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Abstract The present paper reports the indentation of integral transform technique for a semi-infi-

nite initially stressed elastic medium under the action of an axi-symmetric flat-ended circular cylin-

drical punch pressing the medium normally. The incremental deformation theory is used to solve

the problems for Neo-Hookean solid. The distribution of incremental stress and strain is obtained

by using the Hankel’s transformation. The effects of the punch have been studied numerically and

presented in various forms of curves. The plane punch indentation has its broad applications in the

field of Engineering Mechanics. There are so many firing and launching pads, which use the Neo-

Hookean solid as buffer and bear the punch during the action of machines. Thus the present prob-

lem has a lot of applications to find the effect of punch on machines.
ª 2010 King Saud University. Production and hosting by Elsevier B.V. All rights reserved.
1. Introduction

The incremental deformation theory of elasticity concerns a
deformation when the state of strain and stress at any time dif-

fer only slightly from that of a known finite deformation. Var-
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ious elastic bodies possess initial stress by the action of body
forces. If such a body is further subjected to deforming forces
then apart from the initial finite deformation, it will have incre-

mental deformation. The basic equations of this theory have
been given by Green et al. (1952), Green and Zerna (1954),
Biot (1938, 1940), Neuber (1943), Mushkhelishvili (1953) and

Trefftz (1933).
Biot has discussed some interesting problemswith the help of

this theory like surface buckling, internal buckling, etc. He used
the Cartesian concepts and ElementaryMathematical Model in

place of tensor calculus. Therefore, Biot’s concepts are not only
easy to understand the physical meaning of incremental stress
and strain but also useful in mathematical analysis.

Later on, Kurashige (1969, 1971) discussed a circular crack
problem and the two dimensional crack problems for initially
stressed Neo-Hookean solids. Hara et al. (1989) has studied an

axi-symmetric contact problem of a transversely isotropic layer
indented by an annular rigid punch. Some contact problems
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Nomenclature

xi cartesian coordinates

Sij initial stress, corresponding to initial finite defor-
mation, referred to xi

ni components of unit normal to boundary surface
q density in a finite deformation

ui incremental displacement (infinitesimal)
W elastic potential per unit volume
eii incremental strain

ki extension ratio
/ displacement function

wii incremental rotation

l0 shear modulus in an unstrained state
E incremental volume expansion
P initial all-around compressive stress
p0 pressure in a punch

a radius of a punch in initially deformed body
sij incremental stress referred to axes which are

incrementally displaced with the medium

Dfi incremental boundary force per unit initial area
C1ðnÞ;C2ðnÞ integral constants
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have been discussed by Inove et al. (1990), Sokamoto et al.
(1990), Babich et al. (2004), Yang (2005) and Nadler and Tang
(2008). In linear elastic fracture mechanics analysis, determina-

tion of the stresses is always a major consideration and has to
be evaluated by using Hankel’s transformation. Kuo and Keer
(1992) used the Hankel transform to solve numerically the

contact problem of a layered transversely isotropic half
space. Sneddon, (1975) has given an application of integral
transform techniques. Recently various powerful techniques

such as decomposition method (Khan, 2009; Khan and Faraz,
2010, 2011a,b), homotopy perturbation method (Yildirim,
2010a,b) and variational methods (Faraz et al., 2011) have
been proposed for obtaining exact and approximate solutions.

Many results obtained in the literature regarding punch such
as a sequential punch of flat-ended and wedge-shaped profile
with crack initiating at one end of the contact region in Hasebe

et al. (1989, 1990), who used a rational mapping function and
complex stress function.

Fan and Chyanbin (1996) have solved punch problems by

combining Stork’s formalism and the method of analytic con-
tinuation. Vibration of an elliptic plate with variable thickness
is discussed in Singh and Tyagi (1985) and Singh and Goel

(1985). Recently, an analysis, based on finite element approach
is given in Anifantis (2001) and initiation and propagation of
surface cracks inDag and Erdogan (2002). The present problem
has been solved with the help of the theory of Bessel’s function.

The present work is directed towards obtaining stresses for
flat-ended circular cylindrical punch for initially stressed Neo-
Hookean solids. The purpose of this paper is to obtain analytic

expressions for stresses and displacements. These expressions
of stresses and displacement containing infinite integrals and
involving Bessel’s function are solved numerically. After that

the characteristics of such numerical modeling are discussed
graphically. A semi-infinite initially stressed elastic medium is
used, which is pressed normally by an axi-symmetric rigid

punch. The medium is supposed to be isotropic, homogenous
and incompressible.
2. Formulation of the problem

The equation of motion for incremental deformation theory in
rectangular cartesian co-ordinates xi and t is

@sij
@xj

þ Sjk

@wik

@xj

þ Sik

@wjk

@xj

� ejk
@Sik

@xj

¼ q
@2ui
@t2

ð1Þ

The expression for incremental boundary force per unit
area is
Dfi ¼ ðsij þ Sjkwik þ Sije� SikejkÞnj; ð2Þ

where the usual convention for summation over repeated indi-

ces is applied.
The elastic potential per unit volume for the material (so

called Neo-Hookean solid) is expressed in the form given be-

low according to Trefftz (1933)

W ¼ 1

2
l0ðk2

1 þ k2
2 þ k2

3 � 3Þ; ð3Þ

with

k1k2k3 ¼ 1: ð4Þ

With the help of Eqs. (3) and (4), the stress–strain relations
are

S11 � S22 ¼ l0ðk2
1 � k2

2Þ ð5Þ

S22 � S33 ¼ l0ðk2
2 � k2

3Þ ð6Þ

S33 � S11 ¼ l0ðk2
3 � k2

1Þ ð7Þ

The equation of motion is reduced in cylindrical polar co-

ordinates ðr; h; zÞ from rectangular cartesian co-ordinates
ðxi; tÞ that are connected as

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2
1 þ x2

2

q
; h ¼ tan�1ðx2=x1Þ; z ¼ x3 ð8Þ

The components Srr;Shh and Szz of initial stress are assumed
to be non-zero and are uniform throughout the body and the
body is assumed in the state of symmetrical incremental strain

with respect to the z-axis. Therefore, the Eq. (1) reduces in
cylindrical polar co-ordinates to

@srr
@r
þ srr � shh

r
þ @srz
@z
� Srr � Szzð Þ @wrz

@z
¼ q

@2ur
@t2

; ð9Þ

@szz
@z
þ 1

r

@

@r
ðrszrÞ � ðSrr � SzzÞ

1

r

@

@r
ðrwrzÞ ¼ q

@2uz
@t2

: ð10Þ

The expressions for incremental displacement ur and uz in
terms of scalar function Uðr; zÞ are given by

ur ¼ �
@2U
@r@z

; ð11Þ

uz ¼
1

r

@

@r
r
@U
@r

� �
: ð12Þ

The function U is given by the simple partial differential

equation as follows



Rigid Punch z = f(r)
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Figure 1 Indentation of a semi-infinite solid by an axi-symmet-

rical rigid punch.
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� �
þ @2

@z2

� �
k2

1

r

@

@r
r
@U
@r

� �
þ @

2U
@z2
� q

l0

@2U
@t2

� �

¼ 0;

ð13Þ

and the expression for stress ‘s’ is as follows

s ¼ l0k
2
z

@3U
@z3
� q

@3U
@z@t2

; ð14Þ

where k ¼ kr

kz

ð15Þ

Using the Hankel transform and inversion transform of or-
der zero, the function U and �U (Hankel transform of U) are de-
fined by

�U ¼
Z 1

0

Uðr; zÞrJ0ðrnÞdr; ð16Þ

U ¼
Z 1

0

�Uðr; zÞnJ0ðrnÞdn ð17Þ

From which the following formulae for differentiated func-
tion are obtained

1

r

@

@r
r
@U
@r

� �
¼ �

Z 1

0

�Un3J0ðrnÞdn; ð18Þ

@

@r
U ¼ �

Z 1

0

Z 1

0

�Un2J1ðrnÞdn; ð19Þ

where J0 and J1 are the Bessel’s function of order 0 and 1,
respectively.

Using these formulae, the expressions for incremental

displacement ur and uz with the help of Eqs. (11) and (12) in
Hankel inversion are expressed as follows

ur ¼
Z 1

0

@ �U
@z

n2J1ðrnÞdn ð20Þ

uz ¼ �
Z 1

0

�Un3J0ðrnÞdn: ð21Þ

Similarly, the components of incremental stress szz; szr and
srr are as follows

szz ¼ s� l0k
2
zð2þ k2Þ

Z 1

0

n3 @ �U
@z

J0ðrnÞdn; ð22Þ

szr ¼
1

2
l0k

2
zð1þ k2Þ

Z 1

0

n4 �Uþ n2 @
2 �U
@z2

� �
J1ðrnÞdn; ð23Þ

srr ¼ l0k
2
z

Z 1

0

k2n3 @U
@z
þ n

@3 �U
@z3

� �
J0ðrnÞdn

�

� 2k2

r

Z 1

0

n2 @ �U
@z

J1ðrnÞdn
�

ð24Þ

where

s ¼ 1

2
ðsrr þ shhÞ ¼ l0k

2
z

Z 1

0

n
@3 �U
@z3

J0ðrnÞdn: ð25Þ

Considering the steady state condition of Uðr; zÞ; @2U
@t2
¼ 0 in

Eq. (13) and using Hankel transform, the equation reduces to
the ordinary differential equation
ðD2 � n2ÞðD2 �U� k2n2 �UÞ ¼ 0; ð26Þ

where D ¼ d
dz
.

2.1. Boundary conditions

The semi-infinite elastic medium is deformed by the normal

indentation of the boundary by a flat-ended circular cylinder
of radius a. Assuming that the semi-infinite medium z P 0 is
initially deformed and the components szz and shh are zero so

that

Srr ¼ l0ðk2
r � k2

zÞ ¼ �P: ð27Þ

For no initial stress, P ¼ 0; from Eqs. (15) and (27) we get
k ¼ 1:

The equation of the punch is z ¼ fðrÞ, which is in the form

of a solid of revolution (Fig. 1). Referring the tip of the punch
as origin, if the pressure pðrÞ is assumed to be applied in the
plane z ¼ 0 and the contact is frictionless, the boundary condi-
tions are

urðr; 0Þ ¼ pðrÞ ð0 6 r 61Þ
srz ¼ 0 ð0 6 r 61Þ

�
ð28Þ

uz ¼ D1 � fðrÞ ð0 6 r 6 aÞ
szz ¼ 0 ðr > aÞ

�
ð29Þ

where the physical significance of parameter D1 is that it is the

depth to which the punch penetrates the elastic half space and
fð0Þ ¼ 0: In case of flat-ended circular cylindrical punch, the
profile of the punch is not smooth at r ¼ a; so fðrÞ ¼ 0:

3. Solution of the problem

The solution of the ordinary differential Eq. (26) for a half
space z P 0 is given by

U ¼ C1ðnÞe�nz þ C2ðnÞe�knz ð30Þ

where C1ðnÞ and C2ðnÞ are the integral constants.

Now applying the boundary conditions (28) to the Eq. (30),
we have

��pðnÞ
n2
¼ C1ðnÞ þ C2ðnÞ; ð31Þ
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and

0 ¼ 2C1ðnÞ þ ð1þ k2ÞC2ðnÞ: ð32Þ

Solving the Eqs. (31) and (32), we get

C1ðnÞ ¼ 1þk2
1�k2

�pðnÞ
n2
;

C2ðnÞ ¼ �2
1�k2

�pðnÞ
n2
:

9=
; ð33Þ

The first boundary condition in Eq. (29) does not corre-
spond accurately to the normal pressure in the punch in all
cases. In this case, the punch is assumed to be of very small

depth so that the surface of the punch may be taken to be coin-
cident with the plane z ¼ 0; applying the boundary condition
(29) to Eq. (30), we obtain the following dual integral

equationsZ 1

0

n�pðnÞJ0ðrnÞdn ¼ D1 � fðrÞ; 0 6 r 6 aÞ ð34Þ

Z 1

0

n2�pðrnÞJ0ðrnÞdn ¼ 0: ðr > aÞ ð35Þ

Making the substitutions an ¼ g; r ¼ ax;D0 ¼ aD1, the Eqs.

(34) and (35) reduce to that of solving the dual integral
equationsZ 1

0

wðgÞJ0ðxgÞdg ¼ D0 � f1ðxÞ; ð0 6 x 6 1Þ ð36Þ

Z 1

0

gwðgÞJ0ðxgÞdg ¼ 0: ðx > 1Þ ð37Þ

Eq. (36) is equivalent to the Abel’s integral equationffiffiffi
2

p

r Z r

0

gðtÞdtffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � t2
p ¼ D0 � f1ðxÞ; ðr > 0Þ ð38Þ

where the unknown function g(t) is given by

gðtÞ ¼
ffiffiffi
2

p

r
D0 � t

Z t

0

f01ðxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � x2
p dx

� �
; ð39Þ

and D0 ¼
Z 1

0

f01ðxÞffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2
p dx; ð40Þ

or D1 ¼
Z a

0

af0ðrÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � r2
p dr: ð41Þ

The solution of Eq. (37) is given by Sneddon (1975) as
follows

wðnÞ ¼
ffiffiffi
2

p

r Z 1

0

gðtÞ cosðgtÞdt: ð42Þ

For a flat-ended circular cylindrical punch the profile of the
punch is not smooth at r ¼ a; so f1ðxÞ ¼ 0 and from Eq. (39),

we get

gðtÞ ¼
ffiffiffi
2

p

r
aD0 ð43Þ

and from Eq. (42)

wðnÞ ¼
ffiffiffi
2

p

r Z 1

0

ffiffiffi
2

p

r
aD0 cos gtdt ¼ 2aD0

p
sin g

g
;

wðanÞ ¼ 2D0

pn
sin an:
Therefore, we have

�pðnÞ ¼ 2D1

p
sin an

n2
: ð44Þ

Now putting the values of C1ðnÞ;C2ðnÞ; �pðnÞ in Eq. (30), we

get

U ¼ 2D1

pð1� k2Þ
ð1þ k2Þe�nz � 2e�knz
� � sin an

n4
ð45Þ

Thus the non-vanishing components of stresses and dis-
placements in terms of Hankel inversion are as follows

szz ¼
2D1l0k

2
z

pð1� k2Þ

Z 1

0

ð1þ k2Þ2 e�nz � 4ke�knz
n o

sin anJ0ðrnÞdn;

ð46Þ

szr ¼
2D1l0k

2
z

pð1� k2Þ

Z 1

0

ð1þ k2Þ2ðe�nz � e�knzÞ sin anJ1ðrnÞdn;

ð47Þ

srr ¼
�2D1l0k

2
z

pð1� k2Þ

Z 1

0

ð1þ k2Þ2e�nz � 4k3e�knz
n o

sin anJ0ðrnÞdn
	

�2k2

r

Z 1

0

ð1þ k2Þ2e�nz � 2ke�knz
n o

:
sin an

n
J1ðrnÞdn



;

ð48Þ

uz ¼
�2D1

pð1� k2Þ

Z 1

0

ð1þ k2Þe�nz � 2e�knz
� � sin an

n
J0ðrnÞdn;

ð49Þ
and

ur ¼
�2D1

pð1� k2Þ

Z 1

0

ð1þ k2Þe�nz � 2ke�knz
� � sin an

n
J1ðrnÞdn:

ð50Þ
3.1. Limiting case

The case of non-initial stresses and displacements will be ob-
tained by making k fi 1. The results agree with those already

obtained by Sneddon (1975) for materials which obey Hook’s
law. From the expressions of stresses and displacements, it ap-
pears that as k fi 1, all components of stresses and displace-

ments tend to infinity which means that the situation
becomes unstable.

4. Numerical results and discussion

For a flat-ended circular cylindrical punch, variations of incre-
mental stress and displacement component szz; srr and ur with

various parameters are plotted in Figs. 2–5. For a non-initially
stressed body, P ¼ 0 which is given by k ¼ 1: If the initial
stress is high, P=l0 tends to unity. For different values of

P=l0 between 0.1 and 0.4, variations of stresses and displace-
ment have been shown. Attention has been paid to investigate
the influences of the initial stress.

Fig. 2 shows the variation of normal component of incre-

mental stress szz along z=a ¼ 0:1. There is a sharp rise and fall
in the neighbourhood of the edge of punch. It shows that as
the punch comes in contact with elastic body, it produces lar-

ger stresses and explains the discontinuity of stress near r ¼ a:
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Fig. 3 shows the distribution of normal component of incre-
mental stress szz along z-axis. The normal component of the
incremental stress has a peak at a point from the surface of

the punch and it decreases monotonically as the value of z in-
creases for high initial stress. For no initial stress the peak is
higher.

Fig. 4 shows the variation of radial component of incre-
mental stress srr with r. It shows that there is a little influence
on the variation of incremental stress in the neighbourhood of

the edge of the punch.
Fig. 5 shows the distribution of normal component of incre-

mental displacement uz with r along z=a ¼ 0:1: As the initial
stress decreases, incremental stress has a high peak. The incre-

mental stress decreases near the edge of the punch.
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