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In this paper, the homotopy analysis method is extended to investigate the numerical
solutions of the fractional nonlinear wave equation. The numerical results validate the convergence
and accuracy of the homotopy analysis method. Finally, the accuracy properties are demonstrated
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1. Introduction

To find the explicit solutions of nonlinear differential equations,
many powerful methods have been used (Abbasbandy, 2006;
He, 1998; Wazwaz, 1997; Ghasemi et al., 2007; Adomian and
Adomian, 1984). The homotopy analysis method (HAM) (Liao,
2003, 2004; Liao and Tan, 2007; Yamashita et al., 2007) is a gen-
eral analytic approach to get series solutions of various types of
nonlinear equations. The HAM is based on homotopy, a funda-
mental concept in topology and differential geometry (Sen,
1983).
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In recent years, considerable interest in fractional differen-
tial equations has been stimulated due to their numerous appli-
cations in the areas of physics and engineering (West et al.,
2003). Many important phenomena in electromagnetics,
acoustics, viscoelasticity, electrochemistry and material science
are well described by differential equations of fractional order
(West et al., 2003; Podlubny, 1999; Caputo, 1967). Though
many exact solutions for linear fractional differential equation
had been found, in general, there exists no method that yields
an exact solution for nonlinear fractional differential
equations.

2. Preliminaries and notations

In this section, let us recall the essentials of fractional calculus first.
The fractional calculus is a name for the theory of integrals and
derivatives of arbitrary order, which unifies and generalizes the
notions of integer-order differentiation and n-fold integration.
There are many books (West et al., 2003; Podlubny, 1999) that de-
velop fractional calculus and various definitions of fractional inte-
gration and differentiation, such as Riemann—Liouville’s
definition, Caputo’s definition and generalized function ap-
proach. For the purpose of this paper the Caputo’s definition of
fractional differentiation will be used, taking the advantage of
Caputo’s approach that the initial conditions for fractional
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differential equations with Caputo’s derivatives take on the tradi-
tional form as for integer-order differential equations.

Definition 2.1. Caputo’s definition of the fractional-order
derivative is defined as

1 AN,
I'(n—a) /,, (1—7)*H" a,

(n—1< Re(a) <n, neN), (1)

Df(1) =

where the parameter o is the order of the derivative and is al-
lowed to be real or even complex, « is the initial value of func-
tion /. In this paper, only real and positive o will be considered.
For the Caputo’s derivative we have

D*c =0, (cis a constant) (2)
07 (ﬁ g o — ])7

D*tf = I(p+1) Bon . (3)
{ I"(/i<:;+l) 7 (B>a—1)

Similar to integer-order differentiation, Caputo’s fractional
differentiation is a linear operation:

D*(2f(1) + ng(1)) = AD°f(1) + uD*g(1),

where A, p are constants, and satisfies the so-called Leibnitz
rule:

) o . ks

D(e(fie) =3 (7 ) e (00410
k=0

if f(z) is continuous in [a,] and g(r) has n+ 1 continuous

derivatives in [a, 7].

Definition 2.2. For n to be the smallest integer that exceeds o,
the Caputo space-fractional derivative operator of order o > 0
is defined as

» "u(x, 1)
Dxu(x, [) = W
B {ﬁ S =) MM g i1 <a<n,
=\ ?un) oy —
e ifa=neN.
“4)

For establishing our results, we also necessarily introduce
the following Riemann—Liouville fractional integral operator.

Definition 2.3. A real function f{x), x > 0, is said to be in the
space Cy, u € R if there exists a real number p(> p), such that
S(x) = xPfi(x), where fi(x) € C[0,00), and it is said to be in the
space C} iff /") € C\, m € N.

Definition 2.4. The Riemann-Liouville fractional integral
operator of order « > 0, of a function fe€ C,, p > —1, is
defined as

1

e /Ox(x — 0" 'f(0)dt, «>0, x> 0. (5)

I =5

Properties of the operator J* can be found in Podlubny
(1999) and we mention only some of them in the following:
ForfeC, p>=-1, 0, f>20,y> -1

F(V + 1) ‘Caﬂ
Fla+y+1)
PIf(x) = S Tf(x).

Jf(x) = f(x), SN =
FIfx) = T fx),

Also, we need here two of its basic properties. If
m—1<oa<m meNandfeC), uz> -1, then

)

m Xi

D'Pf(x) = flx), JDx)=fx) = f(0")=,

=0 i
(6)
For more information on the mathematical properties of

fractional derivatives and integrals, one can consult Podlubny
(1999).

3. Homotopy analysis method

In this article, we apply the homotopy analysis method to the
discussed problem. Let us consider the fractional differential
equation:

N (u(x, 1)) =0, (7)

where /" is a fractional differential operator, x and ¢ denote
independent variables, u(x,?) is an unknown function. Liao
(2003) constructed a zero-order deformation equation as
follows:

(1 =) Z((x, 1:q) = uo(x, 1)) = ghH(x, )N (p(x, 1)), (8)

where 7i # 0 denotes an auxiliary parameter, H(x, ) is an aux-
iliary function, ¢ € [0, 1] is an embedding parameter, £ is an
auxiliary linear operator and it possesses the property
Z(C) =0, uy(x,1) is an initial guess of u(x, 1), ¢(x,t;q) is a
function of the homotopy-parameter ¢ € [0, 1]. It is important
that one has great freedom to choose auxiliary parameter 7 in
homotopy analysis method. If ¢ =0 and ¢ = 1, it holds

O(x,10) = up(x,1), d(x, 1) =u(x,1). 9)

Thus as ¢ increases from 0 to 1, the solution ¢(x,;g) varies
from the initial guess uy(x, #) to the solution u(x, ). Expanding
¢(x,t;q) in Taylor series with respect to ¢, one has

(. 1) = uolx, 1) + 3t (x, )¢, (10)
m=1
where
d"P(x,t;9)
Up(x, 1) = ———= 11
(x,1) o |, (11)

If the auxiliary linear operator, the initial guess, and the aux-
iliary parameter % are so properly chosen, the series (10) con-
verges at ¢ = 1, one has

u(x,t) = up(x,t) + ium(x, 7). (12)

According to Eq. (11), the governing equation can be deduced
from the zero-order deformation, Eq. (8). Define the vector

Wa(x, 1) = {uo(x, 8), uy (x, 1), . . . un(x, 1)} (13)

Differentiating Eq. (8) m times with respect to the embedding
parameter ¢ and then setting ¢ = 0 and finally dividing them
by m!, we have the so-called mth-order deformation equation

Ll (x,8) = fpthm—1(x,1)] = FH(x, 1) R, [7,,,,1 (x,1)], (14)
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where

L 9" N ((x,159)

Rm_)m— X, 1)) = ’ 15
[ u 1(\ )} (m _ 1)| aqm,l 0 ( )
and
0, m<l1
L _ [0 ; 16
o {l, m> 1. (16)

The mth-order deformation Eq. (14) is linear and thus can be
easily solved, especially by means of symbolic computation
software such as MATLAB.

4. Application

Consider the following two-dimensional nonlinear differential
equation of fractional order, with the indicated initial

conditions:
{%—u‘g)t?—lﬁ(xl) 0<x1<1, 1<a<2 (a7
(0,2) = f0), (0,0) = g(t)
We rewrite Eq. (17) in an operator form as follows:
Pu
Du—uaz+l//(xt) (18)

Although, we have freedom to choose an initial guess, one has
2

0
JD*y :Jz{ua—;{—i-l//(x, t)}, (19)
which gives, according to Eq. (6), that
n—1 k 2

- ) X Fu

= Y03+ 2 w0 (20)
where as 1 < o < 2, so n = 2. Neglecting the unknown terms
on the right-hand side of Eq. (20), we have the initial guess

o = 1) + xg(1) + S [W(x, 1)]. (21)
Therefore Eq. (20) can be written as

u=f{t)+xg(t) + 2 {u% + ¥(x, t)} . (22)

It is straightforward for us to choose the auxiliary linear
operator

Z($) = D3¢ (23)
For simplicity, we define, according to Eq. (18), the nonlinear
operator

o)

W8 = Do - |95 4wt 04)

According to Egs. (14) and (23), one has
JiDi[um(X7 t) - Xmumfl (X, Z)] = hJi{H()Q t)Rm [775’171 (X, t)]}a

(25)
where
— o «— 82um—l—j
R, [ u m—l(xv 1)] = Dxumfl - W()ﬂ l)(l - )Cm) + ZMIT
=)
(26)

Substituting Eq. (26) into Eq. (25), and choosing H(x,?) =1,
we find

= —hﬁ{ 0;;‘)} (27)
and for m > 2 we have
2 U
U = (l+ )ity (x,1) — hf‘{/zo t—s> f}. (28)

Consider the fractional nonlinear wave equation as

{B‘j\lu—u Cu=1-1/2(2+7), 0<x1<1, 1<a<2
0,0) =5, Zu(0,1)=0.
(29)
The exact solution for o = 2, is u(x, ) = (x* + 2)/2.
Using Egs. (9), (17), (27) and (28) we have
2 2 2 242
”°:%+(1_L)r(ax+ 0 <§+3>7 (30)
u = { } (31)
P
(1+hu1—hf;{uoa “‘”"aﬂ } (32)
P P P
= (1 +h)u, — WJ* {uoal u2+u| u1+uza[2u0} (33)

Therefore, from Eq. (12), we have
u=uy+u +u+---. (34)

More approximation is done by MATLAB package. We first
investigate the influence of the auxiliary parameter 7 on the
convergence of the series by plotting the so-called 7-curves
for 10th-order approximation of Eq. (34) at x =0.25 and
= 0.2, when o = 2.

We still have freedom to choose the auxiliary parameter /.
To investigate the influence of /i on the solution series, we first
consider the convergence of some related series such as
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Figure 1 The fi-curves at (x,f) =
approximations.

(0.25,0.2) for 10th-order
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Figure 2 Comparison of HAM solution with the exact solution for o = 2.
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Figure 3 Comparison of HAM solution for o = 1.8 with the exact solution for o = 2.

x=0.25, h=-1

Figure 4 The variation of 5th-order approximation solution of
Eq. (34) with a.

u/dx, O*ujdx?, and &u/dx’. These curves contain a hori-
zontal line segment. This horizontal line segment denotes the
valid region of # which guaranteed the convergence of related
series. It is observed the valid region for 4 is =3 </ <1 as
shown in Fig. 1. Thus the middle point of this interval. i.e.,
—1 is an appropriate selection for 7 in which the numerical
solution converges (Ganjiani, 2010). For Sth-order approxima-
tions and 7 = —1, the approximate solution of u is compared
with its exact solution depicted in Fig. 2 for o = 2. Fig. 3 shows
the HAM solution (z = 1.8) with exact solution (a = 2). The
approximate solution for 7= —1, o« =2 and x = 0.25 is com-
pletely matched with the exact solution as shown in Fig. 4.

5. Conclusion

In this paper, the homotopy analysis method has been applied
for the numerical solutions of the fractional nonlinecar wave
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equation. The results obtained in this work confirm the notion
that the HAM is a powerful and efficient technique for finding
numerical solutions for fractional nonlinear differential equa-
tions which have great significance in different fields of science
and engineering.
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