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Abstract In this paper, the homotopy analysis method is extended to investigate the numerical

solutions of the fractional nonlinear wave equation. The numerical results validate the convergence

and accuracy of the homotopy analysis method. Finally, the accuracy properties are demonstrated

by some examples.
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1. Introduction

To find the explicit solutions of nonlinear differential equations,
many powerful methods have been used (Abbasbandy, 2006;
He, 1998; Wazwaz, 1997; Ghasemi et al., 2007; Adomian and

Adomian, 1984). The homotopy analysis method (HAM) (Liao,
2003, 2004; Liao and Tan, 2007; Yamashita et al., 2007) is a gen-
eral analytic approach to get series solutions of various types of

nonlinear equations. The HAM is based on homotopy, a funda-
mental concept in topology and differential geometry (Sen,
1983).
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In recent years, considerable interest in fractional differen-
tial equations has been stimulated due to their numerous appli-

cations in the areas of physics and engineering (West et al.,
2003). Many important phenomena in electromagnetics,
acoustics, viscoelasticity, electrochemistry and material science

are well described by differential equations of fractional order
(West et al., 2003; Podlubny, 1999; Caputo, 1967). Though
many exact solutions for linear fractional differential equation

had been found, in general, there exists no method that yields
an exact solution for nonlinear fractional differential
equations.
2. Preliminaries and notations

In this section, let us recall the essentials of fractional calculusfirst.
The fractional calculus is a name for the theory of integrals and

derivatives of arbitrary order, which unifies and generalizes the
notions of integer-order differentiation and n-fold integration.
There aremanybooks (West et al., 2003; Podlubny, 1999) that de-

velop fractional calculus andvarious definitionsof fractional inte-
gration and differentiation, such as Riemann–Liouville’s
definition, Caputo’s definition and generalized function ap-
proach. For the purpose of this paper the Caputo’s definition of

fractional differentiation will be used, taking the advantage of
Caputo’s approach that the initial conditions for fractional
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differential equations withCaputo’s derivatives take on the tradi-

tional form as for integer-order differential equations.

Definition 2.1. Caputo’s definition of the fractional-order

derivative is defined as

DafðtÞ ¼ 1

Cðn� aÞ

Z t

a

fðnÞðsÞ
ðt� sÞaþ1�n

ds;

ðn� 1 < ReðaÞ 6 n; n 2 NÞ; ð1Þ

where the parameter a is the order of the derivative and is al-
lowed to be real or even complex, a is the initial value of func-
tion f. In this paper, only real and positive a will be considered.

For the Caputo’s derivative we have

Dac ¼ 0; ðc is a constantÞ ð2Þ

Datb ¼
0; ðb 6 a� 1Þ;

Cðbþ1Þ
Cðb�aþ1Þ t

b�a; ðb > a� 1Þ

(
: ð3Þ

Similar to integer-order differentiation, Caputo’s fractional
differentiation is a linear operation:

Da kfðtÞ þ lgðtÞð Þ ¼ kDafðtÞ þ lDagðtÞ;

where k; l are constants, and satisfies the so-called Leibnitz
rule:

Da gðtÞfðtÞð Þ ¼
X1
k¼0

a

k

� �
gðkÞðtÞDa�kfðtÞ;

if fðsÞ is continuous in ½a; t� and gðsÞ has nþ 1 continuous

derivatives in ½a; t�.

Definition 2.2. For n to be the smallest integer that exceeds a,
the Caputo space-fractional derivative operator of order a > 0

is defined as

Da
xuðx; tÞ ¼

@auðx; tÞ
@xa

¼
1

Cðn�aÞ
R x

0
ðx� sÞn�a�1 @nuðs;tÞ

@sn ds; if n� 1 < a < n;
@nuðx;tÞ
@xn

; if a ¼ n 2 N:

(

ð4Þ

For establishing our results, we also necessarily introduce
the following Riemann–Liouville fractional integral operator.

Definition 2.3. A real function fðxÞ; x > 0, is said to be in the
space Cl; l 2 R if there exists a real number pð> lÞ, such that
fðxÞ ¼ xpf1ðxÞ, where f1ðxÞ 2 C½0;1Þ, and it is said to be in the
space Cm

l iff fðmÞ 2 Cl; m 2 N.

Definition 2.4. The Riemann–Liouville fractional integral
operator of order a P 0, of a function f 2 Cl; l P �1, is
defined as

JafðxÞ ¼ 1

CðaÞ

Z x

0

ðx� tÞa�1fðtÞdt; a > 0; x > 0: ð5Þ

Properties of the operator Ja can be found in Podlubny
(1999) and we mention only some of them in the following:
For f 2 Cl; l P �1; a; b P 0; c P �1:
J0fðxÞ ¼ fðxÞ; Jaxc ¼ Cðcþ 1Þ
Cðaþ cþ 1Þx

aþc;

JaJbfðxÞ ¼ JaþbfðxÞ; JaJbfðxÞ ¼ JbJafðxÞ:

Also, we need here two of its basic properties. If
m� 1 < a 6 m; m 2 N and f 2 Cm

l ; l P �1, then

DaJafðxÞ ¼ fðxÞ; JaDafðxÞ ¼ fðxÞ �
Xm�1
i¼0

fið0þÞx
i

i!
; x > 0:

ð6Þ

For more information on the mathematical properties of

fractional derivatives and integrals, one can consult Podlubny
(1999).

3. Homotopy analysis method

In this article, we apply the homotopy analysis method to the

discussed problem. Let us consider the fractional differential
equation:

Nðuðx; tÞÞ ¼ 0; ð7Þ

where N is a fractional differential operator, x and t denote

independent variables, uðx; tÞ is an unknown function. Liao
(2003) constructed a zero-order deformation equation as
follows:

ð1� qÞLð/ðx; t; qÞ � u0ðx; tÞÞ ¼ q�hHðx; tÞNð/ðx; t; qÞÞ; ð8Þ

where �h – 0 denotes an auxiliary parameter, Hðx; tÞ is an aux-
iliary function, q 2 ½0; 1� is an embedding parameter, L is an
auxiliary linear operator and it possesses the property
LðCÞ ¼ 0; u0ðx; tÞ is an initial guess of uðx; tÞ; /ðx; t; qÞ is a

function of the homotopy-parameter q 2 ½0; 1�. It is important
that one has great freedom to choose auxiliary parameter �h in
homotopy analysis method. If q ¼ 0 and q ¼ 1, it holds

/ðx; t; 0Þ ¼ u0ðx; tÞ; /ðx; t; 1Þ ¼ uðx; tÞ: ð9Þ

Thus as q increases from 0 to 1, the solution /ðx; t; qÞ varies
from the initial guess u0ðx; tÞ to the solution uðx; tÞ. Expanding
/ðx; t; qÞ in Taylor series with respect to q, one has

/ðx; t; qÞ ¼ u0ðx; tÞ þ
X1
m¼1

umðx; tÞqm; ð10Þ

where

umðx; tÞ ¼
@m/ðx; t; qÞ

@qm

����
q¼0
: ð11Þ

If the auxiliary linear operator, the initial guess, and the aux-
iliary parameter �h are so properly chosen, the series (10) con-

verges at q ¼ 1, one has

uðx; tÞ ¼ u0ðx; tÞ þ
X1
m¼1

umðx; tÞ: ð12Þ

According to Eq. (11), the governing equation can be deduced
from the zero-order deformation, Eq. (8). Define the vector

u!nðx; tÞ ¼ fu0ðx; tÞ; u1ðx; tÞ; . . . ; unðx; tÞg: ð13Þ

Differentiating Eq. (8) m times with respect to the embedding

parameter q and then setting q ¼ 0 and finally dividing them
by m!, we have the so-called mth-order deformation equation

L½umðx; tÞ � vmum�1ðx; tÞ� ¼ �hHðx; tÞRm½ u!m�1ðx; tÞ�; ð14Þ
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Figure 1 The �h-curves at ðx; tÞ ¼ ð0:25; 0:2Þ for 10th-order

approximations.
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where

Rm½ u!m�1ðx; tÞ� ¼
1

ðm� 1Þ!
@m�1Nð/ðx; t; qÞÞ

@qm�1

����
q¼0
; ð15Þ

and

vm ¼
0; m 6 1;

1; m > 1:

�
ð16Þ

The mth-order deformation Eq. (14) is linear and thus can be
easily solved, especially by means of symbolic computation
software such as MATLAB.

4. Application

Consider the following two-dimensional nonlinear differential

equation of fractional order, with the indicated initial
conditions:

@au
@xa � u @2u

@t2
¼ wðx; tÞ; 0 6 x; t 6 1; 1 < a 6 2

uð0; tÞ ¼ fðtÞ; @
@x
uð0; tÞ ¼ gðtÞ:

(
ð17Þ

We rewrite Eq. (17) in an operator form as follows:

Da
xu ¼ u

@2u

@t2
þ wðx; tÞ: ð18Þ

Although, we have freedom to choose an initial guess, one has

Ja
xD

a
xu ¼ Ja

x u
@2u

@t2
þ wðx; tÞ

� �
; ð19Þ

which gives, according to Eq. (6), that

u ¼
Xn�1
k¼0

uðkÞð0; tÞx
k

k!
þ Ja

x u
@2u

@t2
þ wðx; tÞ

� �
; ð20Þ

where as 1 < a 6 2, so n ¼ 2. Neglecting the unknown terms
on the right-hand side of Eq. (20), we have the initial guess

u0 ¼ fðtÞ þ xgðtÞ þ Ja
x½wðx; tÞ�: ð21Þ

Therefore Eq. (20) can be written as

u ¼ fðtÞ þ xgðtÞ þ Ja
x u

@2u

@t2
þ wðx; tÞ

� �
: ð22Þ

It is straightforward for us to choose the auxiliary linear
operator

Lð/Þ ¼ Da
x/: ð23Þ

For simplicity, we define, according to Eq. (18), the nonlinear
operator

Nð/Þ ¼ Da
x/� /

@2/
@t2
þ wðx; tÞ

� �
: ð24Þ

According to Eqs. (14) and (23), one has

Ja
xD

a
x½umðx; tÞ � vmum�1ðx; tÞ� ¼ �hJa

xfHðx; tÞRm½ u!m�1ðx; tÞ�g;
ð25Þ

where

Rm u!m�1ðx; tÞ
� 	

¼ Da
xum�1 � wðx; tÞð1� vmÞ þ

Xm�1
j¼0

uj
@2um�1�j
@t2

" #
:

ð26Þ
Substituting Eq. (26) into Eq. (25), and choosing Hðx; tÞ ¼ 1,

we find

u1 ¼ ��hJa
x u0

@2u0
@t2

� 

; ð27Þ

and for m P 2 we have

um ¼ ð�hþ 1Þum�1ðx; tÞ � �hJa
x

Xm�1
j¼0

uj
@2um�1�j
@t2

( )
: ð28Þ

Consider the fractional nonlinear wave equation as

@a

@xa u� u @2

@t2
u ¼ 1� 1=2ðx2 þ t2Þ; 0 6 x; t 6 1; 1 < a 6 2

uð0; tÞ ¼ t2

2
; @

@x
uð0; tÞ ¼ 0:

(

ð29Þ

The exact solution for a ¼ 2, is uðx; tÞ ¼ ðx2 þ t2Þ=2.
Using Eqs. (9), (17), (27) and (28) we have

u0 ¼
t2

2
þ 1� t2

2

� �
xa

Cðaþ 1Þ �
x2þa

Cðaþ 3Þ ; ð30Þ

u1 ¼ ��hJa
x u0

@2

@t2
u0

� 

ð31Þ

u2 ¼ ð1þ �hÞu1 � �hJa
x u0

@2

@t2
u1 þ u1

@2

@t2
u0

� 

ð32Þ

u3 ¼ ð1þ �hÞu2 � �hJa
x u0

@2

@t2
u2 þ u1

@2

@t2
u1 þ u2

@2

@t2
u0

� 

ð33Þ

..

.

Therefore, from Eq. (12), we have

u ¼ u0 þ u1 þ u2 þ � � � : ð34Þ

More approximation is done by MATLAB package. We first
investigate the influence of the auxiliary parameter �h on the

convergence of the series by plotting the so-called �h-curves
for 10th-order approximation of Eq. (34) at x ¼ 0:25 and
t ¼ 0:2, when a ¼ 2.

We still have freedom to choose the auxiliary parameter �h.
To investigate the influence of �h on the solution series, we first
consider the convergence of some related series such as
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@u=@x; @2u=@x2, and @3u=@x3. These curves contain a hori-

zontal line segment. This horizontal line segment denotes the
valid region of �h which guaranteed the convergence of related
series. It is observed the valid region for h is �3 < �h < 1 as

shown in Fig. 1. Thus the middle point of this interval. i.e.,
�1 is an appropriate selection for �h in which the numerical
solution converges (Ganjiani, 2010). For 5th-order approxima-

tions and �h ¼ �1, the approximate solution of u is compared
with its exact solution depicted in Fig. 2 for a ¼ 2. Fig. 3 shows
the HAM solution (a ¼ 1:8) with exact solution (a ¼ 2). The

approximate solution for �h ¼ �1; a ¼ 2 and x ¼ 0:25 is com-
pletely matched with the exact solution as shown in Fig. 4.

5. Conclusion

In this paper, the homotopy analysis method has been applied
for the numerical solutions of the fractional nonlinear wave
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equation. The results obtained in this work confirm the notion

that the HAM is a powerful and efficient technique for finding
numerical solutions for fractional nonlinear differential equa-
tions which have great significance in different fields of science
and engineering.
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