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Abstract It is well known that the mixed variational inequalities involving the nonlinear term are

equivalent to the fixed-point problems. In this paper, we use this alternative equivalent formulation

to suggest and analyze a new resolvent-type method for solving mixed variational inequalities. Our

results can be viewed as significant extensions of the previously known results for mixed variational

inequalities. An example is given to illustrate the efficiency and implementation of the proposed

method.
ª 2010 King Saud University. Production and hosting by Elsevier B.V. All rights reserved.
1. Introduction

Variational inequalities introduced in the early sixties have
played a fundamental and significant part in the study of
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several unrelated problems arising in finance, economics,
network analysis, transportation, elasticity and optimization

(see Baiocchi and Capelo, 1984; Bnouhachem, 2005; Bnouha-
chem et al., 2006; Brezis, 1973; Fukushima, 1992; Fu, 2008;
Giannessi et al., 2001; Glowinski et al., 1981; Han and Lo,
2002; He and Liao, 2002; He et al., 2004; Kinderlehrer and

Stampacchia, 2000; Lions and Stampacchia, 1967; Noor,
1997, 1998, 2000, 2002, 2003a,b, 2004a,b; Noor and Bnouha-
chem, 2005; Peng and Fukushima, 1999; Solodov and Svaiter,

2000; Stampacchia, 1964; Yang and Bell, 1997) and the refer-
ences therein. In recent years variational inequalities have been
extended in various directions using novel and innovative tech-

niques. A useful and important generation of variational
inequalities is the mixed variational inequality containing a
nonlinear term. Due to the presence of the nonlinear bifunc-
tion, the projection method and its variant forms including

the Wiener–Hopf equations technique can not be extended
to suggest iterative methods for solving mixed variational
inequalities. To overcome these drawbacks, some iterative
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methods have been suggested for a special cases of the mixed

variational inequalities. For example, if the nonlinear term is
a proper, convex and lower-semicontinuous function, then
one can show that the mixed variational inequalities are equiv-
alent to the fixed point and the resolvent equations. This alter-

native formulation has played a significant part in the
developing various resolvent-type methods for solving mixed
variational inequalities. This equivalent formulation has been

used to suggest and analyze some iterative methods, the con-
vergence of these methods requires that the operator is both
strongly monotone and Lipschitz continuous. Secondly, it is

very difficult to evaluate the resolvent of the operator except
for very simple cases. Noor (2004b) has used the technique
of updating the solution to suggest and analyze some three-

step iterative methods for solving some classes of variational
inequalities and related optimization problems. It has been
shown that three-step iterative methods (Bnouhachem et al.,
2006; Fu, 2008) are more efficient than two-step and one-step

iterative methods. Inspired and motivated by the research
going in this direction. We suggest and analyze a new self-
adaptive method for solving mixed variational inequalities by

using the resolvent operator and a new step size. We prove
the convergence of the proposed method under certain condi-
tions. In numerical experiment, we take a special case of the

proposed method and an example is given to illustrate the effi-
ciency of the proposed method.
2. Preliminaries

Let H be a real Hilbert finite-dimensional space, whose inner
product and norm are denoted by h�; �i and k � k. Let
T : H! H be nonlinear operators. Let @u denote the

subdifferential of a proper, convex and lower-semicontinuous
function u : H! R [ fþ1g. It is well known that the sub-
differential @u is a maximal monotone operator. We consider

the problem of finding u� 2 H such that

hTðu�Þ; u� u�i þ uðuÞ � uðu�ÞP 0; 8u 2 H; ð2:1Þ

which is called the mixed variational inequality (see Noor,
2003b).

If K is a closed and convex set in H and uðuÞ ¼ IKðuÞ is the
indicator function of K defined by

IKðuÞ ¼
0; if u 2 K;

þ1; otherwise;

�

then the problem (2.1) is equivalent to finding u� 2 K such

that

hTðu�Þ; u� u�iP 0; 8u 2 K; ð2:2Þ

which is known as the classical variational inequality intro-
duced and studied by Stampacchia (1964). For the applica-

tions, numerical methods and other aspects of the mixed
variational inequalities (see Baiocchi and Capelo, 1984;
Bnouhachem, 2005; Bnouhachem et al., 2006; Brezis, 1973;

Fukushima, 1992; Fu, 2008; Giannessi et al., 2001; Glowinski
et al., 1981; Han and Lo, 2002; He and Liao, 2002; He et al.,
2004; Kinderlehrer and Stampacchia, 2000; Lions and Stam-
pacchia, 1967; Noor, 1997, 1998, 2000, 2002, 2003a,b,

2004a,b; Noor and Bnouhachem, 2005; Peng and Fukushima,
1999; Solodov and Svaiter, 2000; Stampacchia, 1964; Yang
and Bell, 1997) and the references therein.
Definition 2.1. (Brezis, 1973) For any maximal operator T, the

resolvent operator associated with T, for any q > 0, is defined
as

JTðuÞ ¼ ðIþ qTÞ�1ðuÞ; 8u 2 H: ð2:3Þ

It is well known that the subdifferential @uð�Þ of a proper, con-

vex and lower-semicontinuous function uð�Þ is a maximal
monotone operator. Thus, we have

JuðuÞ ¼ ðIþ q@uð�ÞÞ�1ðuÞ; 8u 2 H:

We also have the following characterization of the resolvent
operator Ju, which plays the crucial part in the analysis of
our results.

Lemma 2.1. [Brezis, 1973] For a given w 2 H and q > 0, the

inequality

hw� z; z� vi þ quðvÞ � quðzÞP 0; 8v 2 H

holds if and only if z ¼ JuðwÞ, where Ju ¼ ðIþ q@uÞ�1 is the

resolvent operator. It follows from Lemma 2.1 that

hw� JuðwÞ; JuðwÞ � vi þ quðvÞ � quðJuðwÞÞ
P 0; 8v;w 2 H: ð2:4Þ

If u is the indicator function of a closed convex set X in H,
then the resolvent operator Juð�Þ reduces to the projection oper-
ator PX½�� (see Noor, 1997). It is well known that Ju is nonex-

pansive i.e.,

kJuðuÞ � JuðvÞk 6 ku� vk; 8u; v 2 H: ð2:5Þ

Lemma 2.2. [Noor, 1998] u� 2 H is solution of the mixed vari-
ational inequality (2.1) if and only if u� 2 H satisfies the
relation:

u� ¼ Ju½u� � qTðu�Þ�; ð2:6Þ

where Ju ¼ ðIþ q@uÞ�1 is the resolvent operator. From Lemma
2.2, it is clear that u 2 H is solution of (2.1) if and only if u is a
zero point of the residue vector

rðu; qÞ ¼ u� Ju½u� qTðuÞ�:

Throughout this paper, we make following assumptions.

Assumptions:

� T is continuous and pseudomonotone operator on H, that

is

hTðuÞ � TðvÞ; u� viP 0; 8u; v 2 H:

� The solution set of problem (2.1), denoted by S�, is
nonempty.
3. Basic results

In this section, we prove some basic properties, which will be
used to establish the sufficient and necessary conditions for

the convergence of the proposed method. The following
lemmas summarize some basic inequalities with respect
to the resolvent operator. We refer to (see, for example,

Bnouhachem, 2005) for the complete proof.
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Lemma 3.1 Bnouhachem (2005). For all u 2 H and

q0 P q > 0, it holds that

krðu; q0ÞkP krðu; qÞk ð3:1Þ

and

krðu; q0Þk
q0

6
krðu; qÞk

q
: ð3:2Þ

Lemma 3.2. [Bnouhachem (2005)] If u is not a solution of prob-
lem (2.1), then there exist d 2 ð0; 1Þ and �0 > 0, such that for all
q 2 ð0; �0�,

qkTðuÞ � TðJu½u� qTðuÞ�Þk 6 dkrðu; qÞk: ð3:3Þ

Lemma 3.3. 8u 2 H; u� 2 S� and q > 0 we have

hgðuÞ � gðu�Þ; dðu; qÞiP /ðu; qÞ; ð3:4Þ

where

dðu; qÞ :¼ rðu; qÞ þ qTðJu½u� qTðuÞ�Þ

and

/ðu; qÞ :¼ krðu; qÞk2 � qhrðu; qÞ;TðuÞ � TðJu½u� qTðuÞ�Þi:

Proof. For any u� 2 S� solution of problem (2.1), we have

hqTðu�Þ; v� u�i þ quðvÞ � quðu�ÞP 0; 8v 2 H; q > 0:

ð3:5Þ

Taking v ¼ Ju½u� qTðuÞ� in (3.5) and using the monotonicity
of T, we obtain

hqTðJu½u� qTðuÞ�Þ; Ju½u� qTðuÞ� � u�i
þ quðJu½u� qTðuÞ�Þ � quðu�ÞP 0: ð3:6Þ

Substituting w ¼ u� qTðuÞ and v ¼ u� into (2.4), and using the
definition of rðu; qÞ, we get

hrðu; qÞ � qTðuÞ; Ju½u� qTðuÞ� � u�i
þ quðu�Þ � quðJu½u� qTðuÞ�ÞP 0: ð3:7Þ

Adding (3.6) and (3.7), we have

hrðu; qÞ � q½TðuÞ � TðJu½u� qTðuÞ�Þ�; Ju½u� qTðuÞ� � u�iP 0;

which can be rewritten as

hrðu; qÞ � q½TðuÞ � TðJu½u� qTðuÞ�Þ�; u� u� � rðu; qÞiP 0;

then

hu� u�; rðu; qÞ þ qTðJu½u� qTðuÞ�ÞiP krðu; qÞk2

� qhrðu; qÞ;TðuÞ � TðJu½u� qTðuÞ�Þi þ hu� u�; qTðuÞi:

Using the monotonicity of T, the last term in the right side of
the above inequality is positive, we obtain

hu� u�; dðu; qÞiP krðu;qÞk2 � qhrðu;qÞ;TðuÞ � TðJu½u� qTðuÞ�Þi;

and the conclusion of Lemma 3.3 is proved. �

From Lemmas 3.2 and 3.3 we have

hu� u�; dðu; qÞiP /ðu; qÞP ð1� dÞkrðu; qÞk2: ð3:8Þ
Taking the above inequality into consideration, we suggest and

consider a new method for solving the mixed variational
inequality (2.1).

Algorithm 3.1. For a given uk 2 H, find the approximate
solution by the following iterative schemes involving the two-

steps.

Step 1.

~uk ¼ Ju uk � qkTðukÞ
� �

; ð3:9Þ

where qk satisfies

kqk TðukÞ � T ~uk
� �� �

k 6 dkuk � ~ukk; 0 < d < 1: ð3:10Þ

Step 2. The new iterate ukþ1 is defined by

ukþ1 ¼ Ju uk � akd uk; qk

� �� �
;

where

d uk; qk

� �
¼ uk � ~uk þ qkT ~uk

� �
; ð3:11Þ

ek ¼ qk Tð~ukÞ � TðukÞ
� �

; ð3:12Þ
D uk; qk

� �
:¼ uk � ~uk þ ek; ð3:13Þ

/ uk; qk

� �
:¼ huk � ~uk;D uk; qk

� �
i; ð3:14Þ

and

ak :¼

D uk ;qkð Þ
2
þ uk � ~uk

����
����
2

kD uk; qkð Þ þ uk � ~ukk2
: ð3:15Þ

Remark 3.1. (3.10) implies that

jhuk � ~uk; ekij 6 dkuk � ~ukk2; 0 < d < 1: ð3:16Þ

For the convergence analysis of the proposed method, we
need the following results.

Lemma 3.4. For given uk 2 Rn and qk > 0, let ~uk and ek satisfy
(3.9) and (3.12), then

/ uk; qk

� �
P ð1� dÞkuk � ~ukk2 ð3:17Þ

and

ak P
1

2
: ð3:18Þ

Proof. It follows from (3.13) and (3.16) that
/ uk; qk

� �
:¼ huk � ~uk;D uk; qk

� �
i

¼ kuk � ~ukk2 þ huk � ~uk; eki
P ð1� dÞkuk � ~ukk2:

Otherwise from (3.10), we have

huk � ~uk;D uk; qk

� �
i ¼ kuk � ~ukk2 þ huk � ~uk; eki

P
1

2
kuk � ~ukk2 þ huk � ~uk; eki þ 1

2
kekk2

¼ 1

2
kD uk; qk

� �
k2:



238 A. Bnouhachem et al.
Using Cauchy–Schwartz inequality, we get

kuk � ~ukkP
1

2
kD uk; qk

� �
k:

From the above inequality, we obtain

D uk; qkð Þ
2

þ uk � ~uk
����

����
2

¼ kD uk; qkð Þk2

4
þ uk � ~uk;D uk; qk

� �� 	
þ kuk � ~ukk2

¼ 1

2

kD uk; qkð Þk2

2
þ 2huk � ~uk;D uk; qk

� �
i

(

þkuk � ~ukk2 þ kuk � ~ukk2
o

P
1

2

kD uk; qkð Þk2

2
þ 2huk � ~uk;D uk; qk

� �
i

(

þkuk � ~ukk2 þ kD uk; qkð Þk2

2

)

¼ 1

2
kD uk; qk

� �
þ uk � ~ukk2;

which implies that

ak P
1

2
;

we obtain the required result. �
4. Convergence analysis

In this section, we begin to investigate convergence of the pro-
posed method.

Theorem 4.1. Let u� be a solution of problem (2.1) and let ukþ1

be the sequence obtained from Algorithm 3.1. Then uk is bounded
and

kukþ1 � u�k2 6 kuk � u�k2 � cð1� dÞ
2

kr uk; qk

� �
k2:

Proof. Let u� be a solution of problem (2.1). Then, from
(3.11), we have

kukþ1 � u�k2 6 kuk � u� � cakd uk; qk

� �
k2

¼ kuk � u�k2 � 2cak uk � u�; d uk; qk

� �� 	
ð4:1Þ

þ c2a2
kkd uk; qk

� �
k2; ð4:2Þ

where the inequality follows from the nonexpansive of the
resolvent operator. Let

UðakÞ ¼ 2cak uk � u�; d uk; qk

� �� 	
� c2a2

kkd uk; qk

� �
k2:

Note that UðaÞ is a quadratic function of a and it reaches its
maximum at

a�k ¼
uk � u�; d uk; qkð Þh i

ckd uk; qkð Þk2

and

Uða�kÞ ¼ ca�khuk � u�; d uk; qk

� �
i:

From (3.8) and (4.2), we obtain
kukþ1 � u�k2 6 kuk � u�k2 � U a�k
� �

6 kuk � u�k2 � ca�kð1� dÞkr uk; qk

� �
k2

6 kuk � u�k2 � cð1� dÞ
2

kr uk; qk

� �
k2;

where the last inequality follows from (3.18). Since c > 0 and
d 2 ð0; 1Þ we have

kukþ1 � u�k 6 kuk � u�k 6 . . . 6 ku0 � u�k:

This shows that the sequence uk is bounded. �

The following result can be proved by similar arguments as
in Bnouhachem et al. (2006). Hence the proof is omitted.

Theorem 4.2. The sequence fukg generated by the proposed

method converges to a solution point of problem (2.1).

We now describe the new algorithm as follows.

Algorithm 4.1.

Step 0. Let q0 ¼ 1; d :¼ 0:95 < 1; c ¼ 1:95; � > 0; k ¼ 0 and

u0 2 H .
Step 1. If kjrðuk ; qkÞk1 6 �, then stop. Otherwise, go to Step
2.

Step 2.
~uk ¼ Ju½uk � qkT ðukÞ�, ek ¼ qkðT ð~ukÞ � T ðukÞÞ,

r ¼ kekk
kuk�~ukk.

While ðr > dÞ
qk ¼ 0:8

r � qk , ~uk ¼ Ju½uk � qkT ðukÞ�,
ek ¼ qkðT ð~ukÞ � T ðukÞÞ, r ¼ kekk

kuk�~ukk.
end While

Step 3. Set
Dðuk ; qkÞ :¼ uk � ~uk þ ek ,
dðuk ; qkÞ ¼ uk � ~uk þ qkT ð~ukÞ,

ak :¼
Dðuk ;qk Þ

2 þuk�~uk
�� ��2

kDðuk ;qk Þþuk�~ukk2,

ukþ1 ¼ Ju½uk � cakdðuk ; qkÞ�,

Step 4. qkþ1 ¼
qk �0:7

r if r 6 0:5;
qk otherwise:

�
Step 5. k := k + 1; go to Step 1.
5. Computational results

In this section, we apply the new method to a traffic equilib-
rium problem, which is a classical and important problem in
transportation science (see, for example, He et al., 2004; Yang
and Bell, 1997). The numerical results show that the new meth-

od is attractive in practice.
Consider a network ½N;L� of nodes N and directed links L,

which consists of a finite sequence of connecting links with a

certain orientation. Let a; b, etc., denote the links; p; q, etc., de-
note the paths; x denote an origin/destination (O/D) pair of
nodes of the network; Px denotes the set of all paths connect-

ing O/D pair x; up represent the traffic flow on path p; dx de-
note the traffic demand between O/D pair x, which must
satisfy

dx ¼
X
p2Px

up;



Table 1 The free-flow cost and the designed capacity of links

in (5.1).

Link Free-flow

travel time t0a

Capacity Ca Link Free-flow

travel time t0a

Capacity Ca

1 6 200 7 5 150

2 5 200 8 10 150

3 6 200 9 11 200

4 16 200 10 11 200

5 6 100 11 15 200

6 1 100 – – –

Table 2 The O/D pairs and the coefficient m and q in (5.2).

No. of the pair O/D pair mx qx

1 (1,7) 25 25log600

2 (2,7) 33 33log500

3 (3,7) 20 20log500

4 (6,7) 20 20log400

Table 3 Numerical results for different e.

Different e Algorithm 4.1 The method in

Bnouhachem et al. (2006)

k l CPU (Sec.) k l CPU (Sec.)

10�4 31 71 0.031 85 185 0.04

10�5 35 79 0.047 103 221 0.06

10�6 42 96 0.51 120 255 0.07

10�7 48 109 0.6 138 291 0.08

10�8 54 122 0.72 155 325 0.09
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where up P 0; 8p; and fa denote the link load on link a, which

must satisfy the following conservation of flow equation

fa ¼
X
p2P

dapup;

where

dap ¼
1; if a is contained in path p;

0; otherwise:

�

Let A be the path-arc incidence matrix of the given problem
and f ¼ ffa; a 2 Lg be the vector of the link load. Since u is the

path-flow, f is given by

f ¼ ATu:

In addition, let t ¼ fta; a 2 Lg be the row vector of link
costs, with ta denoting the user cost of traveling link a which

is given by

taðfaÞ ¼ t0a 1þ 0:15
fa
Ca


 �4
" #

; ð5:1Þ

where t0a is the free-flow travel cost on link a and Ca is designed
capacity of link a. Then t is a mapping of the path-flow u and
its mathematical form is

tðuÞ :¼ tðfÞ ¼ tðATuÞ:

Note that the travel cost on the path p denoted by hp is

hp ¼
X
a2L

daptaðfaÞ:

Let P denote the set of all the paths concerned. Let

h ¼ fhp; p 2 Pg be the vector of (path) travel cost. For given
link travel cost vector t, h is a mapping of the path-flow u,
which is given by

hðuÞ ¼ AtðuÞ ¼ AtðATuÞ:

Associated with every O/D pair x, there is a travel disutility
kxðdÞ, which is defined as following:

kxðdÞ ¼ �mx logðdxÞ þ qx: ð5:2Þ

Note that both the path costs and the travel disutilities are

functions of the flow pattern u. The traffic network equilibrium
problem is to seek the path-flow pattern u�, which induces a
demand pattern d� ¼ dðu�Þ, for every O/D pair x and each

path p 2 Px,
Figure 1 The network used for the numerical test.
TðuÞ � TpðuÞ ¼ hpðuÞ � kxðdðuÞÞ:

The problem can be reduced to a variational inequality in
the space of path-flow pattern u 2 Rn

þ such that

hu� u�;Tðu�ÞiP 0; 8u 2 Rn
þ; ð5:3Þ

which is a special case of the mixed variational inequality (2.1),
by taking
Table 4 The optimal path-flow.

O/D pair Path No. Link of path Optimal path-flow

O/D pair (1,7) 1 (1,3) 165.3145

2 (2,4) 0

3 (11) 138.5735

4 (5,1,3) 82.5281

5 (5,2,4) 0

O/D pair (2,7) 6 (5,11) 55.7871

7 (8,6,4) 0

8 (8,9) 87.0260

O/D pair (3,7) 9 (7,3) 19.7549

10 (10) 229.9747

O/D pair (6,7) 11 (9) 178.5600

12 (6,4) 0



Table 5 The optimal link flow.

Link No. Link flow Link No. Link flow Link No. Link flow Link No. Link flow

1 247.8426 4 0 7 19.7549 10 229.9747

2 0 5 138.3152 8 87.0260 11 194.3606

3 267.5974 6 0 9 265.5860 – –
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uðuÞ ¼
0; if u 2 Rn

þ;

þ1; otherwise:

�

For the comparison sake, we consider the same example

studied in He et al. (2004) and Yang and Bell (1997). The net-
work is depicted in Fig. 1. The free-flow travel cost and the de-
signed capacity of links (5.1) are given in Table 1, the O/D

pairs and the coefficient m and q in the disutility function
(5.2) are given in Table 2. For this example, there are together
12 paths for the 4 given O/D pairs listed in Table 4.

In all tests we take d ¼ 0:95 and c ¼ 1:95. All iterations
start with u0 ¼ ð1; . . . ; 1ÞT and q0 ¼ 1, and stopped whenever
krðu; qÞk1 6 e. All codes are written in Matlab and run on a
P4-2.00G note book computer. The test results of Algorithm

4.1 and the method in Bnouhachem et al. (2006) for different
e are reported in Table 3. k is the number of iterations and l
denotes the number of evaluations of mapping T. For the case

e ¼ 10�8, the optimal path-flow and link flow are given in
Tables 4 and 5, respectively. The numerical experiments show
that the new method is more flexible and efficient to solve the

traffic equilibrium problem.
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