiickel linearization and Navier-
Stokes equations, the electric potential, momentum, induced mag-
netic field and energy equations are derived and solved exactly.
Graphical and tabular illustration are presented to see the effects
of Debye-Hiickel parameter, Hartmann number and zeta potential

Numerical computations for induced current flux (/) and Nusselt number at ¢ = 0.5, Sg = 2.0, ¢, = 1.0

J (Induced current flux)

M K Nug Nuy Ay =A;, =0,B; =B, = 1(Case I) Ay =B, =1,A; = B = 0(Case 1) Ay =B, =0,A; = By = 1(Case III)
0.5 2.0 0.0015 0.0011 —7.1054e—15 1.0000 1.0000
5.0 —0.0038 —0.0078 0.0000 1.0000 1.0000
10.0 —3.2196e—-07 —3.2197e-07 —4.6185e—14 1.0000 1.0000
4.0 2.0 —-0.0471 —0.0440 3.3307e-16 1.0000 1.0000
5.0 2.8665e—04 2.8678e—-04 —4.4409e—-16 1.0000 1.0000
10.0 7.5611e-06 7.5611e-06 —5.6399e—-14 1.0000 1.0000
8.0 2.0 —-0.0395 —-0.0376 6.6613e—16 1.0000 1.0000
5.0 —1.7924e-04 —1.7920e—-04 —1.9096e—-14 1.0000 1.0000
10.0 1.7738e-07 1.7738e-07 —8.4377e-14 1.0000 1.0000
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on fluid flow formation. The following are the major conclusions
drawn:

1. The role of magnetic field and electrokinetics is to reduce elec-
tric potential, velocity, induced magnetic field and fluid

temperature.
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