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Abstract In this paper, we prove a new weighted generalized Montgomery identity and then use it
to obtain a weighted Ostrowski type inequality for parameter function on an arbitrary time scale. In
addition, the real, discrete and quantum cases are considered.
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1. Introduction

The following result is known in the literature as
Ostrowski’s inequality (see for example page 468 of
Dragomir (1999)).

Theorem 1. Let f: [a,b] — R be a differentiable mapping on
(a,b) with the property that |f'(t)| < M for all t € (a,b). Then

_ athy?
< %+u:|(b_a)M7

0 -5 [ o

(b—a)’

for all x € [a,b]. The constant } is the best possible in the sense
that it cannot be replaced by a smaller constant.

Hilger (1988) initiated the theory of time scales (see Sec-
tion 2 for definition) which unifies the difference and differen-
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tial calculus in a consistent way. In the bid to continue in the
development of this theory, Bohner and Matthews (2008)
extended Theorem | to time scales by proving

Theorem 2. Let a,b,s,t € T,a<b and f:|a,b] > R be a
differentiable. Then

-5 [ rrns

where M = sup,_,_,|f*(1)| and hy(-,-) is defined in item (a) of
Remark 11.

Since the advent of the above result, many Ostrowski and
weighted Ostrowski type results on time scales have been pub-
lished. In order to prove Theorem 2, one needs the so-called
Montgomery identity. In the literature, there exist a lot of gen-
eralizations of this identity, see for example Karpuz and Ozkan
(2008), Liu and Tuna (2012), Liu et al. (2014) and Liu et al.
(2014). Lately, Liu and Ngo (2009) investigated Theorem 2
by introducing a parameter A. Inspired by the later, Xu and
Fang (2016) recently proved the following new generalization
of the Montgomery identity.

M
b—a

< (hZ(tva)+/72(tab))7 (1)
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Theorem 3. Suppose that a,b,s,t € T, a<b, f:]a,b] - R is
differentiable, and \ is a function of [0, 1] into [0,1]. Then
Y()fla) +

L+ y(l —/1) A% +0- lﬁ(l UG

J0) +

/f As+—/ K(s,0)f
b—a
where

_ s la+y()i), sela),
K(s,t)—{s_( + (1 +y(1=-2)59, sels,b).

Using the above result, Xu and Fang (2016) also proved the fol-
lowing Ostrowski type inequality.

Theorem 4. Suppose that a,b,s,t € T, a <b, f: [a,b] — R are
differentiable, and  is a function of [0, 1] into [0,1]. Then the
Sfollowing inequality holds

(2)

‘1+lﬁ(1 el A%

_a/f {hz(aa+l#()b;a)

+hz(ha+d/(l)b%> +h2<z,a+(1+n//(1 4))%")

+h2(b,a+(1 - fz))b;“)},

Sor all & € [0,1] such that a + y(2) 5% and a + (14 (1 — 1)) 5¢
are in T, and t € [a+y(2) 5%, a+ (1 +y(1 — 1)) 54|, where
M= Supa<t<blf (1)] < 0.

In this paper, we prove a new weighted generalized Mont-
gomery identity and then use it to obtain a weighted Ostrowski
type inequality for parameter function on an arbitrary time
scale. Theorems 3 and 4 are special cases of our results.

The paper is organized as follows. In Section 2, we recall
necessary results and definitions in time scale theory. Our
results are formulated and proved in Section 3.

2. Time scale essentials

To make this paper self contained, we collect the following
results that will be of importance in the sequel. For more on
the theory of time scales, we refer the reader to the books of
Bohner and Peterson (2001) and Bohner and Peterson
(2003). We start with the following definition.

Definition 5. A time scale T is an arbitrary nonempty closed
subset of R. The forward jump operator ¢: T — T and
backward jump operator p: T — T are defined by o(¢) :=
inf{s € T:s> 1t} for t €T and p(t) :=sup{s € T :s5< ¢} for
t € T, respectively. Clearly, we see that o(¢) = ¢ and p(r) <t
for all r € T. If o(z) > ¢, then we say that ¢ is right-scattered,
while if p(¢) < ¢, then we say that ¢ is left-scattered. If (1) = ¢,
then ¢ is called right dense, and if p(¢) = ¢ then ¢ is called left
dense. Points that are both right dense and left dense are called
dense. The set T* is defined as follows: if T has a left scattered
T.Fora,b €T

maximum m, then T = T — m; otherwise, TX =

with @< b, we define the interval [a,b] in T by
[a,b] ={t€T:a<t<b}. Open intervals and half-open
intervals are defined in the same manner.

Definition 6. The function /: T — R, is called differentiable at
t € TF, with delta derivative fA(t) € R, if for any given € > 0
there exist a neighborhood U of ¢ such that

fla(1)) = fis) = (1)(o(t) = 5)| < ela(r) = 5|, VseU.

If T =R, then /(1) =42 and if T = Z, then f*(r) = f{t + 1)
—A).

Definition 7. The function f:T — R is said to be

rd-continuous if it is continuous at all dense points ¢ € T and
its left-sided limits exist at all left dense points 7 € T.

Definition 8. Let f be a rd-continuous function. Then
g: T — Ris called the antiderivative of fon T if it is differen-
tiable on T and satisfies g2 (¢) = f(¢) for any t € T*.
we have

b
[ 1185 = e(b) - @),

Theorem 9. If a,b,c € T witha<c < b, x € R and f, g are rd-
continuous, then

In this case,

Q) f) [F(0) + g0 = [ F(HAL+ [ g(2)

Gi) [ af ()AL = o fj F(t)At

(i) [7 £ (A=~ [{ f(0)At

(v) [P f()Ac = [Cf(OA+ [P f(0)AL

’ '(t)At‘ < [P 1f(0)|At for all £ € [a, b).
(t)

i) Jy £ (08 (A = (f2)(b) = (f2)(a) = [, /(g (o (1)) At

Definition 10. Let /i, : T> — T, k € N be functions that are

recursively defined as
h()(l, S) =1
and

t
hi (2, 8) :/ hi(t,s)At,  forall s,teT.

In view of the above definition, we make the following
remarks (see Example 1.102 in the book (Bohner and
Peterson, 2001)).
Remark 11. (a) Using the fact that for all
hi(t,s) =t — s, we get that

s,teT,

hy(t,s) = [l(‘c —s5)At.

(b) When T = R, then for all s,z € T,

(1—)"
Ko

(c) When T = Z, then for all s,7 € T,

/’lk(l,S) =
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t—s f—s+1—i
= (7)==

py
(d) When T = ¢™ with ¢ > 1, then for all 5,7 € T,
(1= s)y

/’lk(l, S) = [k} — 4 forke No,

where [k], : "A

q—

H U, for ke N

for g e R\ {1} and ke Ny, [k]!:=

(t—s)y =[]t = ¢’s) for k € No.

3. Main results

For the proof of our main result, we will need the following
lemma.

Lemma 12. (A weighted generalized Montgomery Identity)).
Let v:[a,b] — [0,00) be rd—continuous and positive and
w: [a,b] — R be differentiable such that w(t) = v(t) on [a, b].
Suppose also that a,b,s,t € T, a < b, f: [a,b] — R is differen-
tiable, and \ is a function of [0,1] into [0, 1]. Then we have the
following equation

[lw(l V) £ +V//</1)/(a)+(l;//(Hl))f(’?)] 12 v()A

= [7K(s, 0f*(s)As + [7 v(s)/(a(5))As,

3)

where
w(s) = (wla) + ()20, s € fa),
K(s, 1) =
w(s) — <w(a) (1 +y(l — )))M) se 1]
4)
Proof. Using item (vi) of Theorem 9, we obtain
I [w( ) — (w(a) (7)Mo >)] A (s)As + [ v(s)f(a(s))As
= [w() = (w(@) + v )““’ “)] A1
— @) = (w@) +w(2) "2 @)
©)
and
I [wts) = (wl@) + (1+ (1 = 2) 22510 | () As
+ ["v(s)f(a(s))As ©

= [w) = (w@) + (1 + (1 - ;))M)] 1(b)
= [0 = (wl@) + (1 + w1 = )22 7).
Adding Egs. (5) and (6), and using item (iv) of Theorem 9,

gives

J7K(s, 0f X(s)As + [7 v(s)f(a(s)As = LD 114y (7 (1) At

VOV (-A)B) (b
+ 2 i)

a

™)

Hence, Eq. (3) follows. [
Remark 13. If w(z) = ¢, then Lemma 12 reduces to Theorem 3.

Corollary 14. For the case when T = R in Lemma 12, we get

{1 Y1 -4 —¥(4)
2 2
= /b K(s, )f (s)ds + /h v(s)/(s)ds,
(®)

where v(t) = w'(t) on [a,b] and
w(s) = (@) + ()" 051), s fa,n),
w(s) = (w(@) + (149 (1= 2)"050) e fr,b).

©)

K(s,t) =

Corollary 15. If we consider (1) = 2 in Corollary 14, then the
equation becomes

[(1 — () + ﬂ,w} /ub v(t)dt

b b
=/ K(s,t)f(s)ds+/ v($)f(s)ds,
= w(t) on [a,b] and

0 (0 285), <,
- ot - 2,

where v(t)

K(s, 1) = (10)

s € [t,b].

Corollary 16. For the case when T =7Z,a=0,b=
n, flk) = xi,s =j and t = i, Lemma 12 becomes

EUEERTONNOEEURTEOR |

n—1 n—1
=Y K(j, )Ax; + > V(i)
j=0 j=0
(11)

where v(j) = w(j+ 1) — w(j) on [0,n — 1] and

w(i) = (w(0) +p () 520), je o,9),
2)M00) e fin—1].

K(jv i) =
w(j) — (W(O) +(1+y(l—
(12)

Corollary 17. Let T = g™, with g > 1, a = q" and b = ¢" with
m < n. For this case, a(t) = qt and f*(1) = D,f(1) :=’%.

Using this information, Lemma 12 becomes

[1 +y(l 72)») - wu)fm YO + (1 ; Wl — A))f(b)]
< [0 Z %+ [ viortans
(13)
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where v(t) = —“'((";)_’l‘)';(’) on [¢", q"] and

w(g’) = (wlg") +w(2) L), g e g ),
w(g’) = (w(g™) + (1 + (1 = ) )
¢’ €t,q"].

K(qja t) =

(14)

Theorem 18. Let v : [a,b] — [0,00) be rd-continuous and posi-
tive and w : [a,b] — R be differentiable such that w(t) = v(t)
on [a,b]. Suppose also that a,b,s,t € T, a<b, f:[a,b] — R is
differentiable, and \y is a function of [0, 1] into [0,1]. Then we
have the following inequality

Hul//(lf@ﬂ//(z) .

2
b b
« / v(0) At — / V(s)f(o(s))As

where K(s,t) is defined by (4) and M =

a)+ (1 -y - i))f(b)}
2

< M/b K(s,0)[As,  (15)

Supa<r<bVA([)‘ < 0.
Proof. The proof easily follows by applying the absolute value

on both sides of Eq. (3) in Lemma 12 and then using item (v)
of Theorem 9. O

Remark 19. Setting w(7) = ¢ in Theorem 18 reduces to Theo-
rem 4 where the equation

/b |K(s, 1)|As = hy (CJJH‘ lﬁ(/l)b ; a)

fa+ W,)b ; ")

+hy

+ hy

Lat (1+ (1 - 2)) ;“)

wb—a
- 1) 3 )
such that a4+ y(4)%5% and a+ (1 +y
T, and 1€ [a+y()5%a+(1+y

N 7N N
)

+h|ba+ (1+y(1

holds for all /€ [0, 1
(1-2)%5¢ are in
(1 - 7))

We obtain the following corollary by taking w(t) = > + ¢,
¢ € R in Theorem 18. For this, v(¢) = o(t) + ¢, for 1 € [a, b].

Corollary 20. Let a,b,s,t € T,a<b, [: [a,b] — R is differen-
tiable, and \ is a function of [0,1] into [0, 1]. Then we have the
following inequality

HH!//(I —;)—W(/l)

1+ VOV

(I-y(1 —A”))f(b)}
2

b
< M/ IK(s, )| As,

(16)

« / (1) + 1)Ar — / (6(s) +5)/(o(s))As

where

§2 — (az—l—lﬁ(/l) bz;“z), s € [a, 1),
K(s, 1) = . (17)
S (@ +1+v1-)52), selnb)

and M = sup |f*(1)] < oo.

a<t<b
Corollary 21. For the case when T = R in Theorem 18, we get
+ (I -y = A))ib)
2

b
s <M/ |K(s,1)|ds, (18)

le(l—z)—lp(z) .

where v(t) = w'(1),

w(s) — <w(a) +y(A) M), s€la,t),
7))@ ”>7 setb].

K(s, 1) =
w(s) = (w(@) + (1+y(1 =
(19)

and M = sup,,,|f ()| < co.

Corollary 22. For the case when T =7, a=0,b = n, f(k) = xy,
s=jand t =1, Theorem 18 amounts to

1 1—2)— (4 Dxo+ (1 —w(l = ))x, =L .
[+¢( 2) w()xi+¢()o+( 2w< ) }ZVU)

- E xj+1

J=0

where v(j) = w(j + 1) — w(j),

MZ\K@ (20)

w(i) = (w(0) + 9 ()" 2), e o,i),
K(jii) = -
w(j) = (w(0) + (14w (1= 2)"0) e fin—1].
(21)

and M = supqy_,,|Ax;| < oo.

Corollary 23. Let T = g™, with g > 1, a = q" and b = ¢" with
m < n. Then we have

‘ [l +U=2) = y)

q q
></ v(t)d,,t—/ v()f(qt)d,t| <
o o

where v(t) = w((q(;):,‘)v,([) on [¢",¢"],

w(g’) = (wig") +w(2) "), gl e g i),

W(qf’)—(w( 7"+ (14 (1 — 7)) werte) >>,
q' €[t,q".

+ =y = i))f(b)}
2

n—1

MZ|K (22)

K(qjv [) =

(23)

gD —1lg")
(q—1)g/

and M = Supn_yicyp < oo.
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Corollary 24. For y()) = /2, the inequality in Theorem 18 boils
down to

. Pfla) + (22— 22) f(b)] /;, YA

‘ [(1 ~ A0 )

- / o)A < M / " K, )l (24)

where

w(s) = (wla) +220519) s e fa,1),
w(s) — (w(a) + (A =21+2) M), s € [t,b]
(25)

K(s, 1) =

and M = Supa<t<blfA(t)| < 0.
Remark 25.

1. Putting A = 0 in Eq. (24) gives

b b b
1) / W(1)Ar— / W)(o(s)As| < M / K (s, 1) s,

where
s € la,1),

[ w(s) = w(a),
Kis,1) = { s € [t,b].

w(s) — w(b),
2. For 2 =1/2 in Eq. (24) we obtain the following inequality

‘ [f% JJM} /ﬂb v(1)At

b b
= [ vetenas < m [ xG.0las

where
K(s.1) = { w(s) —W, s € la,t),
w(s) — —3”(“);5”(") , seb].
3. If we take 2 =1 in Eq. (24), we obtain

M/ v(z)At—/ v(s)f(a(s))As

a a

b
<M / K (s, 1)|As,

where

4. Conclusion

In this work, a new weighted Montgomery identity is estab-
lished. Using this identity, a new weighted Ostrowski type
inequality is also obtained. Our results reduce to results due
to Xu and Fang (2016) if w(¢) = ¢. In addition, the continuous,
discrete and quantum cases are considered as drop-outs of our
results.
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