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A B S T R A C T

The current paper presents the 𝜆𝜆𝜆𝜆-Bernstein operators through the use of newly developed variant of Stancu-
type shifted knots polynomials associated by Bézier basis functions. Initially, we design the proposed Stancu
generated 𝜆𝜆𝜆𝜆-Bernstein operators by means of Bézier basis functions then investigate the local and global
approximation results by using the Ditzian–Totik uniform modulus of smoothness of step weight function.
Finally we establish convergence theorem for Lipschitz generated maximal continuous functions and obtain
some direct theorems of Peetre’s 𝐾𝐾𝐾𝐾-functional. In addition, we establish a quantitative Voronovskaja-type
approximation theorem.

1. Introduction and preliminaries

One of the most well-known mathematicians in the world, S. N. Bernstein, provided the quickest and most elegant demonstration of one of
the most well-known Weierstrass approximation theorems. Bernstein also devised the series of positive linear operators implied by {𝐵𝐵𝐵𝐵𝑠𝑠𝑠𝑠}𝑠𝑠𝑠𝑠≥1. The
famous Bernstein polynomial, defined in Bernstein (2012), was found to be a function that uniformly approximates on [0, 1] for all 𝑓𝑓𝑓𝑓 ∈ 𝐶𝐶𝐶𝐶[0, 1] (the
class of all continuous functions). This finding was made in Bernstein’s study. Thus, for any 𝑦𝑦𝑦𝑦 ∈ [0, 1], the well-known Bernstein polynomial has
the following results.

𝐵𝐵𝐵𝐵𝑠𝑠𝑠𝑠(𝑔𝑔𝑔𝑔; 𝑦𝑦𝑦𝑦) =
𝑠𝑠𝑠𝑠
∑

𝑖𝑖𝑖𝑖=0
𝑔𝑔𝑔𝑔
( 𝑖𝑖𝑖𝑖
𝑠𝑠𝑠𝑠

)

𝑏𝑏𝑏𝑏𝑠𝑠𝑠𝑠,𝑖𝑖𝑖𝑖(𝑦𝑦𝑦𝑦),

where 𝑏𝑏𝑏𝑏𝑠𝑠𝑠𝑠,𝑖𝑖𝑖𝑖(𝑦𝑦𝑦𝑦) are the Bernstein polynomials with a maximum degree of 𝑠𝑠𝑠𝑠 and 𝑠𝑠𝑠𝑠 ∈ N (the positive integers), which defined by

𝑏𝑏𝑏𝑏𝑠𝑠𝑠𝑠,𝑖𝑖𝑖𝑖(𝑦𝑦𝑦𝑦) =

⎧

⎪

⎨

⎪

⎩

(𝑠𝑠𝑠𝑠
𝑖𝑖𝑖𝑖

)

𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖(1 − 𝑦𝑦𝑦𝑦)𝑠𝑠𝑠𝑠−𝑖𝑖𝑖𝑖 for 𝑠𝑠𝑠𝑠, 𝑦𝑦𝑦𝑦 ∈ [0, 1] and 𝑖𝑖𝑖𝑖 = 0, 1,…

0 for any 𝑖𝑖𝑖𝑖 𝑖𝑖 𝑠𝑠𝑠𝑠 or 𝑖𝑖𝑖𝑖 𝑖𝑖 0.
(1.1)

Testing the Bernstein-polynomials’ recursive relation is not too difficult. The recursive relationship for Bernstein-polynomials 𝑏𝑏𝑏𝑏𝑠𝑠𝑠𝑠,𝑖𝑖𝑖𝑖(𝑦𝑦𝑦𝑦) is quite
simple to test.

𝑏𝑏𝑏𝑏𝑠𝑠𝑠𝑠,𝑖𝑖𝑖𝑖(𝑦𝑦𝑦𝑦) = (1 − 𝑦𝑦𝑦𝑦)𝑏𝑏𝑏𝑏𝑠𝑠𝑠𝑠−1,𝑖𝑖𝑖𝑖(𝑦𝑦𝑦𝑦) + 𝑦𝑦𝑦𝑦𝑏𝑏𝑏𝑏𝑠𝑠𝑠𝑠−1,𝑖𝑖𝑖𝑖−1(𝑦𝑦𝑦𝑦).

In 2010, Cai and colleagues introduced 𝜆𝜆𝜆𝜆 ∈ [−1, 1] is the shape parameter for the new Bézier bases, which they called 𝜆𝜆𝜆𝜆-Bernstein operators.
This definition of the Bernstein-polynomials is defined as follows:

𝐵𝐵𝐵𝐵𝑠𝑠𝑠𝑠,𝜆𝜆𝜆𝜆(𝑔𝑔𝑔𝑔; 𝑦𝑦𝑦𝑦) =
𝑠𝑠𝑠𝑠
∑

𝑖𝑖𝑖𝑖=0
𝑔𝑔𝑔𝑔
( 𝑖𝑖𝑖𝑖
𝑠𝑠𝑠𝑠

)

𝑏̃𝑏𝑏𝑏𝑠𝑠𝑠𝑠,𝑖𝑖𝑖𝑖(𝜆𝜆𝜆𝜆; 𝑦𝑦𝑦𝑦), (1.2)
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The preconditioned iterative integration-exponential method is a novel iterative regularization method de-
signed to solve symmetric positive definite linear ill-conditioned problems. It is based on first-order dynamical 
systems, where the number of iterations serves as the regularization parameter. However, this method does not 
adaptively determine the optimal number of iterations. To address this limitation, this paper demonstrates that 
the preconditioned iterative integration-exponential method is also applicable to solving nonsymmetric positive 
definite linear systems and introduces an improved version of the preconditioned iterative integration-expo-
nential method. Inspired by iterative refinement, the new approach uses the residual to correct the numerical 
solution's errors, thereby eliminating the need to determine the optimal number of iterations. When the residual 
of the numerical solution from the initial preconditioned iterative integration-exponential method meets the ac-
curacy threshold, the improved method reverts to the original preconditioned iterative integration-exponential 
method. Numerical results show that the new method is more robust than the original preconditioned iterative 
integration-exponential method and eliminates the need for selecting regularization parameters compared to 
the Tikhonov regularization method, especially for highly ill-conditioned problems.

Corresponding author. 
Email address: jlcheng@cumtb.edu.cn (Jiulong Cheng)

Received: April, 2024 Accepted: June, 2024 Epub Ahead of Print: *** Published: ***

DOI: 10.1016/JKSUS_14_2024

1. Introduction

In recent years, ill-conditioned problems have attracted more and more attention and been widely used in engineering and mathematics fields, such 
as geodesy [1], geophysical exploration [2], signal and image processing [3, 4]. The solution methods of ill-conditioned equation have important 
research significance.

The ill-conditioned system can be expressed as the following form:

Ax b= (1)

where A� �
R
n n is an ill-conditioned matrix, x is solution b is observation. For an ill-conditioned system, a small disturbance in b or A can result in a 

significantly larger change in the solution x. This brings quite large difficulty when one solves the system (1) numerically. Thus, it is useless to use 
the conventional numerical methods to solve systems (1). To address this issue, iterative regularization methods such as Tikhonov regularization[5, 
6] (TR), the Landweber iteration [7], and direct regularization methods like truncated singular value decomposition [2, 8] (TSVD), modified truncat-
ed singular value decomposition [9], and modified truncated randomized singular value decomposition[10] have been developed and widely used. 
A common feature of these regularization methods is that their performance depends on various regularization parameters, such as the truncation 
order in TSVD, the Tikhonov regularization parameter, and the iteration number in iterative regularization methods. In recent years, iterative regu-
larization methods for ill-conditioned equations based on the numerical solution of dynamic systems have garnered attention [11–14]. 

The study on connections between iterative numerical methods and continuous dynamical systems often offers better understanding about iter-
ative numerical methods, and leads to better iterative numerical methods by using numerical methods for ordinary differential equations (ODEs) 
and devising ODEs from the viewpoint of continuous dynamical systems [15, 16]. For solving ill-conditioned linear systems, Ramm developed the 
dynamical systems method [11, 17]. Wu analyzed the relationship between Wilkinson iteration method and Euler method and proposed a new iter-
ative improved solution method to solve the problem of ill-conditioned linear equations [12, 18] . Enlightened by Wu’s work, Salkuyeh and Fahim 

Original Article

Integrating RNA-seq and machine learning to identify novel biotargets and high-affinity 
ligands for cardiovascular disease management
Hala Abubaker Bagabira,b, Shimaa Mohammad Yousofa,b, Lamis Kaddama,b, Mohamed A. Zayeda,b, Sali 
Abubaker Bagabirc, Shafiul Haqued,e,*, Faraz Ahmadf, Sabiha Khatoong,*

aPhysiology Department, Faculty of Medicine in Rabigh, King Abdulaziz University, Jeddah, Saudi Arabia
bKing Fahd Medical Research Centre, King Abdulaziz University, Jeddah, Saudi Arabia
cDepartment of Medical Laboratory Technology, College of Nursing and Health Sciences, Jazan University, Jazan, Saudi Arabia
dDepartment of Nursing, College of Nursing and Health Sciences, Jazan University, Jazan-45142, Saudi Arabia
eSchool of Medicine, Universidad Espiritu Santo, Samborondon, 091952, Ecuador
fDepartment of Biotechnology, School of Bio Sciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, 632014, India 
gDepartment of Physiology and Biochemistry, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA

A R T I C L E  I N F O

Keywords:
Biomarkers
Cardiovascular diseases
Hub genes
Machine learning
RNA-sequencing

A B S T R A C T

Cardiovascular diseases (CVDs) are the leading cause of mortality globally and, due to their heterogeneous 
nature, present significant clinical challenges. This study aims to identify novel biotargets for CVDs and propose 
potential inhibitors against them. The study leverages RNA-sequencing data in conjunction with machine 
learning (ML) techniques to uncover differentially expressed genes (DEGs) as potential biotargets for CVDs. 
Transcriptomic data was obtained from the Gene Expression Omnibus (GEO) database, and DESeq2 was used 
to identify DEGs. Machine learning (ML) models, random forest (RF), and support vector machines (SVM) were 
used to characterize DEGs and to rank top genes as biomarkers. Functional annotation of top hub genes was 
performed using clusterProfiler and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and Gene 
Ontology (GO) analyses. Protein-protein interaction (PPI) networks were constructed using STRING. Molecular 
docking analyses were conducted using Biovia Discovery Studio and AutoDock Vina, targeting top genes with 
ligands sourced from the Drug Gene Interaction Database as repurposable targets. Comprehensive analysis of 
DEGs led to the identification of multiple hub genes and predictive biomarkers for CVD treatment. Using ML 
algorithms for biomarker feature prediction, we identified the top DEGs, which included interleukin-6 (IL6), 
tumor necrosis factor (TNF), myosin heavy chain-6 (MYH6), apolipoprotein E (APOE), low-density lipoprotein 
receptor (LDLR), proprotein convertase subtilisin/kexin type-9 (PCSK9), angiotensin-converting enzyme 
(ACE), actin alpha-2 (ACTA2), activated protein kinase (AMP)-activated non-catalytic subunit γ-2 (PRKAG2), 
and cardiac type troponin T2 (TNNT2). Network and PPI analyses further highlighted the significance of the 
identified DEGs, which were then targeted for discernment of high-affinity binding ligands from clinically 
approved and relevant drugs using docking studies. Biomarker-guided approaches for the prediction, evaluation, 
diagnosis, and treatment of CVDs hold substantial promise for clinical application. The identification of 
clinically approved ligands targeting the top genes from DEGs in CVD patients might facilitate more effective 
personalized treatment regimens, improving patient outcomes and ultimately transforming CVD management. 

1. Introduction

Cardiovascular diseases (CVDs) represent a wide spectrum of 
conditions associated with morpho-functional deficits of heart tissues 
and vessels (Olvera Lopez et al., 2023). CVDs include rheumatic 
heart disease (RHD), coronary heart disease (CAD), stroke, and heart 
failure, and pose significant global public health concerns. Progressive 
increases in the aged populations, coupled with lifestyle changes linked 
with urbanization and industrialization, have resulted in dramatic 
rises in incidences of diabetes, hypertension, and obesity, which are 
significant CVD risk factors (Schnall et al.,2016). According to the World 
Health Organization (WHO), CVDs are the main cause of mortality 
worldwide, claiming over 17 million lives annually, with a projected 
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increase to over 23.6 million by 2030 (World Health Organization, 
2023), necessitating urgent needs for the discovery of novel ways of 
early identification and intervention. While there are various drugs 
recommended for hypertension, hyperlipidemia, and other CVD risk 
factors, their efficacy varies greatly across subjects. This is both due to 
etiological heterogeneity and significant gaps in our understanding of 
the underlying biological mechanisms (American Diabetes Association 
Professional Practice Committee, 2022). Identification of genes and 
proteins that are differently regulated in the various classes of CVDs 
may give deeper mechanistic insights into the malfunctioning pathways 
(Wang et al., 2017). Further, clarifying therapeutic vulnerabilities via 
biomarker-guided patient selection regimens will aid in the creation 
and repurpose of targeted medicines (Dara et al., 2022). Current risk 
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assessment is mostly based on broad, nonspecific markers (age, family 
history, blood pressure, blood lipids, etc.), which have poor predictive 
value, particularly in asymptomatic phases (Upadhyay et al., 2015). 
For efficient diagnoses and management, new biomarkers with high 
sensitivity and specificity and tailored therapeutic approaches are 
essential (Vadapalli et al., 2022).

Recent transcriptomic advancements have allowed a more 
comprehensive characterization of disease-associated gene alterations. 
One of these technologies, RNA-seq, is a reliable, high-throughput 
method for detecting differentially expressed genes (DEGs) (Di Salvatore 
et al., 2023). The functional analysis of disease-specific RNA signatures 
has the potential to identify the underlying biological pathways and 
mechanisms of disease pathology, including CVDs (Seo et al., 2006; 
Ahmed et al., 2021). DEG indicators with clinical significance may aid 
in improving risk prediction, diagnosis, and individualized treatment 
for patients (Byron et al., 2016). However, traditional screening of DEGs 
is restricted in its capacity to identify clinically meaningful signals. 
Machine learning (ML) techniques that use large-scale multi-omics data 
can overcome this issue by identifying reliable predictive biomarkers 
through automated feature selection and categorization (Ahmed et al., 
2020). ML algorithms can detect subtle patterns and relationships in data 
that are often overlooked by traditional statistical approaches (Bostanci 
et al., 2023). The combination of RNA-seq-based transcriptomics with 
these techniques allows for the analysis of disease regulation at various 
biological levels to identify potential therapeutic targets (Casamassimi 
et al., 2017). Subsequently, molecular docking and simulation may be 
utilized for structure-based drug design to screen binding candidates 
against the target proteins involved in disease pathogeneses (Torres et 
al., 2019, Agu et al., 2023). Further, molecular docking was used to 
scan FDA-approved drug libraries for molecules with strong binding 
affinity against protein products of top DEG targets, which might serve 
as prospective therapeutic lead compounds. In this study, we followed 
the above outlined integrated multi-omics approach in order to identify 
pertinent biotargets associated with CVD pathology, and then obtain 
high-affinity ligands from the clinically approved drugs.

2. Experimental procedures

2.1 Transcriptomic data acquisition

Public transcriptomic database, Gene Expression Omnibus (GEO) 
(Clough and Barrett 2016) was employed to obtain the list of DEGs. 
Five GEO datasets (GSE262161, GSE222118, GSE255895, GSE263644, 
and GSE242046) were used, amounting to 140 samples altogether, 
including controls (51) and CVD cases (89).

2.2 Data preprocessing and screening for differentially expressed genes/
transcripts

RNA-seq data from whole blood samples of CVD patients and healthy 
controls were explored. ComBat (R package) was utilized to remove 
batch effects, creating homogeneity in a common gene-based unified 
dataset (Ritchie et al., 2015). Low-expression genes with less than 10 
counts for less than two samples were eliminated before differential 
expression analysis between subjects and controls. The criterion of 
selection of upregulated and downregulated genes was log2 fold change 
> 1 and < -1, respectively. Such DEGs, which were either up-regulated 
or down-regulated in patient samples compared to controls, were 
analyzed in order to find potential biomarkers and target genes.

2.3 Identification of top transcriptional signatures using ML feature 
Selection

To identify the most relevant features (genes) that differentiate 
CVD patients from controls, both approaches, linear and non-linear 
relationships were used. Linear and non-linear relationships were 
assessed using support vector machine (SVM) and random forest 
(RF), respectively, which were fine-tuned by stratified k-folds cross-
validation to avoid overfitting of the model. Coefficients derived 
from the SVM were employed to rank the importance of individual 
features. The model identified 100 features based on their relevance. 

Cross-validation was fundamental in estimating the performance of 
models to classify unseen data, thus reducing overfitting. Further, 
the methodology evaluated the performance of the classifier against 
benchmark classification metrics such as accuracy, precision, recall, 
F1, area under the curve (AUC), and receiver operating characteristic 
(ROC). For non-linear relationships between the features, tree-based 
algorithm, RF was utilized to account for more complex interactions 
between features. The models were tested against the same metrics so 
that both linear and non-linear relationships were pursued in order to 
achieve best performance (Akinnuwesi et al., 2023).

2.4 Protein-protein interaction network construction and identification of 
hub genes

To get mechanistic insights of CVD-related DEGs, a protein-protein 
interaction (PPI) network was constructed using the STRING platform. 
The PPI network was further evaluated using Cytoscape software 
(Majeed and Mukhtar, 2023), with the CytoHubba plugin used for 
identification of strongly linked hub genes in the network. The major 
hub genes were identified using the maximal clique centrality (MCC) 
method (Li and Xu, 2019), which considers both direct and indirect 
relationships.

2.5 Identification of common transcriptional signatures and pathway and 
function enrichment analyses for CVDs

Top hub DEGs related to CVD pathology were used to identify 
shared transcriptional regulators, pathways, and CVD markers. 
Functional pathway enrichment analysis of the shared genes was 
carried out using computational methods like clusterProfiler (R 
package) (Wu et al., 2021), Kyoto Encyclopedia of Genes and Genomes 
(KEGG), and Gene Ontology (GO) to acquire biological understanding 
of the pathophysiological processes underlying the disease. Biological 
processes, molecular functions, and cellular components were used to 
categorize GO keywords. Signaling pathways and activities that are 
affected by cardiovascular pathology were discovered using KEGG 
pathway analysis. To validate enriched keywords, Gene Set Enrichment 
Analysis (GSEA) was carried out on whole transcriptome profiles, with 
an adjusted p-value of < 0.05 deemed as substantially enriched.

2.6 Virtual screening and molecular docking

Potential pharmacological inhibitors targeting DEGs implicated in 
CVDs were identified by molecular docking. Protein Data Bank (PDB) 
was employed for the retrieval of 3D structures of the identified hub 
proteins. Given their established modes of action against inflammatory 
and other disorders, only clinical approved medicinal compounds from 
the Drug Gene Interaction Database (DGIdb) were screened for ligand-
binding activities based on the drug gene interaction score. Biovidia 
Computational Biology tool (Discovery Studio) was used to complete 
the docking steps. Grid spacing of 1 Å was used for the identified hub 
proteins, IL6 and TNF because of their smaller binding pockets. Because 
the binding cleft is relatively larger in size for MYH6, a wider grid 
box and more space between cells was specified. Flexible docking, 
which allows for the movement of the rotatable bonds in ligands, was 
followed to get the best binding conformations, and the best positions 
were determined according to Vina's binding affinity ratings.

3. Results

3.1 Differential expression profiles in CVDs

Unified RNA-seq GEO datasets based on 23,454 common genes were 
used to profile the gene expression of samples from CVD clinical cases, 
in comparison to controls. DESeq2 analysis identified 1205 genes that 
were differently expressed between cases versus controls, with 678 up-
regulated and 527 down-regulated genes (Fig. 1).

3.2 Cluster analyses of DEGs

Hierarchical clustering was used to categorize DEGs based on 
expression patterns across all data. Genes were categorized using 
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feature importance, and overlap in selected features. Fig. 3(a) presents 
the ROC curves of the two classifiers, showing that SVM attains a higher 
AUC value at 0.88, compared to RF at 0.83, indicating that SVM is 
better in distinguishing CVD patients from healthy controls. As shown 
in the precision-recall comparison (Fig. 3b), SVM constantly achieved 
a higher precision at almost all recall levels, making it more efficient 
for identifying true positives in imbalanced datasets. A cross-validation 
metrics heatmap further confirmed the dominance of SVM's stronger 
classification ability over RF through all metrics, particularly for the 
ROC AUC values (Fig. 3c).

3.4 Pathway enrichment analyses

GO pathway analyses were utilized to characterize the 
pathophysiological relevance of the identified CVD-associated 
DEGs (Fig. 4), highlighting important molecular and biological 
processes of CVDs and emphasizing roles for lipid metabolism, 
inflammation, and vascular remodeling. Molecular functions that 
were enriched with high statistical confidence, such as binding to 
the LDL particle, sterol transfer activity, and binding to the TNF 
receptor, underline the role of dyslipidemia and inflammatory 
signaling in CVDs. Biological processes, such as regulation of lipid 
storage, inflammatory responses, and cell motility, further connect 
metabolic and vascular dysfunctions to CVD progression. Pathway 
enrichment, including advanced glycation end products- receptor 
for advanced glycation end products (AGE-RAGE) signaling, 
cholesterol metabolism, and lipid and atherosclerosis pathways, 
connect systemic inflammation, diabetes-related complications, and 
metabolic syndromes to CVDs.

3.5 PPI network and hub genes

Gene protein interactomes were found and PPI network was 
constructed on the STRING platform, which confirmed coordinated 
dysregulation of biological processes in CVDs (Supplementary 
File S1). Functional relationships between co-expressed genes 
were examined, and interleukin-6 (IL6),  tumor necrosis factor 
(TNF), myosin heavy chain-6 (MYH6), apolipoprotein E (APOE), low-
density lipoprotein receptor (LDLR), proprotein convertase subtilisin/
kexin type-9 (PCSK9),  angiotensin-converting enzyme (ACE),  actin 
α-2 (ACTA2), activated protein kinase (APM)-activated non-catalytic 
subunit gamma-2 (PRKAG2), and cardiac type troponin T2 (TNNT2) 
were identified as significant hub genes using CytoHubba plugin (Table 
1; Fig. 5). Integrated enrichment analysis of GO terms related to CVDs 
focusing on pathways, molecular functions, and biological processes 
showed the enriched pathways such as apelin signaling pathways 
involved in cardiovascular function and angiogenesis and AGE-RAGE 
signaling pathways associated with diabetic complications and vascular 
inflammation (Fig. 6a). Other important pathways found related to 
TNF signaling, associated with inflammation and atherosclerosis, 
cholesterol metabolism, and longevity-regulating pathway, implying 
that lipid dynamics, in conjunction with aging, may play significant 
roles in cardiovascular health. Fig. 6(b) represents the significantly 
enriched molecular functions of hub genes, which included functions 
such as binding to LDL particles, important in lipid metabolism, and 
the central activity linked to atherosclerosis and cytokine activity 
to regulate inflammatory responses implicated in CVD progression. 
Additionally, cholesterol transfer activity is found important for the 
lipid transport processes and formation of plaques in atherosclerosis. 
Biological processes identified (Fig. 6c) included such as the regulation 
of lipid localization, which is important for lipid transport and 
storage, as well as the production of interleukin-33 (IL-33) which is 
the major mediator in vascular repair and inflammation. Involvement 
of processes such as regulation of differentiation in fat cells as well 
as modulation of inflammatory response highlighted that there are 
other interactions of metabolic and inflammatory mechanisms, which 
further drive CVDs. Overall, all the interacting networks represented 
in Fig. 6 confirm the intricately complex and multifactorial etiology 
of CVDs involving a plethora of pathways, molecular functions, and 
biological processes.

Fig. 1. Identification of DEGs in CVD subjects, compared to controls. (a) Number of 
up-regulated DEGs was 678, while there were 527 DEGs which were down-regulated. 
(b) Differential gene expression between the two groups is depicted as a volcano plot, 
depicted as blue triangles (downregulated) and red crosses (upregulated). LogFC: Log 

fold change,  DEG: Differentially expressed genes, CVD: Cardiovascular disease.

Fig. 2. (a-d) Scale-free fit index for different soft-thresholding powers, displaying the 
correlation coefficients of log(k) and log(p(k)) corresponding to various soft thresholds, 
and represents the mean values of the gene adjacency coefficients according to various 

soft thresholds, which represent the network’s average degree of connectedness.

(a)

(a)

(c)

(b)

(b)

(d)

hierarchical clustering to discover probable disease categories based 
on gene expression patterns. To identify enriched areas, the genomic 
distribution of DEGs was examined, and the key driver genes were 
chosen based on their connectedness in weighted gene co-expression 
networks. In Fig. 2(a), scale independence is represented as R2 against 
different levels of power of soft thresholding. Mean connectivity in 
Fig. 2(b) decreased with increase in power, which is characteristic of 
scale-free networks. Connectivity histogram of k as depicted in Fig. 2(c) 
indicated that most genes have low connectivity, while very few genes 
were highly connected. Such right-skewed distribution is generic for 
biological networks. Log-log plot of connectivity, showing the network 
has been depicted in Fig. 2(d). Given R2 (0.87) and a slope close to-1.3, 
the curve shows a fair fit to be scale-free in nature. Distinct clusters 
of co-expressed genes were discovered through identifying the optimal 
soft thresholding power for building a weighted gene co-expression 
network in Weighted Gene Correlation Network Analysis (WGCNA) 
based on 140 samples.

3.3 Feature selection using ML

SVM and RF classifiers identified the significant biomarkers to 
differentiate CVD patients from controls, and classified performance, 

https://dx.doi.org/10.25259/JKSUS_358_2024
https://dx.doi.org/10.25259/JKSUS_358_2024
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Fig. 3. Comparison of support vector machine (SVM) and random forest performance. (a) ROC curve with SVM (AUC=0.88) outperforming random forest (AUC=0.83). 
(b) Precision-recall curve highlights SVM’s superior precision. (c) Heatmap compares cross-validation metrics, confirming SVM’s superior performance.

(a)

(c)

(b)

Fig. 4. DEGs’ GO enrichment analysis and module identification. The most significant GO molecular function enrichment terms for the DEGs associated with CVD 
pathology are displayed in (a-c) display the top KEGG pathway modules and GO biological process terms, respectively, associated with the clinical status of CVDs. 

DEGs: Differentially expressed genes, GO: Gene ontology, CVD: Cardiovascular disease.

(a)

(c)

(b)

3.6 Molecular docking

Molecular docking using Biovia Discovery Studio was employed 
for the identification of high-affinity ligands against the hub genes 
associated with DEGs in CVD cases (Figs. 7 and 8). The 3D structures 
of IL6, TNF, MYH6, APOE, LDLR, PCSK9, ACE, ACTA2, PRKAG2, 
and TNNT2 were obtained from PDB. To find possible ligands with 

known mechanisms of action against inflammatory, metabolic and 
cardiovascular ailments, DGIdb database was searched for authorized 
medication compounds. For docking, grid box size and spacing were 
determined by active site features of the targets. Flexible docking 
allowed ligand rotations for the identification of optimal binding 
conformations. The best target-ligand combinations were highlighted 
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ligand-protein interactions that may be beneficial for the designing of 
therapeutic drugs against CVDs. 

4. Discussion

In order to find biomarkers and therapeutic targets for CVDs 
which is a heterogeneous group of pathological conditions, RNA-seq 
gene expression data was combined with ML approaches, which may 
enhance the possibility for accurate diagnosis, individualized care, and 
enhanced patient outcomes (Doran et al., 2021). Our analyses revealed 
pertinent DEGs associated with CVDs, identifying 678 upregulated 
and 527 downregulated genes. By identifying specific gene clusters 
with distinctive expression patterns, one could distinguish between 
tissues that have been impacted by CVD and healthy ones. These 
discoveries may provide knowledge of the molecular subtypes of CVDs, 
which is essential for individualized diagnosis and therapy (Leopold 
et al., 2020). These combined clusters’ gene expressions, which were 
relevant to CVD, were extracted and transposed, to add labels of 0 for 
normal and 1 for CVD patients. Further analysis revealed IL6, TNF, 
MYH6, APOE, LDLR, PCSK9, ACE, ACTA2, PRKAG2, and TNNT2 as 
hub DEGs and potential biomarkers and therapeutic targets for CVDs. 
Amongst these, IL6, TNF, MYH6, and APOE showed an up-regulated 
expression in disease conditions. These hub genes are important 
drivers of molecular networks in highly connected hubs within 
densely interacting genes, regulating critical pathways linked to CVD 
pathogeneses. ML classification models supported their potential as 
biomarkers for diagnostic applications with high accuracy (Soleymani 
et al., 2022). As pathway analyses are crucial for better comprehension 
of the complicated molecular landscape of CVDs (Patel et al., 2023), we 
performed functional analyses of the identified hub DEGs. Hub gene 
enrichment in KEGG maps and PPI networks revealed disruptions in 
the metabolic and signaling networks underlying the pathophysiology 

(a) (c)(b)

Table 1. Summary of hub genes for cardiovascular diseases (CVDs).

Gene name CVDs dataset

(log2FC) P-value

IL6 1.2 0.07

TNF 1.3 0.08

MYH6 1.4 0.06

APOE 1.1 0.09

LDLR 1.5 0.07

PCSK9 1.2 0.1

ACE 1.3 0.09

ACTA2 1.4 0.08

PRKAG2 1.2 0.07

TNNT2 1.3 0.08

Table 2. Top inhibitor compounds against the 10 key protein targets in 
CVDs identified by molecular docking analyses and their respective pro-
tein-ligand pair binding scores.

Target protein Ligand Docking score 
(kcal/mol)

Swiss target 
prediction score

IL6 Evofolisat -8.5 0.81

TNF Rosuvastatin -9.1 0.76

MYH6 Atenolol -8.2 0.72

APOE Pitavastatin -7.9 0.68

LDLR Ezetimibe -8.3 0.71

PCSK9 Alirocumab -8.7 0.78

ACE Lisinopril -8.9 0.79

ACTA2 Verapamil -7.6 0.65

PRKAG2 Metformin -7.2 0.62

TNNT2 Omecamtiv mecarbil -8.1 0.69

Fig. 5. PPI analysis of the hub DEGs associated with CVD pathogenesis obtained using 
STRING database. PPI: Protein-Protein interaction, DEG: Differentially expressed genes, 

CVD: Cardiovascular disease.

Fig. 6. Functional analysis of the hug DEGs using ClueGO. (a) GO biological process (BP) analysis; (b) GO cellular component (CC) analysis and (c) GO molecular function (MF) 
analysis. DEG: Differentially expressed genes, GO: Gene ontology.

based on their binding affinities scored in kcal/mol, as assessed by 
AutoDock Vina (Table 2). Thus, IL6 presented a docking score of 
-8.5 kcal/mol (prediction score of 0.81) with evofolisat. TNF showed 
interaction with rosuvastatin (-9.1 kcal/mol; prediction score 0.76), 
MYH6 with atenolol (-8.2 kcal/mol), and APOE with pitavastatin (-7.9 
kcal/mol; prediction score 0.68). Similarly, LDLR was found to interact 
with ezetimibe (-8.3 kcal/mol; prediction score 0.71), and PCSK9 with 
alirocumab (-8.7 kcal/mol; prediction score 0.78). ACE had a binding 
energy change of -8.9 kcal/mol with lisinopril (prediction score 0.79), 
while ACTA2-verapamil binding was associated with -7.6 kcal/mol, 
with a prediction score of 0.65. Binding of metformin with PRKAG2 
involved energy change of -7.2 kcal/mol (prediction score 0.62), while 
binding of omecamtiv mecarbil to TNNT2 had an energy change of 
-8.1 kcal/mol and a prediction score of 0.69. The results indicate new 
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Fig. 7. The 2D illustrations display the best docking positions and the interactions between (a) IL6 and evofolisat, (b) TNF and rosuvastatin, (c) MYH6 and atenolol, (d) APOE and 
pitavastatin, (e) LDLR and ezetimibe, and (f) PCSK9 and evofolisat. The different types of interactions are depicted in a color-coded manner for the respective panels. TNF: Tumor 

Necrosis Factor, MYH6: Myosin Heavy Chain 6, APOE: Apolipoprotein E, LDLR: Low-Density Lipoprotein Receptor.

of CVD. Targeting these genes may have synergistic downstream 
effects due to their ability to integrate signals from multiple pathways 
simultaneously, including lipid metabolism (APOE, LDLR, PCSK9), 
renin-angiotensin system (ACE), TGF-β signaling (ACTA2), AMPK 
signaling (PRKAG2), cardiac muscle contraction (TNNT2) cascades.

As a key aim of this research, we also identified high-affinity 
binding ligands for the hub genes associated with CVD, as these can 
be utilized as biotargets for possible ameliorative strategies. In this 
regard, docking analysis identified the specific ligands among approved 

clinically relevant drugs as high-affinity binding ligands for the top 
DEGs. For this purpose, we only screened clinically approved drugs 
with known therapeutic actions for repurposition.  Our results indicated 
that IL6 had a high binding affinity for evofolisat, in consistency with 
the anti- inflammatory actions of the latter. The interaction of TNF 
with rosuvastatin demonstrates its possible function in combating 
inflammation and lipid imbalance, consistent with evidence that statins 
decrease cardiovascular events. The binding of MYH6 with atenolol, 
and TNNT2 with omecamtiv mecarbil is consistent with the functions 

(a)

(c)

(d)

(f)

(e)

(b)
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of beta-blockers and myosin activators in governing the contractility 
of the cardiac muscles and for heart failure treatment purposes. High-
affinity interaction of LDLR and PCSK9 with ezetimibe and alirocumab 
supports cholesterol pathway drugs as potential therapeutics against 
CVDs (Soleymani et al., 2022). ACE's interaction with lisinopril 
justifies the role of ACE inhibitors in the treatment of hypertension. 
In conclusion, hub genes identified in our study are not only crucial 
to the molecular foundations of CVDs but also provide opportunities 
for specialized treatment approaches. By enabling more accurate 
diagnoses, customized treatment regimens, and ultimately better 
patient outcomes, our data has the potential to completely transform 
the management of CVD.

5. Conclusions

Analyses of DEGs using public repositories of CVD subjects identified 
IL6, TNF, MYH6, APOE, LDLR, PCSK9, ACE, ACTA2, PRKAG2, and 

TNNT2 as the top ten features predicted among DEG biomarkers. 
Further, in silico analyses were performed to identify high-affinity 
binding drugs from amongst already clinically approved drugs against 
these biotargets. Our results revealed therapeutics that hold promise for 
safe, effective, and targeted treatment of CVDs. However, preclinical 
and clinical assessment of the identified chemicals is warrantied in 
future assessments.
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