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ABSTRACT

Dipping dykes are geologically important structures since they are very important structures for hydro-
geological, geothermal and hydrocarbon research. Many methods have been introduced by researchers to
interpret dykes from magnetic anomaly data, but each of these methods have limitations. Therefore, new
techniques are constantly being developed to achieve better results. This study introduces a novel
method based upon the Social Spider Optimization algorithm and tests the method using synthetic exam-
ples. The algorithm developed to decipher the source body properties, is presented in detail. The test data
consists of synthetic anomalies corrupted by different levels of random noise and field anomalies from
mining records in China and Turkey. The obtained results have showed that Social Spider Optimization
is a reliable, stable and efficient tool for deciphering the physical properties of deep and shallow located
dykes from magnetic data. In addition, the proposed method is recommended for inversion of other geo-
physics data such as self-potential and gravity data.
© 2023 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access
article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Several techniques have been adopted for the interpretation of
dyke-related magnetic anomalies. Some of these procedures

For many years, magnetic prospecting has been used to investi-
gate the subsurface structures associated with mineral deposits
(Ben et al., 2021c). Dipping Dykes (DD), known as effective traps
for hydrocarbons, are also known to be associated with heat con-
tact in most geothermal production systems. Recently, it has been
determined that dykes affect the local/regional aspect of mineral-
ization. For this purpose, it has become important to use correct
procedures to interpret anomalies related to dykes.
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exploit numerical methods such as the gradient, iteration, Gauss
and the simplex algorithms (Tlas and Asfahani, 2011; Won,1980;
Tlas and Asfahani, 2015; Abdelrahman et al., 2012). However prob-
lems such as window size compatibility, noise sensitivity and,
overreliance on subjectivity commonly impede the accuracy of
these techniques. Recently and with improvements in machine
learning techniques, it has been shown that these problems could
be resolved if the numerical techniques were replaced by meta-
heuristic methods. Some employed techniques include Particle
swarm optimization algorithm (PSO) (Essa and Elhussein, 2020),
differential algorithm (Balkaya and Kaftan, 2021), Genetic-price
algorithm (Di Maio et al., 2020), simulated annealing (Biswas and
Acharya, 2016) amongst others. These intelligent algorithms’
strength behooves on the premise that, unlike other algorithms,
the feasible solution search is independent of gradient (Ben et al.,
2022a,b,c). Nevertheless, for these mentioned algorithms, their
strength is also their weakness — over generalization of results
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due to concentration on agent swarms (Yu and Li, 2015). In this
article, we present a new stochastic technique based on the Social
Spider Optimization (SSO) algorithm that will attempt to eliminate
this weakness.

The SSO is a bio-inspired metaheuristic that imitates the mutual
behaviors of social spiders (Cuevas et al., 2018). Unlike other
heuristic algorithms where optimization follows swarms of one
agent type in a search domain, the SSO concurrently exploits the
operational behavior of both female and male spiders (the agents)
in a search space. Because the algorithm favors uniquely classified
qualities over swarm traits, the collective behavioral outcomes of
this individualized characterization are thus healthy reductions
in crucial particle concentration problems, which are typical in
most metaheuristic approaches (Sun et al., 2019). While reports
from the application of this method with other problems (Fathy
et al., 2020; Sahlol et al., 2019; Ben et al., 2022c) are encouraging,
at the time of preparing the initial draft of this article, no applica-
tion of SSO in dyke inversion has been reported in literature. This
itself, is a novelty of the study.

2. Methodology
2.1. Forward modeling of a 2-D dipping dyke

Assuming a Cartesian coordinate system with the abscissa rep-
resenting the sampling profile and the ordinate representing DD’s
strike at burial depth z; the magnetic anomay (MA) of a DD struc-
ture at any point y; on the sampling profile is expressed as (1) (Ben
et al,, 2022a).

F(y;, K. h,z, o) =K {sina(tan’] (@) —tan™! (%))

coso, [ (y;+h)’ +2
- In 3
2 (yi—h)"+2z

(i=1,2,---,N) (1)

where a is the index angle, h - the half-width, z is the depth, while K
represents amplitude of the anomalous structure. Table la. pro-
vides the coefficient of amplitude and angles of index for total, hor-
izontal, and vertical fields, where 2 is the azimuth of the profile due
the magnetic north and j is the geomagnetic inclination (Fig. 1), mis
the susceptibility contrast and § is the dipping angle.

The process around deciphering the set of parameters describ-
ing subsurface structure from the geomagnetic datasets is straight-
forward. An initial model originally constructed with knowledge
from historical geologic information is progressively improved
through series of optimization processes based on the cost function
(2) until a fitted version estimating data synonymous or that, near-
synonymous with the observed data is obtained

YL (Fo)" - F))

objectivefunction = n

(2)

where F(y); is the MA estimated the proposed technique and F(y);"
is the measured data. n is the data size.

2.2. Social spider optimization

The algorithm imitates the social spiders’ cooperative attri-
butes, where the female and male spiders cooperate as search
agents in a communal web where the spiders move at random
and across the search space, with each spider being promoted as
a potential solution (). The method was built in seven phases as fol-
lows, using their behavioral pattern to solve the magnetic inver-
sion problem:

Stage 1: The female and male population vectors of spiders
(representing magnetic models or search agents) were first initi-
ated at random in the search space. The female N; and male M;
population were generated using (3) and (4) (Yu and Li, 2015);

N; = [0.90 — rand() x 0.250].S (3)

Npn =S — N; (4)

where, rand() is randomly generated number between 0 and 1.

Stage 2: In this step, all the spiders were given a weight, G.In S,
each spider’s quality was rated using weight. G; was determined
from (5) as

Z(Si — SW)

G=Sg 5)
where, Z represents a fitness value calculated for each spider using
the objective function while S, and S, respectively correspond to
the best and worst individuals in the search space.

Stage 3: Next, the agent’s movement process (VB) was simu-
lated. This stage was numerically implemented using (6);

VBy; = Z; x exp(~Xyj) (6)

where, X;; is the distance (Euclidian) between spider j and spider i.
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Fig. 1. A dipping dyke model.
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Stage 4: After establishing their movement, the position of the
agents were initialized in the search space. Consistent with our
DD problem, the position vectors were constructed as 4-D vectors
representing the to-be-optimized parameters (K, h, o, and z). Each
parameter value was generated within the space-dependent lower,
LB; and upper, UB; bounds (7) and (8) (Fathy et al., 2020)

fi; =B +rand().(UB; — LBy )i=1,2,---,Ny;j = 1,2,3,4 (7)

mg, = B + rand().(UB; — LB; )k =1,2,3--- ,Npij = 1,2,3,  (8)

Stage 5: Based on the spider gender, the population’s coopera-
tive behavior was carried out amongst individual spiders for each
iteration session.

That of the female spiders was done using (9) (Husodo et al.,
2020; Ben et al., 2021b).

f,m + oc.VB,;C.(sc —f,-(")) + B.VBi‘b.<sb —f,-(k)) +d.(rand() - 3) <V

f (k+1)
%4 oz.VBm.(sC —f,-“”) + [f.VBi‘b.(sb —f,-“()) +4.(rand() —

i

)=V
©)

Nl

tart \3
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where s, and s, are the two spiders that are closest to the ith spider
and the best spider within the population, respectively, and o,p,5,
and § and are random values between 0 and 1, k is the maximum
iteration number, V is the probability factor.

The co-operative behavior of male spiders was defined using
(10).

mj(k) + OC.VBif.(Sf — m,-(")) -+ 5.(1‘31‘1(1 — %)ifWNM > Wi

(k1) Nm
m = my (k).W, .
! i o 2O Y ifWny > W
Zh:lw"’f+h
(10)

where, the closest female agent to the ith male spider is denoted by
Nm

Sr and (W) is a term that represents an average value
Zh:] WNf+h

for the population’s male spiders.

Stage 6: In this stage, we carried out the selection of offspring
for the next generation. To facilitate this, mating between domi-
nant males and females was permitted within a specified radius

~
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Fig. 2. Flow chart of the SSO-adapted process.
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(R) computed using (11) (Klein et al., 2016). The fitness values of
the dominant spiders’ progeny were assessed and contrasted with
those of their parents. The child spiders were adopted and their
parents were replaced if they spiders produced higher-quality
results than their parents. This was done iteratively.

 >3;4(UB; — LB))
s

The quality of the findings acquired in that specific step was
assessed at the conclusion of respective iterations by computing
the mismatch between the measured and estimated data using
the RMS error (2). Once a suitable RMS was arrived at, the four
physical parameters (K, h, o, and z) were returned.

Fig. 2 is a summarized flowchart highlighting the stages imple-
mented for the SSO procedure.

R (11)

2.3. Algorithm design/complexity

The program employed for the SSO process was designed in
PYTHONS3 installed on a simple Windows 10 desktop running with
a Core i5 processor. For complexity, the program'’s duration varied
based on the complexity of the structure modeled. Howbeit in all
cases, the optimization process rounded up in less than 20 s.

2.4. Uncertainty analysis

Uncertainty assessment analyses have come to be recognized as
critical in inversion investigations (Connolly and Khan, 2016). This
is because of the non-linearity, non-uniqueness, and ill-posedness
of geophysical inverse problems (Ben et al., 2021c). For this study,
uncertainty was appraised using the Metropolis-Hasting (IMH)
sampling approach.

Based on a previous distribution, MH offers many model sug-
gestions. By resolving the forward issue and computing the misfit
in the data, it is possible to determine the probability of any sug-
gested model. The updated model is acceptable if the probability
increases. Furthermore, the suggested model may still be adopted
even if the probability declines. However, the likelihood ratio
between the proposed and original models will decide the proba-
bility of this. By offering parameter confidence intervals, the tech-
nique, which is based on simulated annealing without cooling
schedule, enabled for the appraisal of uncertainty (Ben et al,
2021c). In this study, 500 iterations were allowed for the MH
algorithm.

2.5. Parameter tuning studies

The convergence point of the algorithm during inversion is
greatly influenced by control parameters in nature-inspired global
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Fig. 3a. Design synthetic dyke anomaly.
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Table 1b
Statistical outcome of parameter tuning studies.
\Y RMS (nT)
minimum mean sd
0.4 1.51053 1.61293 0.90047
0.5 0.32654 0.52996 0.20163
0.6 0.20062 0.33642 0.12805
0.7 0.07143 0.07254 3.39915 x 1077
0.8 0.11624 0.16081 1.72423 x 107
0.9 0.33762 0.50018 0.22656
Table 1c
Search bounds and results for theoretical example (Noiseless model).
Parameters Space bounds Actual (Control) Estimated
K (nT) [0, 500] 60.00 60.027
o (°) [-90, 90] 55.00 54.983
h (m) [0, 50] 15.00 14.996
z (m) [0, 50] 12.00 12.101

optimization algorithms. The effectiveness of every algorithm
depends on these parameters (Granat, 2003). However, the prob-
lem under consideration significantly determines their choice
(Ekinci et al., 2020). To identify the appropriate control parameters
for the method, model parameters tuning was conducted before
inversion.

For the tuning procedure, an MA dataset was synthetically con-
structed using (1) with K = 60 nT. Further, h =15 m, z = 12 m,
o = 55°, with a profile length of 300 m (Fig. 3a). For the experiment,
broad search spaces (Table 1b.) were adopted for the model param-
eters. Finding the ideal values for the spider population (S) and the
probability factor (V) in the search space was the primary objective
of the parameter tuning analysis. Thirty independent runs consist-
ing of 500 iterations were allowed for the optimization process.
The value for S was obtained by multiplying the number of
unknown parameters (4) by the number of independent runs
(30)(Turgut, 2021). The MA problem was then statistically ana-
lyzed using the SD, mean, and minimum of RMS values obtained.
After 30 runs, the results obtained by utilizing various V are shown
in Table 1c. From the table, statistical results suggest that using 0.7
as the probability factor (boldface) for the magnetic data will
ensure stability and efficiency of the optimization procedure. This
was thus adopted the optimization problem. Another observation
is the significant error gap between the value for V that provided
the best results and the one that generated the poorest outcomes.
This massive disparity could undoubtedly cause a substantial effect
on the solution’s accuracy with regards to optimal resolution of
parameters. This highlights the necessity of the tuning process in
optimization procedures.

3. Theoretical examples

To validate the performance of the suggested methodology, the
algorithm was exposed to several preliminary controlled tests with
clean and noisy synthetic anomaly data.

3.1. Noise-free anomaly

The SSO algorithm was applied for the modeling of noiseless
theoretical anomalies for a dyke-like structure constructed with
model parameters shown in Table 1c. The MA was designed using

(1).
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Fig. 3b. Actual and predicted anomaly parameters for synthetic dipping dyke
model (Noiseless).
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For the process and for each run, a maximum of five hundred
iterations was allowed (Figs. 3b-4b). The corresponding model
parameters obtained at the end of the process were respectively
are shown in Table 1c.

Comparing these estimations with the actual parameters used
in designing the model, it is evident that the new method’s estima-
tion abilities are considerably excellent. Further, the MH technique
was applied for the assessment of uncertainty in these parameters
obtained. Our answers fall within adequate confidence intervals,
according to a careful inspection of the histogram that was con-
structed after the MH uncertainty procedure (Section 2.7, Fig. 4b).

3.2. Noisy anomaly

Clean synthetic data was corrupted with 5, 10, and 20 % random
noise to replicate real field conditions. The random numbers uti-

100 0% Noise -
90 === 5% Noise
=== 10% Noise r\L
80 = 20% Noise 60
.‘E‘ 70 z 40
< 60 ® 20
50 FJ 0
40
-20
30
o 100 200 300 400 500 o 100 200 300 400 500
Iteration number Iteration number
30 a0
25 35
30
20
25
Eis E 20
< ~ N
10 ;\/ 15
10
5
o (]
o 100 200 300 400 500 o 100 200 300 400 500
Iteration number Iteration number
3 (3
10 Cost (nT) 10 Cost (nT)
2
10 102 4
102
» - 101 4
£ 100 3
~ (a) g 10° (b)
W ]
o 10 o
[¥] Y}
10-2 105
-2
103 10
10¢ 1073 4
o 100 200 300 400 500 ) 100 200 300 400 500
Iteration number Iteration number

Fig. 4a. Convergence plots: Upper panel - Change in the model parameters vs iteration; Lower panel - Change in the model parameters vs iteration (a) Noiseless example, and

(b) Noisy example.
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2-D dipping dyke model (+ 0% Noise)

K = 60.027 nT

y
°
=
N

0.10 -
0.08 -
0.06
0.04

Relative Frequenc

0.02 -

0.00 -

59.98 60.00 60.02 60.04

K (nT)

60.06

60.08

a =54.983 °

54.94 54.96 54.98

a (%)

55.00 55.02 55.04

h =14.996 m

Relative Frequency

14.96

14.98 15.00

h (m)

15.02 15.04 15.06

z=12.101m

12.06 12.08 12.10 12.12

z (m)

12.14 12.16

Fig. 4b. Uncertainty histogram reconstructed using MH algorithm (Noiseless anomaly).

Table 2a
Description of corruption added in case of the noisy model.

Percentage of Noise injected (%)

5 +1.50
10 +2.50
20 +4.50

lized in noise were naturally distributed and zero-mean (as with all
Gaussian distributions). Table 2a displays the standard deviation
(SD) of the noise content that was artificially introduced. These dif-
ferent levels of noise were included in order to test the effective-
ness of SSO in less-than-ideal conditions, such as when there is
noise from the host materials or nearby geologic intercalations.
The random noise was created automatically using the MATH
library. The percentage of corruption was computed using (12).

- [mg, — mg||
Noise percentage = ——-——==
Img,||

(12)
where mg; and mg, are the noiseless and noisy anomalies,
respectively.

The SSO-based methodology was used once more to estimate
the model parameters and the model ranges employed with the
noiseless example were readopted. After each repetition, the con-
vergence and misfit were examined.

The SSO algorithm-estimated model parameters and their
actual values were found to be remarkably consistent (Table 2b.,

Table 2b
Space bounds and estimated parameters (Noisy synthetic model).

Model parameter Noise percentage and observed results

5% 10 % 20 %
K (nT) 61.835 64.476 65.548
o (%) 57.653 56.873 56.001
h (m) 14.781 14279 13.145
z(m) 12532 13.031 11.783
RMS (nT) 1.38 242 4.89

Figs. 5a-c). Another notable observation is that the K parameter
(coefficient of amplitude) appeared to be more sensitive to increas-
ing noise than other parameters. This sensitivity (attributed to the
multiplication factor role taken by k in (1)), which is likely to affect
interpretation when dealing with very complicated dyke systems,
may be readily addressed by reducing the range of the space-
bound. Also demonstrated by the results is that noise causes a
slight increase in the after-convergence misfit and RMS error.
However, the overall inversion process is unaffected by this since
parameter results continue to be appealing even at a noise level
of 20 % (Table 2b). Furthermore, the RMS obtained (Figs. 5b-d)
was found to be well-matched to the standard deviation of the cor-
ruptions (Table 2a). Uncertainty histograms were constructed
based on sampling done by MH and over model parameters for
scenarios of the executed noisy models (Fig. 5d)(For the sake of
brevity and paper space, only plots for 10 % noise are shown).
The histograms reveal that the SSO sampling process is quite effec-

ESTIMATED PARAMETERS,
+ True Anomaly
80 4 Ky=iel82onT —— Estimated Anomaly (SSO)
a = 57.653°

- h =14.781m
'z 604 z=12.532m 4
>
£
S 404
c
< Error = 1.38
kel
]
@ 20 A
=
=
v
| =
g 0
=

—-20 4

-50 0 50 100 150
Horizontal Distance (m)

-150 -100

Fig. 5a. Actual and predicted anomaly parameters for synthetic dipping dyke model
(5% noise).
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tive, as the actual parameter values estimated by the algorithm all
fell within high probability regions. These show the SSO technique
as being intrinsically stable and as admirably performing even -
when dealing with noisy datasets.

*  True Anomaly

~ Estimated Anomaly (SSO)

Estimated Parameters -
K=64.476 nT
A =56.873°

h=14.279 m
Z2=13.031m

80
60
40

Error = 2.42
20

DA i

Magnetic Field Anomaly (nT)

-100 -50 0

Horizontal Distance (m)

-150 100 150

Fig. 5b. Actual and predicted anomaly parameters for synthetic dipping dyke
model (10% noise).
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Fig. 5¢. Actual and predicted anomaly parameters for synthetic dipping dyke model
(20% noise).
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4. Field examples

Two field examples taken from different mining regions in Tur-
key and Asia were used to experimentally assess the SSO method.
Then, the parameters describing the physical properties of the sub-
surface magnetic anomalies were examined, and the findings from
earlier studies reported in literature were contrasted with those
obtained using the experimented method.

4.1. The magnetite iron deposit, China

In the early 1960 s, an aeromagnetic study in the Chinese pro-
vince of Gansu, identified an alluvial covered area afterwards des-
ignated M163. This deposit has been developed further over the
years and regarded as metasomatic contact of iron deposits
(Zhang et al., 2019). Following a rigorous magnetic investigations,
the anomaly was sectioned into 11 distinct and smaller individual-
ized anomalies (Scott, 2006). The M163-1 MA was investigated in
this investigation. A 200-m long MA profile (MN) spanning the
M163-1 area was collected from a magnetic intensity contour
map at 2-m intervals for this purpose (Fig. 6).

As the DD was suspected as a two-dimensional structure based
on a priori geologic information, Estimation of its distinctive
parameters based on this knowledge. However, before beginning
the iteration process, the UB and LB were set based on Table 2c.
The algorithm was executed using 30 individuals with 500 itera-
tions allowed. The model parameters obtained after algorithm exe-
cution are displayed in Table 2c. The discernable similarity
between the estimated and observed anomalies is revealing
(Fig. 7a).

Table 3a compares model parameters produced by earlier
researchers using various methods to those obtained by the SSO
algorithm in this work. Petrophysical records (Guo et al., 1998)
report the thickness of the alluvial overburden to be between 20
and 25 m. Using PSO, Essa and El-Hussein (2017) calculated that
the DD, which he reported as being buried at z of 22.55 from the
surface and inclined at 57.99°, is buried at a depth of 22.55 m. In
contrast, Ben et al. (2021a) used MRFO to calculate the anomaly’s
h to be 20.10 m and o as 60.98°. It can be observed that our results
are very consistent with those from these reports.

2-D dipping dyke model (+ 10% Noise)

K = 64.476 nT a=56.873°
2 0.125
i
S 0.100 -
o
o
i 0.075-
g
S 0.050 -
s
2 0.025-
0.000 -
58 60 62 64 66 68 70
K (nT) a (%)
h=14.279 m z=13.031m
2 0.125 E
]
3 0.100 - E
o
o
& 0.075 )
g
‘5 0.050 ]
8
& 0.025- ]
0.000 - E
8 10 12 14 16 18 20 6 8 10 12 14 16 18 20
h (m) z(m)

Fig. 5d. Uncertainty histogram reconstructed using MH algorithm (10% noise).
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8



U.C. Ben, C.C. Mbonu, C.E. Thompson et al.

Table 2c

Inversion results (Gansu anomaly).
Model parameters Space bound Results RMS error
K (nT) [0, 20000] 5755.024 4.158 (nT)
a (%) [-90, 90] 62.155
h (m) [0, 50] 8.677
z (m) [0, 50] 23.141

Table 3a

Comparative analysis of estimated model parameter (Gansu anomaly).
Model Gay Essa & El Hussein Ben et al. Present
parameters (1963) (2017) (2021) study
K (nT) - 8116.91 5636.60 5755.024
a (%) - 57.99 60.98 62.155
h (m) 9.00 9.17 9.05 8.677
z (m) 22.25 22.24 20.10 23.141

4.2. The Bayburt-Sarthan dyke

In this example, we employed the SSO for the interpretation of a
shallow dyke in the Bayburt-Sarithan skarn zone of Northeastern
Turkey. The Bayburt-Sarithan skarn zone is an extensive geologic
zone dominated by granodiorite, limestone, volcanic sediments
and tuffs. To the southwest of a skarn zone - and sandwiched
between the limestone and the granodiorite unit, an intrusion
mainly composed of magnetite was reported (Kaftan, 2017). We
would be analyzing this intrusion.

Fig. 7b shows a profile extract of a vertical component MA map
constructed for the region (Keskin et al., 1989) showing a 1200 m
profile taken over the region. The profile was sampled at an inter-
val of 200 m. Due to the paucity of geologic information for this
structure, the bounds were kept open-ended; however, a bisection
algorithm was inserted into the SSO structure to prevent indis-
criminate movement of the agents. The results - after convergence,
are shown in Table 3b and Fig. 7b. The RMS of 3.452nT was
adjudged as impressive.

Aydin and Gelisli (1996) performed some anisotropic magnetic
investigations in the region and showed the structure as an east-
ward DD with a slope of about 110°, depth of 100 m, and a half-
width of 75 m. Dondurur and Pamukcu (2003) employed the

Table 3b

Inversion results (Bayburt-Sarthan anomaly).
Model parameters Results RMS error
K (nT) 0.012 3.452 (nT)
a (°) 38.085
h (m) 102.864
z (m) 107.229

Table 3c
Comparative analysis of estimated model parameter (Bayburt-Sarithan anomaly).

Model parameters Gay (1963) Essa & El Hussein (2017) Present study
K (nT) - - 0.012
a (°) 110 111 38.085
h (m) 75 76 102.864
z (m) 100 97 107.229
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damped least-squares inversion method on the same anomaly.
They reported the depth to the dyke as 97 m, the inclination as
111°, h as 76 m, and z as 97 m. It can be discerned from these
results, that the SSO produces estimations similar to those
obtained by earlier workers (Table 3c).

5. Discussion

A new method based on the SSO algorithm was designed for the
magnetic inversion of DD models and subjected to a series of tests
to gauge its adaptability and suitability. The new tool was tested
with data synthetically generated from an already established for-
ward model and examples extracted from real mining fields. The
cases allowed evaluation of the new method’s viability, strengths,
and reputability.

In terms of performance, the convergence signatures (Fig. 4a)
for all the cases indicate that the SSO possess strong and extensive
search abilities. As can be observed, the agents (parameter vectors)
are not caved up in the search space. This is not unrelated to the
design structure (Section 2). Popular metaheuristics such as PSO,
GA, and SA employ individuals with the same properties and per-
forming nearly the same behaviors. In these cases, algorithms
squander the opportunity to add new and selective operators
resulting from considering individuals with different characteris-
tics. As the algorithm advances, such characteristics cause the
whole population to cluster around the best particle or to diverge
indiscriminately, resulting in traditional concerns such as
exploration-exploitation imbalance and premature convergence.
The SSO, on the other hand, models each individual based on gen-
der. In this case, the entire population is divided into several
search-agent groups, and specialized operators are applied to each
one selectively and explicitly. With this framework, extensive
exploitation is achieved (16) in such a way that efficient explo-
ration is still maintained (15) - tackling the aforementioned popu-
lar problems at a go.

More also, Fig. 3b reveals the fast convergence rate of the new
method. In most cases, the algorithm converges in less than 150
iterations; and under 200 iterations for all cases. This speed nota-
bly, does not affect the quality of the result in any way as the RMS
were consistently impressive even for noisy anomalies and field
examples.

The algorithm was tested for sensitivity and stability by cor-
rupting the synthetic data with random noise (Section 3.2). As
expected, the results of the noisy data were found to be marginally
worse than those of the noise-free counterpart. Nonetheless, as
illustrated in Fig. 5¢, the inversion procedure remained undis-
turbed, producing reliable parameters up to the highest level of
noise tested (20 %). As a result, it may be inferred that the new
technique is intrinsically adept when dealing with noisy data.

We further tested the new technique with real field data taken
from Chinese and Turkish mining fields. As is generally known, it is
not always assured that a novel algorithm’s virtuosic performance
with numerically generated data (which is normally constructed
under ideal conditions) would always replicate with real-world
data (subjected to heterogeneous factors). Besides confirming the
algorithm’s capabilities, the outputs of inversion of these anoma-
lies were also similar to those acquired previously using alterna-
tive methods and petrophysical investigation.

The previously developed Monte-Carlo approach was used to
check for ambiguity in each of the estimations (Section 2.6). A clo-
ser examination of the frequency distribution plots obtained after
MH sampling reveals that the histograms show very reasonable
ranges of solutions for K, h, d, and o. This implies that the estima-
tions for these parameters are within the range of their actual
values.
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It must be added that in four of the synthetic examples and the
Gansu anomaly example, we restricted the search space using his-
torical information. However, one of the objectives of this study
was to limit or if possible, eradicate such dependencies. So, for
the Bayburt-Sarthan dyke case, the bounds were left open and
the performance of the algorithm assessed. From the results, it
could be observed that the algorithm still performed excellently
even when LB and UB were not explicitly defined presenting a
method that can be employed where reconnaissance information
is scarce or unavailable.

These features unanimously imply the new methodology is a
robust tool, stable and efficient for deciphering the physical char-
acteristics of deep and shallow-seated dykes from magnetic data.

6. Conclusion

Metaheuristic-based techniques have been found to be more
effective than their numerical counterparts in exploring/exploiting
potential solution-leading positions. Nonetheless, despite
significant-resolution advancements, several strategies employing
metaheuristic procedures are still plagued by problems such as
premature convergence, local optima, and so on. These discrepan-
cies have necessitated a quest for better-performing inversion
methods. The SSO algorithm'’s capability and effectiveness in mod-
eling the physical parameters describing magnetic anomalies from
DDs were examined in this study. In contrast to previously studied
heuristic algorithms in which a general population concentrating
around a single particle vector (best particle) is used to modify
individual positions, the SSO algorithm models each individual
based on their gender. Unlike other metaheuristics, SSO models
individuals based on gender encouraging the de-individualization
of best-positioned agents and allowing for the introduction of com-
putational procedures to mitigate major problems disturbing tra-
ditional techniques. The experiments on both synthetic and real-
world anomalies with varying levels of corruption were quite suc-
cessful. To measure success, model stability was evaluated, and
general performance was assessed.

The SSO technique demonstrated both better convergence and
solution correctness. These characteristics point to a competitive
processing tool, one that could easily outperform present algo-
rithms. It must be added that while the decoupling of search agents
based on gender allowed for more extensive exploration and
improved quality resolution, it is observed that this is at the
expense of speed. This is but a limitation of the algorithm which
(as a recommendation) could be improved through modifications
and hybridization.

We also recommend investigation of SSO with structures with
higher complexities, such as self-potential and gravity data. The
metaheuristic technique can also be restructured for three-
dimensional geophysical problems.

Declaration of Competing Interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgements

This research was supported by Researchers Supporting Project
number (RSP2022R425), King Saud University, Riyadh, Saudi
Arabia.

10

Journal of King Saud University — Science 35 (2023) 102569
Appendix A. Supplementary material

Supplementary data to this article can be found online at
https://doi.org/10.1016/j.jksus.2023.102569.

References

Abdelrahman, E.S.M., Abo-Ezz, E.R., Essa, K.S., 2012. Parametric inversion of residual
magnetic anomalies due to simple geometric bodies. Exploration Geophys.
https://doi.org/10.1071/EG11026.

Aydyn, A., Gelipli, K., 1996. Magnetic studies for the skarn zone of Saryhan-Bayburt.
Jeofizik 10, 41-51.

Balkaya, C., Kaftan, 1., 2021. Inverse modelling via differential search algorithm for
interpreting magnetic anomalies caused by 2D dyke-shaped bodies. ]. Earth
System Sci. https://doi.org/10.1007/s12040-021-01614-1.

Ben, U.C., Akpan, A.E., Mbonu, C.C., Ufuafuonye, C.H., 2021a. Integrated technical
analysis of wind speed data for wind energy potential assessment in parts of
southern and central Nigeria. Cleaner Eng. Technol. https://doi.org/10.1016/
j.clet.2021.100049.

Ben, U.C., Akpan, A.E., Enyinyi, E.O., Awak, E., 2021b. Novel technique for the
interpretation of gravity anomalies over geologic structures with idealized
geometries using the Manta ray foraging optimization. J. Asian Earth Sci. X.
https://doi.org/10.1016/j.jaesx.2021.100070.

Ben, U.C.,, Akpan, A.E., Mbonu, C.C., Ebong, E.D., 2021c. Novel Methodology for
Interpretation of Magnetic Anomalies Due to Two-Dimensional Dipping Dikes
Using the Manta Ray Foraging Optimization. ]. Appl. Geophys. https://doi.org/
10.1016/j.jappgeo.2021.104405.

Ben, U.C,, Akpan, A.E. Urang, ].G., Akaerue, E.I, Obianwu, V., 2022a. Novel
methodology for the geophysical interpretation of magnetic anomalies due to
simple geometrical bodies using social spider optimization (SSO) algorithm.
Heliyon. https://doi.org/10.1016/j.heliyon.2022.e09027.

Ben, U.C., Ekwok, S.E., Achadu, O.M., Akpan, A.E., Eldosouky, A.M., Abdelrahman, K.,
Goémez-Ortiz, D., 2022b. A novel method for estimating model parameters from
geophysical anomalies of structural faults using the manta-ray foraging
optimization. section Solid Earth Geophysics Front. Earth Sci. https://doi.org/
10.3389/feart.2022.870299.

Ben, U.C., Ekwok, E.E., Akpan, A.E., Mbonu, C.C., Eldosouky, A.M., Abdelrahman, K.,
Gomez-Ortiz, D., 2022c. Interpretation of magnetic anomalies over simple
geometrical structures using Manta-Ray foraging (MRF) Optimization. Sec. Solid
Earth Geophysics Front. Earth Sci. 46 (1), 152-165.

Biswas, A., Acharya, T., 2016. A very fast simulated annealing method for inversion
of magnetic anomaly over semi-infinite vertical rod-type structure. Modeling
Earth Systems and Environment. https://doi.org/10.1007/s40808-016-0256-x.

Connolly, J.A.D., Khan, A.,, 2016. Uncertainty of mantle geophysical properties
computed from phase equilibrium models. Geophys. Res. Lett. https://doi.org/
10.1002/2016GL068239.

Cuevas, E., Cienfuegos, M., Zaldivar, D., Pérez-Cisneros, M., 2018. The metaheuristic
algorithm of the social-spider. Stud. Comput. Intell. https://doi.org/10.1007/
978-3-319-89309-9_2.

Di Maio, R., Milano, L., Piegari, E., 2020. Modeling of magnetic anomalies generated
by simple geological structures through Genetic-Price inversion algorithm.
Physics of the Earth and Planetary Interiors. https://doi.org/10.1016/j.
pepi.2020.106520.

Dondurur, D., Pamukgu, O.A., 2003. Interpretation of magnetic anomalies from
dipping dike model using inverse solution, power spectrum and Hilbert
transform methods. J. Balkan Geophys. Soc. 6 (2), 127-136.

Ekinci, Y.L., Balkaya, C., Goktiirkler, G., 2020. Global optimization of near-surface
potential field anomalies through metaheuristics. In: Biswas, A., Sharma, S.P.
(Eds.), Advances in Modelling and interpretation in Near Surface Geophysics.
Series of Springer Geophysics, Springer International Publishing, pp. 155-188.
https://doi.org/10.1007/978-3-030-28909-6_7.

Essa, K.S., Elhussein, M., 2017. A new approach for the interpretation of self-
potential data by 2-D inclined plate. ]. Appl. Geophys. https://doi.org/10.1016/
j-jappgeo.2016.11.019.

Essa, K.S., Elhussein, M., 2020. Interpretation of Magnetic Data Through Particle
Swarm Optimization: Mineral Exploration Cases Studies. Nat. Resources Res.
https://doi.org/10.1007/s11053- 020-09617-3.

Fathy, A., Kaaniche, K., Alanazi, T.M., 2020. Recent approach based social spider
optimizer for optimal sizing of hybrid PV/wind/battery/diesel integrated
microgrid in  Aljouf Region. IEEE Access. https://doi.org/10.1109/
ACCESS.2020.2982805.

Granat, R.A,, 2003. A method of hidden markov model optimization for use with
geophysical data sets. Lect. Notes Comput. Sci. Including Subseries Lect. Notes
Artif. Intell. Lect. Notes Bioinfo. https://doi.org/10.1007/3-540-44863-2_88.

Guo, W., Dentith, M.C,, Li, Z., Powell, C.N., 1998. Self demagnetization corrections in
magnetic modelling: some examples. Explor. Geophys. 29, 396-401.

Husodo, A., Jati, G., Octavian, A., Jatmiko, W., 2020. Enhanced social spider
optimization algorithm for increasing performance of multiple pursuer drones
in neutralizing attacks from multiple evader drones. IEEE Access. https://doi.
org/10.1109/ACCESS.2020.2969021.

Kaftan, 1., 2017. Interpretation of magnetic anomalies using a genetic algorithm.
Acta Geophys. https://doi.org/10.1007/s11600-017-0060-7.


https://doi.org/10.1016/j.jksus.2023.102569
https://doi.org/10.1071/EG11026
http://refhub.elsevier.com/S1018-3647(23)00031-9/h0010
http://refhub.elsevier.com/S1018-3647(23)00031-9/h0010
https://doi.org/10.1007/s12040-021-01614-1
https://doi.org/10.1016/j.clet.2021.100049
https://doi.org/10.1016/j.clet.2021.100049
https://doi.org/10.1016/j.jaesx.2021.100070
https://doi.org/10.1016/j.jappgeo.2021.104405
https://doi.org/10.1016/j.jappgeo.2021.104405
https://doi.org/10.1016/j.heliyon.2022.e09027
https://doi.org/10.3389/feart.2022.870299
https://doi.org/10.3389/feart.2022.870299
http://refhub.elsevier.com/S1018-3647(23)00031-9/h0035
http://refhub.elsevier.com/S1018-3647(23)00031-9/h0035
http://refhub.elsevier.com/S1018-3647(23)00031-9/h0035
http://refhub.elsevier.com/S1018-3647(23)00031-9/h0035
https://doi.org/10.1007/s40808-016-0256-x
https://doi.org/10.1002/2016GL068239
https://doi.org/10.1002/2016GL068239
https://doi.org/10.1007/978-3-319-89309-9_2
https://doi.org/10.1007/978-3-319-89309-9_2
https://doi.org/10.1016/j.pepi.2020.106520
https://doi.org/10.1016/j.pepi.2020.106520
http://refhub.elsevier.com/S1018-3647(23)00031-9/h0055
http://refhub.elsevier.com/S1018-3647(23)00031-9/h0055
http://refhub.elsevier.com/S1018-3647(23)00031-9/h0055
https://doi.org/10.1007/978-3-030-28909-6_7
https://doi.org/10.1016/j.jappgeo.2016.11.019
https://doi.org/10.1016/j.jappgeo.2016.11.019
https://doi.org/10.1007/s11053-020-09617-3
https://doi.org/10.1109/ACCESS.2020.2982805
https://doi.org/10.1109/ACCESS.2020.2982805
https://doi.org/10.1007/3-540-44863-2_88
http://refhub.elsevier.com/S1018-3647(23)00031-9/h0080
http://refhub.elsevier.com/S1018-3647(23)00031-9/h0080
https://doi.org/10.1109/ACCESS.2020.2969021
https://doi.org/10.1109/ACCESS.2020.2969021
https://doi.org/10.1007/s11600-017-0060-7

U.C. Ben, C.C. Mbonu, C.E. Thompson et al.

Keskin, I., Korkmaz, S., Gedik, 1., Ate., M., Gok, L., Kiigiikmen, M. and Erkal, T., 1989.
Geology of Bayburt and Surrounding Areas, MTA, Geol. Prosp. Div., Ankara (in
Turkish)

Klein, C.E., Segundo, E.H.V.,, Mariani, V.C,, Coelho, L.D.S., 2016. Modified Social-
Spider Optimization Algorithm Applied to Electromagnetic Optimization. IEEE
Trans. Magnetics. https://doi.org/10.1109/TMAG.2015.2483059.

Sahlol, A.T., Abdeldaim, A.M., Hassanien, A.E., 2019. Automatic acute lymphoblastic
leukemia classification model using social spider optimization algorithm. Soft.
Comput. https://doi.org/10.1007/s00500-018-3288-5.

Scott, D., 2006. Metallographic Examination of Iron Artefacts from Gansu Province.
Historical Metallurgy, China.

Sun, H, Yu, J, Zhang, X, Wang, B., Jia, R, 2019. The adaptive particle swarm
optimization technique for solving microseismic source location parameters.
Nonlinear Processes Geophys. https://doi.org/10.5194/npg-26-163-2019.

Tlas, M., Asfahani, J., 2011. Fair function minimization for interpretation of magnetic
anomalies due to thin dikes, spheres and faults. ]J. Appl. Geophys. https://doi.
org/10.1016/j.jappgeo.2011.06.025.

11

Journal of King Saud University - Science 35 (2023) 102569

Tlas, M., Asfahani, J., 2015. The Simplex Algorithm for Best-Estimate of Magnetic
Parameters Related to Simple Geometric- Shaped Structures. Mathemat. Geosci.
https://doi.org/10.1007/s11004-014-9549-7.

Turgut, O.E., 2021. A novel chaotic manta-ray foraging optimization algorithm for
thermo-economic design optimization of an air-fin cooler. SN Applied Sciences.
https://doi.org/10.1007/s42452-020-04013-1.

Won, 1. ]. 1980. Application of Gauss’s Method to Magnetic Anomalies of Dipping
Dikes. Geophysics. https://doi.org/10.1190/1.1441192

Yu, JJ.Q., Li, V.O.K, 2015. A social spider algorithm for global optimization. Appl.
Soft Comput. J. https://doi.org/10.1016/j.as0c.2015.02.014.

Zhang, S. X., Hu, Q. Q., Wang, Y. T., Wei, R, Ke, C. H. 2019. Characteristics of Ore
Geology and Ore-Controlling Factors of Giant Guojiagou Pb-Zn Deposit in
Xicheng Ore Concentration Area, Western Qinling. Mineral Deposits. https://doi.
org/10.16111/j.0258-7106.2019.05.012


https://doi.org/10.1109/TMAG.2015.2483059
https://doi.org/10.1007/s00500-018-3288-5
http://refhub.elsevier.com/S1018-3647(23)00031-9/h0115
http://refhub.elsevier.com/S1018-3647(23)00031-9/h0115
https://doi.org/10.5194/npg-26-163-2019
https://doi.org/10.1016/j.jappgeo.2011.06.025
https://doi.org/10.1016/j.jappgeo.2011.06.025
https://doi.org/10.1007/s11004-014-9549-7
https://doi.org/10.1007/s42452-020-04013-1
https://doi.org/10.1016/j.asoc.2015.02.014

	Investigating the applicability of the social spider optimization for the inversion of magnetic anomalies caused by dykes
	1 Introduction
	2 Methodology
	2.1 Forward modeling of a 2-D dipping dyke
	2.2 Social spider optimization
	2.3 Algorithm design/complexity
	2.4 Uncertainty analysis
	2.5 Parameter tuning studies

	3 Theoretical examples
	3.1 Noise-free anomaly
	3.2 Noisy anomaly

	4 Field examples
	4.1 The magnetite iron deposit, China
	4.2 The Bayburt-Sarıhan dyke

	5 Discussion
	6 Conclusion
	Declaration of Competing Interest
	Acknowledgements
	Appendix A Supplementary material
	References


