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A B S T R A C T

Objectives: To predict phases and mechanical properties of Mg-Al-Cu-Mn-Zn alloys and to validate the results.
Methods: In this study, 29 predictor features of the alloys were examined based on dataset drawn from relevant
publications. The correlation of selected predictor features with mechanical properties of Mg-Al-Cu-Mn-Zn alloys
were evaluated. New features specific to vehicle and aerospace applications were used. Feature selection schemes
involving four machine learning (ML) classifiers that included artificial neural networks (ANN), linear
discriminant analysis (LDA), random forest regression (RF) and k-nearest neighbours (k-NN) were adopted.
Tensile test was carried out based on ASTM E8 standard.
Results: Results of correlation of features showed that specific strengths and specific modulus of the alloys were
strongly and positively correlated with composition of alloying elements but strongly and negatively correlated
with composition of magnesium. The results also revealed that homogenization temperatures and time were
weakly correlated with the mechanical properties and phases while electronegativity difference and VEC had
significant positive correlation. ANN was the best performing classifier followed by k-NN, LDA, and lastly RF
with prediction accuracy on test data of 98.7%, 98.1%, 97.9% and 97.8%, respectively. The validity and
applicability of the model was tested with three magnesium-based alloys: Mg-80-Al-10-Cu-5-Mn-5-Zn-0, Mg-80-
Al-5-Cu-5-Mn-5-Zn-5 and Mg-91.2-Al-8.3-Cu-0-Mn-0.15-Zn-0.35 and compared with findings in literature. The
model had higher prediction accuracies compared to previous ML models used on magnesium alloys. The model
was then used to predict phases in the Mg-89.43-Al-8.16-Cu-0.34-Mn-0.25-Zn-1.81 alloy and it accurately pre-
dicted presence of Mg17Al12, Mg2Si, MgZn and MgZn2. Results of simulation in MatCalc version 6.04 also verified
presence of the phases. The phases were further confirmed through SEM/EDS analysis.
Conclusions.
Dominant strengthening phases were Mg17Al12, Mg2Si, MgZn and MgZn2. Predicted yield strength, ultimate
tensile strength and Young’s modulus were within the range of experimental results. Specific strengths and
specific modulus were also within the range.

1. Introduction

A new area of interest in material science is modelling and devel-
opment of materials with enhanced mechanical properties (Stergiou
et al., 2023). One such interest is to be able to predict mechanical
properties from compositions and phases of modern light alloys with low
densities and high strength-to-weight ratios applicable in aerospace and
light-vehicle industries (Feng et al., 2016). The light metals include high
entropy alloys (HEAs) of aluminium, magnesium, titanium, and beryl-
lium (Behera et al., 2022; Feng et al., 2016). Traditional methods for
developing materials, such as empirical trial and error, may be replaced

by machine learning (ML) techniques and artificial intelligence that are
capable of predicting alloy phases and mechanical properties (Feng
et al., 2016). Over the years, ML has been applied to various tasks of
phase and mechanical property predictions that are computationally
intensive with good results (Machaka, 2021).

ML algorithms provide fast and low-cost approach compared to
traditional techniques of material design, phase prediction, analysis and
modelling (Ford et al., 2021; Machaka, 2021). There is great research
focus on prediction of phases and mechanical properties of high-entropy
alloys of light metals (Qiao et al., 2021; Xiong et al., 2023). Exploration
of phases and mechanical properties of magnesium alloys has risen over
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the years to because of lowest density of magnesium among other light
metals and opportunity to reduce dead weight of vehicles, aircraft and
spacecraft (Reza Kashyzadeh et al., 2023). There is a rising interest in
Mg-Al-Cu-Mn-Zn that has seen improved mechanical properties based
on varied percentages of the alloying elements and strengthening phases
(Tun et al., 2019). However, existing ML-based research on high-entropy
alloys lacks standardization, focuses generally, and fail to address the
promising Mg-Al-Cu-Mn-Zn for lightweight, high-strength applications.

Previous research identified phases that were commonly associated
with magnesium alloys. The phases included: Mg17Al12 in their gamma
and beta states (Yamanoglu et al., 2021), laves phases such as Mg2Cu
and MgCu2 (Fan et al., 2021), and MgZn2 and Mg2Zn11 (Bilbao et al.,
2022). Other phases identified in literature and put in CALPHAD data-
bases included β_Al3Mg2, θ_Al2Cu, Al2Cu3_D, Al9Cu11_Z,AlCu_ζ,
AlCu_G_D83, AlCuMg_V (Tayyebi et al., 2021). Previous research such as
Pei et al. (2020), Li and Tsai (2020), Li and Guo (2019) focused on
crystal structures associated with alloy phases rather than actual phases.

Recent research efforts to predict phases and mechanical properties
of magnesium alloys focused on understanding their phase trans-
formations and mechanical properties under various conditions (Chen
et al., 2020, 2019a, 2019b). Chen et al. (2019a) studied constitutive
behaviour of AZ80 magnesium alloy during hot deformation using a
segmented model that outperformed Arrhenius and Johnson–Cook
models. The research provided a comprehensive understanding of high-
temperature deformation characteristics relating to alloy phases. Chen
et al. (2019b) explored the effects of ultrasonic vibration on the casting
process of AZ80 alloy and found significant differences in mechanical
properties in relation to phase. Chen et al. (2020) showed that Mg-Zn-Y
alloy subjected to dual-frequency ultrasonic field result in improved
mechanical strength, and corrosion resistance as a result of quasi-
crystals. These studies collectively advance the prediction and optimi-
zation of phases and mechanical properties in magnesium alloys. These
studies did not focus on specific strength and specific modulus and did
not focus Mg-Al-Cu-Mn-Zn alloys. They also did not use ML algorithms.

Various researchers focused specifically on strength and phases of
magnesium alloys using ML prediction techniques. Liu et al. (2021)
developed high-strength Mg cast alloys by iteratively optimizing the
composition and heat treatment condition based on a surrogate model
that evolved with new data. Pei et al. (2020) used a random forest al-
gorithm to investigate the deformation mechanisms and ductility of Mg.

However, the specific strength and modulus were not tested in both
cases. Mandal et al. (2022) used ML algorithms to predict phases in high
entropy alloys and found that decision tree and SVM had 93.84% ac-
curacy for phase prediction, and 84.32% for crystal structure classifi-
cation, respectively. Most recent study by Dong et al. (2024) predicted
ultimate tensile strength (UTS), yield strength (YS), elongation (EL), and
hardness (HV) using Shapley additive explanations (SHAP) model and
obtained accuracies of up to 93%. The study did not focus on specific
strength and stiffness of the alloys for application in light vehicle and
aerospace industries. It was also not specific to high entropy Mg-Al-Cu-
Mn-Zn alloys.

Though ML has been used to predict phases and strengths of mag-
nesium alloys, it has not been applied to Mg-Al-Cu-Mn-Zn alloys.
Research has not focused on predicting phases, specific strength, and
modulus of these alloys, despite their potential. There is need to explore
these properties using ML to understand the composition-phase-
strength/modulus relationship, as no single study has addressed this
comprehensively. In this paper, strategies employed in previous studies
on ML-based strength and phase prediction were reviewed. The objec-
tives of the research were to predict phases, specific strengths and spe-
cific modulus of Mg-Al-Cu-Mn-Zn alloys based on their compositions
and heat treatments. A dataset of Mg-Al-Cu-Mn-Zn alloys with strength
and metallurgy-specific features presented. Analysis was conducted
based on a framework developed by Machaka (2021).

2. Materials and methods

2.1. Classification framework

Framework for analysis used in this research was based on Fig. 1.
Computational framework was anchored on four platforms as suggested
by (Machaka, 2021). Data collection, filtering, and wrangling yielded
four crystal structures, 20 phases, and 29 features. Data was processed,
segmented, and split into 75% training and 25% testing. Feature selec-
tion and validation followed, with model performance tested.

2.2. Collection and selection of data

Data from research on magnesium alloys (Mg-Al-Cu-Mn-Zn) was
cleaned, checked for missing data, encoded, and transformed for ma-

Fig. 1. Phase and mechanical properties classification framework for ML. The figure illustrates the steps used in the ML classification including data collection,
details of input data, machine learning process, outputs and performance.
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chine learning. Feature selection used backward elimination, forward
selection, and regularization to identify significant features. New fea-
tures such as density (Density_calc), change of entropy of mixing
(dSmix), atomic size difference (Atom_Size_Diff), electronegativity dif-
ference (Elect_Diff) and valence electron concentration (VEC) were
created using feature engineering (Bhandari et al., 2020; Machaka,
2021). dSmix was calculated based on Equation 1.

dSmix = − R
∑n

i=1
xilnxi (1)

Change in enthalpy of mix was calculated using Equation 2.

dHmix = 4 ×
∑n

i=1,i∕=j
dHmix

ij xixj (2)

Atomic size difference was calculated using Equation 3

Atom Size Diff = 100 ×

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
ci
(

1 −
ri
r

√
)

(3)

Average atomic radius was given by Equation 4.

r =
∑n

i=1
xiri (4)

Valence electron concentration (VEC) was calculated based on
Equation 5.

VEC =
∑n

i=1
Ci(VEC)i (5)

Electronegativity difference, χ, was calculated based on Equation 6.

χ =
∑n

i=1
Ci.(χi − χ)2 (6)

Where, in Equations 1 – 6.
R= Ideal gas constant;
xi and xj= atomic percentages of the ith and jth elements, respectively
ri= Radius of the ith element;

r= Average atomic radius;
χi= Pauling electronegativity of the ith component;
χ= Mean electronegativity for alloy system;
Ci= atomic percentage; and
(VEC)i= Valence electron concentration of the ith element.
Iterative testing evaluated the impact of engineered features on

model performance, leading to optimized results. The final data had 60
observations and 29 variables. Multicollinearity tests showed that no
Variance Inflation Factor (VIF) values exceeded 5 (see Table 1). There
was moderate correlation for Atom_Size_Diff and Elect_Diff. VEC had
low multicollinearity (VIF=1.27). There was no multicollinearity be-
tween the features that could affect the reliability of the predictive
models as no VIF value exceeded the threshold of 5. This implied that
each predictor variable, such as Atom_Size_Diff and Elect_Diff, provided
unique and valuable information for the prediction without being
overshadowed by correlations with other variables. The low VIF of 1.27
indicated that VEC was a stable predictor.

Though the current dataset was small, it had more features compared
to other datasets of magnesium-based alloys used in machine learning
(He et al., 2023; Mi et al., 2022). The research used 29 features to
improve ML model predictions despite a small dataset (Chen et al.,
2021). Feature engineering technique proposed by Machaka (2021) was
used to refactor the original dataset in order to fit the learning
algorithm.

2.3. Feature selection and reduction of dimensions

This study used five stages of experiments as shown in Fig. 2. The
first stage used all 29 features of the dataset as the baseline feature set.
The second stage created four smaller feature sets by applying Boruta
algorithm with the RF algorithm (Machaka, 2021). It also used recursive
feature elimination based on RF regression. The third stage ordered the
features by declined importance applying majority-vote ranking tech-
nique for better outcomes. The fourth stage grouped the ordered-
features into seven sets with the top 5, 7, 10, 13, 15, 20, 25 feature
sub-sets as proposed by (Machaka, 2021). The fifth stage involved
determining and validating performance of different classifiers.

Table 1
Results of test for multicollinearity.

Density_calc dHmix dSmix dGmix Atom_Size_Diff Elect_Diff VEC

1.585639e-02 6.562312e-01 8.409286e-01 8.403489e-01 2.121941e + 00 2.090115e + 00 1.274882e + 00

Fig. 2. Feature selection. This illustrates the selection process across 5 steps. Output of the process becomes input to classification. A feedback loop in case the
performance and validation are not satisfactory is also illustrated.
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2.4. ML classifiers and performance evaluation criteria

In literature, several ML classifiers have been used in prediction of
alloy phases and mechanical properties but only a few are applicable in
small datasets which are associated with model over fitting or under
fitting as well as and too high or too low feature dimensions (Xu et al.,
2023). Algorithms for small datasets such as support vector machine
(SVM), Gaussian process regression (GPR), gradient boosting decision
tree (GBDT) and XGBoost though robust, have problems of inherent
complexity, potential overfitting, and computational intensity. They
falter with high dimensions and complex alloy data interactions.
Conversely, RF, LDA, and kNN are more apt, with RF excelling in
modelling non-linearities and preventing overfitting (Xu et al., 2023).
LDA maximizes class separability in limited data and helps in dimen-
sionality reduction (see Table 3). ANN was used to model non-linear
relationships and transfer learning helped to leverage it to improve
performance with the small dataset. k-NN was used to classify features
based on similarity measures and its problems of dimensionality was
addressed using principal component analysis (PCA). RF struggles with
high-dimensional data, but feature selection helped to mitigate this. LDA
may oversimplify, regularization was used to enhance robustness.
Models were trained to identify high discriminant power features. A
function was defined to calculate accuracy and kappa index using a
confusion matrix. Classifier performance was evaluated with three
magnesium-based alloys: Mg-80-Al-10-Cu-5-Mn-5-Zn-0, Mg-80-Al-5-Cu-
5-Mn-5-Zn-5, and Mg-91.2-Al-8.3-Cu-0-Mn-0.15-Zn-0.35.

2.5. Simulation in MatCalc Software

Optimal values of density, yield strength, ultimate tensile strength
and stiffness were obtained from the values of percentages generated
from the objective functions. MatCalc 6.04 used classical nucleation
theory to estimate alloy precipitates’ development and granularity,
based on the Svoboda–Fischer–Fratzl–Kozeschnik (SFFK) model. Alloy
composition (Mg, Al, Cu, Mn, Zn) was optimized using genetic algo-
rithms and Generalized Reduced Gradient (GRG) non-linear program-
ming in Matlab R2023b for optimal properties.

Density of Mg is given by ρMg = 1.738 g/cm3, of Al is ρAl = 2.7 g/
cm3, Cu is ρCu = 8.96 g/cm3, Mn is ρMn = 7.26 g/cm3 and Zn is ρZn =
7.133 g/cm3. Masses of the components were mMg, mAl, mCu, mMn and
mZn for magnesium, aluminium, copper, manganese and zinc. Density
estimation was done using alloy formula in Equation 7 and 8 based on
density of components.

ρalloy =
m
v

(7)

where,
m=mass of alloy in grams;
v=volume of alloy, cm3,

m = mMg + mAl +mCu +mMn +mZn (8)

But v is the sum of volumes of the components of the alloy. Meaning
volume of magnesium, vMg =

mMg
ρMg

, aluminium, vAl = mAl
ρAl

, copper, vCu =

mCu
ρCu

, manganese, vMn =
mMn
ρMn

and vZn = mZn
ρZn

.

ρalloy =
m

vMg + vAl + vCu + vMn + vZn

=
m

(
mMg
ρMg

+
mAl
ρAl

+ mCu
ρCu

+ mMn
ρMn

+ mZn
ρZn

) (9)

Percentages of the components by weight were pMg =
mMg
m *100%,

pAl = mAl
m *100%, pCu = mCu

m *100%, pMn = mMn
m *100%, and pZn = mZn

m *100%
for magnesium, aluminium, copper, manganese and zinc

ρalloy =
100

pMg
ρMg

+
pAl
ρAl

+ pCu
ρCu

+ pMn
ρMn

+ pZn
ρZn

(10)

The specific strength at yield, YS
ρalloy

, UTS
ρalloy

and specific modulus E
ρalloy

became the objective functions for genetic algorithm implementation of
multi-objective. The aim was to maximize each as shown in Equation 11.

Maximize

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

YS
ρalloy

=
k1

(k2)
tau1
tau2

(
ρalloy

)

(
tau2
tau1

− 1

)

UTS
ρalloy

=
k3

k2

tau3
tau2

*
(
ρalloy

)

(
tau3
tau2

− 1

)

E
ρalloy

=

(
1
k2

)
1

tau2 *
(
ρalloy

)

(
1

tau2
− 1

)

k1,k2,k3 areexponents of regressionconstants forYS,UTSandE, respectively

tau1,tau2,tau3 areexponents of beta coefficients forYS,UTSandE, respectively
(11)

Substituting for percentage components from Equation 10 into
Equation 11, the objective functions were as shown in Equation 12.

Maximize

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

YS
ρalloy

=
k1

(k2)
tau1
tau2

⎛

⎜
⎜
⎝

100
pMg
ρMg

+
pAl
ρAl

+ pCu
ρCu

+ pMn
ρMn

+ pZn
ρZn

⎞

⎟
⎟
⎠

(
tau2
tau1

− 1

)

UTS
ρalloy

=
k3

k2

tau3
tau2

*

⎛

⎜
⎜
⎝

100
pMg
ρMg

+
pAl
ρAl

+
pCu
ρCu

+
pMn
ρMn

+
pZn
ρZn

⎞

⎟
⎟
⎠

(
tau3
tau2

− 1

)

E
ρalloy

=

(
1
k2

) 1
tau2

*

⎛

⎜
⎜
⎝

100
pMg
ρMg

+
pAl
ρAl

+ pCu
ρCu

+ pMn
ρMn

+ pZn
ρZn

⎞

⎟
⎟
⎠

(
1

tau2
− 1

)

(12)

Additional parameters were essential for the kinetic simulations of
precipitation, which included microstructural details and nucleation
configurations. The kinetic simulation parameters encompassed thermal
treatments, specifying formation at 1300◦C and normalization at 400◦C
for one hour, alongside grain size and dislocation density considerations.

MatCalc 6.04 was used to capture precipitation domains for Mg, Al,
Cu, Mn, and Zn solutes with specific trapping enthalpies. It identified
precipitates like MgZn, Mg2Cu, and MnAl phases. The thermal protocols
were set to begin with casting at 1300◦C, then cooling to 400◦C at
− 0.75◦C/s. Homogenization was at 400◦C to reduce grain sizes, fol-
lowed by quenching to 25◦C at − 100◦C/s aimed at enhancing strength
and stabilize properties.

2.6. Mechanical tests

Mg-89.43-Al-8.16-Cu-0.34-Mn-0.25-Zn-1.81 alloy obtained from
optimization results was produced using stir casting technique from
source material AZ91D to which quantities of pure copper, zinc and
manganese powders were added. The alloy was prepared in inert argon
gas atmosphere with melt heated to 1300◦C for about 20 min. Pouring
was done in graphite coated pre-heated steel mould. The melt was left to
homogenize at 400◦C for one hour after which quenching was done in
oil. The casting products were age-hardened for seven days, machined
into six test samples, and prepared for tensile tests per ASTM E8. Tests in
a Universal Testing Machine determined yield strength, ultimate tensile
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strength, and Young’s Modulus, compared to predicted values.

2.7. Scanning electron microscopy and EDS analysis

The microstructure of the Mg-89.43-Al=8.16-Cu-0.34-Mn-0.25-Zn-
1.81 alloy was characterized using scanning electron microscope (SEM)
(Tun et al., 2019). Sample preparation involved polishing, embedding,
mounting, dehydration, and cleaning. Samples were made electrically
conductive for SEM analysis. Images formed from backscattered and
secondary electrons. 50mm diameter, 4mm thick samples were prepared
using nitric acid and ethanol, adhered to stubs with carbon tape, and
vacuum-dried for 30 min.

3. Results and discussions

3.1. Results of ML prediction

The results revealed that homogenization temperatures and time
were weakly correlated with the mechanical properties and phases while
electronegativity difference and VEC had significant positive correla-
tion. Linear discriminant analysis (LDA) results in Table 2 showed that
synthesis methods significantly affected alloy properties. The properties
affected included yield strength, UTS, elastic modulus (E), VEC, atomic
size difference (Atom_Size_Diff), and enthalpy of mixing (dHmix). Die
casting (DC) had a high probability of 0.78889, solution treatment
(ST_4) had probability of 0.66667 and solution treatment with age-
hardening (ST_6) had highest probability of 0.86667. Induction
melting (IM) and disintegrated melt deposition (DMD) had probabilities
of 0.75556 and 0.82222, respectively. Yield strength had negative co-
efficients in all discriminant functions, aiding class differentiation. LD1,
LD2, LD3, and LD4 maximized separation between different phases or
compositions. Each LD represented a direction in feature space along
which the data was projected to achieve maximum separation. LD1
showed the direction that maximized the separation between the most
distinct classes, often capturing the most variance. LD2 was orthogonal
to LD1 and would maximize separation not captured by LD1. This pro-
cess continued with each subsequent LD (LD3, LD4, LD5) being
orthogonal to the previous ones and capturing the maximum separation
possible.

UTS was positively correlated with LD2 and LD3, while Young’s
modulus had mixed effects on LD1 and LD2 (See Table 3). VEC signifi-
cantly influenced LD1 and LD3, but not LD2. Atom_Size_Diff impacted
LD1, and to a lesser extent LD3 and LD4. dHmix minimally affected class
differentiation. LDA highlighted phase distinctions, with LD1 explaining
42.97% variance, significant for phase identification, contrasting with
minimal 3.71% of LD5. Negative coefficients of VEC in LD1 and LD2
underscored its importance, with a positive impact in LD1. High dHmix
suggested distinct phase formation in magnesium alloys. Beta-Mg17Al12
was likely to be in group 5 (75.6%) or group 4 (82.2%), while Gamma-
Mg2Si and Mg2Cu had a 40% chance of classification in group 1. Similar
results were found with magnesium alloys that were studied by Machaka
(2021) and Tun et al. (2019).

Random forest regression yielded near-perfect categorization with
negligible OOB error, predicting alloy synthesis pathways. ANN with a
6–10-5 model structure effectively predicted synthesis techniques,
avoiding overfitting. Results in Fig. 3 showed that ANN outperformed
other models with prediction accuracy of 98.70%, precision of 98.41%,
recall of 98.12%, and an F1-score of 98.70% with the proposed frame-
work. k-NN algorithm followed closely, with slightly lower metrics
across the board. The resuls that ANN had highest accuracy corroborate
findings of Machaka (2021). LDA showed exceptional precision at
99.55% but lagged slightly in other areas. RF algorithm demonstrated
consistent performance, though it had the lowest metrics among the
evaluated algorithms. Therefore, ANN algorithm demonstrated the most
balanced performance, suggesting its suitability.

3.2. Results of MatCalc simulation

Simulation results in MatCalc 6.04 showed a high number of fine
precipitates with a uniform distribution suggested consistent mechani-
cal properties. Gamma-Mg17Al12 had an extremely low mean phase
fraction and low precipitate number, implying it was residual or unde-
veloped. The Q-AlCuMg phase (Q_ALCUMG_P0) had a higher mean
phase fraction, indicating significant presence. Other phases included
Mg2Si, MgZn, and MgZn2. Thes results confirm findings of Bilbao et al.
(2022) and Tayyebi et al. (2021) on intermetallic phases.

Table 2
Group means and probabilities for LDA.

Synthesis route Yield UTS E VEC Atom_Size_Diff dHmix Probabilities

ST_6 134.83 227.50 82.64 2.06 0.02 − 205.55 0.86667
ST_4 211.00 318.00 49.35 2.10 0.04 − 1380.06 0.66667
DC 291.23 490.46 141.31 2.36 0.07 − 4652.25 0.78889
IM 92.29 260.86 72.93 2.06 0.03 − 265.06 0.75556
DMD 151.00 256.00 75.14 2.06 0.03 − 472.24 0.82222

Table 3
LDA analysis of properties with respect to synthesis route and phases.

With respect to synthesis route
Properties LD1 LD2 LD3 LD4 LD5

Yield − 0.0184 − 0.0117 − 0.0252 − 0.0065 − 0.0190
UTS − 0.0220 0.0030 0.0009 0.0312 0.0244
E − 0.0141 − 0.0112 − 0.0161 − 0.0173 0.0204
VEC − 139.2761 − 0.0336 109.955 − 11.2031 53.0878
dHmix 0.3439 0.7202 − 0.19009 − 0.0224 − 0.1408
With respect to phases
Property LD1 LD2 LD3 LD4 ​
Yield − 0.1449 − 0.0371 − 0.0782 − 0.0121 ​
UTS 0.0058 0.0674 0.0332 − 0.0284 ​
E 0.0263 − 0.0582 0.0028 − 0.0454 ​
VEC 35.992 − 92.789 31.0342 3.6329 ​
Atom_Size_Diff 608.67 92.705 − 69.6795 − 148.965 ​
dHmix − 0.0041 − 0.0039 0.0007 − 0.0039 ​

Fig. 3. Performance of the algorithms. It illustrates that ANN was the best
followed by k-NN in terms of prediction accuracy. LDA performed best followed
by ANN in terms of precision.
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3.3. Results of SEM/EDS analysis

At magnifications of X500 and X10,000, the microstructure in Fig. 4
exposed the intricate details of the grain boundary nucleation. It
showcased the presence of Mg17Al12, alpha_Mg, and Q_AlCuMg clusters.
The white regions denoted the Mg17Al12 phase. The grey regions rep-
resented the alpha-Mg matrix and the dark grey areas correspond to the
Q_AlCuMg intermetallic clusters. The clarity in grain boundary nucle-
ation of the same phases in Fig. 4 suggested a repeatable and reliable
microstructural pattern.

Spectrum 1 and EDS in Fig. 5 showed that magnesium was pre-
dominant, with traces of oxygen. Fig. 6 confirmed no peaks were
omitted, representing all elements present. The EDS analysis in Fig. 7
showed magnesium as the main element in Spectrum 3, with 70.96%
weight and 72.91% atomic percentage. Aluminium was 20.11% by
weight and 18.62% atomic percentage. The MgZn phase (6.37 wt%)
indicated strengthening. Presence of 10.83 wt% MgO was due to surface
oxidation, serving as a protective barrier against further corrosion.

Fig. 4. Tested alloy showing grain boundaries at X500 and X10,000.

Fig. 5. EDS Spectrum 1 and point of its collection.

Fig. 6. EDS Spectrum 2 and point of its collection.
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3.4. Results of tensile test

The predicted and experimental values for the mechanical properties
of the alloy closely matched, with slight variances in yield strength and
Young’s Modulus. The UTS showed a broader experimental range, with
significant deviations at the lower end. Specific strength and modulus
had more discrepancies, likely due to alloy composition, microstructure,
or testing conditions. Six samples were tested, all fracturing in the
middle, indicating material consistency. Extensions at yield and fracture
were 0.102439mm and 1.03mm, respectively, indicating low ductility.
The predictions were reliable but could be refined for better accuracy.

4. Conclusions

The ANN framework outperformed traditional predictors due to
clean, well-labelled, and unbiased data. Despite a small dataset, care-
fully chosen features led to good performance. SEM/EDS results showed
that the tested alloy was precipitation hardened with key hardening
phases being Mg17Al12, traces of Mg2Si, MgZn, MgZn2, MgCu2 and the
hexagonal crystal structured intermetallic alloy strengthening Q-
AlCuMg phase. Presence of Mg17Al12 and Mg2Si was correctly predicted
through machine learning and simulation techniques. Mg17Al12, MgZn,
MgZn2 and MgCu2 were correctly predicted through thermodynamic
and diffusion simulation. The intermetallic LAVES_C15_P0 clusters and
Mg17Al12 in the microstructure were the possible reason for low ductility
of the material.

The tested material had yield strength, UTS and Young’s Modulus
that were close to the predicted values. Predicted yield strength was
260.2MPa while experimental values were in the range of 258-266MPa.
Predicted Young’s Modulus was 146GPa while experimental values fell
in the range of 125.16–147.26MPa. Experimental UTS was in the range
of 432.8–512.96GPa slightly below the predicted 515.96GPa. The pro-
posed alloy was found to have lower density of 1.8259g/cm3 than
2.15g/cm3 found by Tun et al. (2019). The density was only 0.0676%
higher than the predicted optimal value of 1.824667 g/cm3. The pre-
dicted optimal specific strength of 142.6 kPam3/kg at yield was in the
range of experimental values of 141.3–145.68 kPam3/kg. Experimental
specific strength with UTS was in the range of 237.03–280.94 kPam3/kg
lower than predicted 282.77 kPam3/kg. Predicted specific modulus was
80.096 MPam3/kg while experimental were in the range of
68.55–80.65M Pam3/kg. The high specific strength and modulus were
associated with strengthening phases of gamma- Mg17Al12, MgZn,
MgZn2 and MgCu2.
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