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Abstract In this work we aim to use general topological structures as tools for near approximation

space in information systems. General relations for granules form a subbase for some topological

spaces. Theses topologies are applied for obtaining near lower and upper approximations. We apply

it to obtain a topological structure which opens up the way for applying rich amount of topological

facts and methods in the process of granular computing.
ª 2010 King Saud University. All rights reserved.
1. Introduction

Rough set theory, proposed by Pawlak (1991, 1982), can be

seen as a new mathematical approach to vagueness. The rough
set philosophy is founded on the assumption that with every
object of the universe of discourse we associate some informa-

tion (data, knowledge) Abu-Donia et al. (2007). For example,
if objects are patients suffering from a certain disease, symp-
toms of the disease form information about patients. Objects

characterized by the same information are indiscernible (simi-
lar) in view of the available information about them. The indis-
cernibility relation generated in this way is the mathematical
basis of rough set theory. This understanding of indiscernibil-

ity is related to the idea of Gottfried Wilhelm Leibniz that ob-
344419.
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ity. All rights reserved. Peer-

d University.
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jects are indiscernible if and only if all available functionals
take on identical values (Leibnizs Law of Indiscernibility:

The Identity of Indiscernibles) (Ariew et al., 1989). However,
in the rough set approach, indiscernibility is defined relative
to a given set of functionals (attributes). Any set of all indis-
cernible (similar) objects is called an elementary set, and forms

a basic granule (atom) of knowledge about the universe. Any
union of some elementary sets is referred to as a crisp (precise)
set. A set which is not crisp is called rough (imprecise, vague).

Consequently, each rough set has boundary region cases,
i.e., objects which cannot with certainty be classified either as
members of the set or of its complement. Obviously crisp sets

have no boundary region elements at all. This means that
boundary region cases cannot be properly classified by
employing available knowledge.

Thus, the assumption that objects can be seen only through
the information available about them leads to the view that
knowledge has a granular structure. Due to the granularity
of knowledge, some objects of interest cannot be discerned

and appear as the same (or similar). As a consequence, vague
concepts, in contrast to precise concepts, cannot be character-
ized in terms of information about their elements.

Ultimately, there is interest in selecting the probe functions
(Peters, 2007) that lead to descriptions of objects that are min-
imally near each other. This is an essential idea in the near set
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approach (Peters, 2007; Peters et al., 2007) and differs mark-
edly from the minimum description length (MDL) proposed
in 1983 by Jorma Rissanen. MDL depends on the identifica-

tion of possible data models and possible probability models.
By contrast, NDP deals with a set X that is the domain of a
description used to identify similar objects. The term similar

is used here to denote the presence of objects that have descrip-
tions that match each other to some degree.

The near set approach leads to partitions of ensembles of

sample objects with measurable information content and an
approach to feature selection. The proposed feature selection
method considers combinations of n probe functions taken r
at a time in searching for those combinations of probe func-

tions that lead to partitions of a set of objects that has the
highest information content.

In this work, we assume that any vague concept is re-

placed by a pair of precise concepts, called the lower and
the upper approximations of the vague concept. The lower
approximation consists of all objects which surely belong to

the concept and the upper approximation contains all objects
which possibly belong to the concept. The difference between
the upper and the lower approximation constitutes the

boundary region of the vague concept. These approximations
are two basic operations in rough set theory. There is a
chance to be useful in the analysis of sample data. The pro-
posed approach does not depend on the joint probability of

finding a feature value for an input vectors that belong to
the same class. In addition, the proposed approach to mea-
suring the information content of families of neighborhoods

differs from the rough set. The near set approach does not
depend on preferential ordering of value sets of functions rep-
resenting object features. The contribution of this research is

the introduction of a generalization of near set approach to
feature selection.

2. Preliminaries

Rough set theory expresses vagueness, not by means of mem-
bership, but employing a boundary region of a set. If the

boundary region of a set is empty, it means that the set is crisp,
otherwise the set is rough (inexact). Nonempty boundary re-
gion of a set means that our knowledge about the set is not suf-
ficient to define the set precisely.

Suppose we are given a set of objects U called the universe
and an indiscernibility relation E#U�U, representing our
lack of knowledge about elements of U. For the sake of sim-

plicity we assume that E is an equivalence relation and X be
a subset of U, we want to characterize the set X with respect
to E. To this end we will need the basic concepts of rough

set theory given below (Pawlak, 1982).
The equivalence class of E determined by element x is:

½x�E ¼ fx0 2 X : EðxÞ ¼ Eðx0Þg. Hence E-lower, upper approx-
imations and boundary region of X are:

EðXÞ ¼
[
f½x�E : X#U; ½x�E #Xg;

EðXÞ ¼
[
f½x�E : X#U; ½x�E \ X – /g;

BNDEðXÞ ¼ EðXÞ � EðXÞ:

It is easily seen that approximations are in fact interior and

closure operations in a topology generated by the indiscernibil-
ity relation (Abd El-Monsef et al., 2010).
The rough membership function is a degree that x belongs
to X in view of information about expressed by E. It defined as
(Pawlak and Skowron, 1994):

lE
XðxÞ : U! ½0; 1�; lE

XðxÞ ¼
X \ ½x�E
�� ��
½x�E
�� �� ;

where j � j denotes the cardinality of �.
A rough set can also be characterized numerically by the

accuracy measure of an approximation (Pawlak, 1991) which
is defined as:

aEðXÞ ¼
EðXÞj j
EðXÞ
�� �� :

Obviously, 0 6 aEðXÞ 6 1. If aEðXÞ ¼ 1, X is crisp with re-
spect to E (X is precise with respect to E), and otherwise, if

aEðXÞ < 1, X is rough with respect to E (X is vague with re-
spect to E).

Underlying the study of near set theory is an interest in clas-

sifying sample objects by means of probe functions associated
with object features. More recently, the term feature is defined
as the form, fashion or shape (of an object).

Let F denotes a set of features for objects in a set X. For any

feature a 2 F, we associate a function fa that maps X to some
set Vfa (range of fa).

The value of faðxÞ is a measurement associated with feature

a of an object x 2 X. The function fa is called a probe function
(Pavel, 1993).

The following concepts introduced by Peters (2007) and Pe-

ters et al. (2006).
GAS ¼ ðU;F;Nr; mBÞ is a generalized approximation space,

where U is a universe of objects, F is a set of functions repre-
senting object features, Nr is a neighborhood family function

defined as

NrðFÞ¼
[

A#PrðFÞ
½x�A; where PrðFÞ¼ fA#F : Aj j ¼ r;16 r6 Fj jg:

And mBr
is an overlap function defined by

mBr
: PðUÞ � PðUÞ ! ½0; 1�; mBr

ðY;NrðBÞ�XÞ

¼
Y \NrðBÞ�X
�� ��

NrðBÞ�X
�� �� ;

where NrðBÞ�X – /;Y is a member of the family of neighbor-

hoods NrðBÞ and mBr
ðY;NrðBÞ�XÞ is equal to 1, if NrðBÞ�X ¼ /.

The overlap function mBr
maps a pair of sets to a number in

½0; 1� representing the degree of overlap between the sets of ob-

jects with features Br.
NrðBÞ-lower, upper approximations and boundary region

of a set X with respect to r features from the probe functions
B are defined as:

NrðBÞ�X ¼
[

x:½x�Br #X

½x�Br
;

NrðBÞ�X ¼
[

x:½x�Br\X–/

½x�Br
;

BNDNrðBÞX ¼ NrðBÞ�X�NrðBÞ�X:

Peters introduces the following concepts:
Objects x and x0 are minimally near each other if 9f 2 B

such that fðx0Þ ¼ fðxÞ. A set X is near to X0 if 9x 2 X, x0 2 X0

such that x and x0 are near objects. A set X is termed a near
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set relative to a chosen family of neighborhoods NrðBÞ if
jBNDNrðBÞXjP 0.
3. Generalized near set theory

In the following, we use a general relation to deduce a new ap-
proach to near set theory, consequently we obtain a new gen-

eral near lower (upper) approximation for any near set. Also
we introduce a modification of some concepts.

Definition 3.1. Let f 2 B be a general relation on a nonempty

set X. A special neighborhood of an element x 2 X is

ðxÞfr ¼ fy 2 X : fðyÞ � fðxÞj j 6 rg;

where j � j is the absolute value of � and r is the length of
neighborhood with respect to the feature f.

Remark 3.1. We will replace the equivalence class in the clas-

sical approximations defined by Peters by the special neighbor-
hood defined in Definition 3.1.

Definition 3.2. Let B#F be a set of functions representing fea-
tures of x; x0 2 X. Objects x and x0 are minimally near each

other if 9f 2 B such that jfðxÞ � fðx0Þj 6 r, where r is the length
of a special neighborhood defined in Definition 3.1, with
respect to the feature f. Denoted by xNfx

0.

Definition 3.3. Let Y;Y0#X and B#F. A set Y is near to Y0 if

9 x 2 Y, x0 2 Y0 and f 2 B such that xNfx
0. Denoted by YNfY

0.

Remark 3.2. We can determine the degree of nearness K
between two sets Y and Y0 as the following:

K ¼
/i 2 B : YN/i

Y0
�� ��

Bj j :

Theorem 3.1. Let x; y 2 X and f 2 B. Then x is near to y if

x 2 ðyÞfr or y 2 ðxÞfr .

Proof. From Definitions 3.1 and 3.2, we get the proof. h

Theorem 3.2. Any subset of X is near to X.

Proof. The proof is obvious. h

Postulation 3.1. Every set X is called near set, near to itself, as

every element x 2 X is near to itself.

Definition 3.4. Let ðX; s/i
Þ be topological spaces, where

/i 2 B; 1 6 i 6 jBj. Then the lower and upper approximations

for any subset A#X with respect to the feature /i are defined as:

N/i
ðAÞ ¼ int/i

ðAÞ and N/i
ðAÞ ¼ cl/i

ðAÞ; where

int/i
ðcl/i
Þ is the interior (closure) with respect to the topology

s/i
, whose subbase is the family of special neighborhoods de-

fined in Definition 3.1.

Definition 3.5. Let ðX; s/i
Þ be topological spaces, where

/i 2 B; 1 6 i 6 jBj. A new near lower and upper approxima-
tions for any subset A#X with respect to one feature of the

probe functions B are defined as

apr1ðAÞ ¼
[

/i2B
N/i
ðAÞ and apr1ðAÞ ¼

\

/i2B
N/i
ðAÞ:

Consequently

bapr1ðAÞ ¼ apr1ðAÞ � apr1ðAÞ:

Remark 3.3. The new near lower and upper approximations
with respect to two features of the probe functions B will be
defined as

apr2ðAÞ ¼
[

/i ;/j2B
N/i/j

ðAÞ and apr2ðAÞ ¼
\

/i ;/j2B
N/i/j

ðAÞ; where

N/i/j
ðAÞ ¼ int/i/j

ðAÞ and N/i/j
ðAÞ ¼ cl/i/j

ðAÞ:

Consequently,

apr Bj jðAÞ ¼
[

/1 ;/2 ;...;/ Bj j2B
N/i/j .../ Bj j ðAÞ;

apr Bj jðAÞ ¼
\

/1 ;/2 ;...;/ Bj j2B
N/i/j .../ Bj j ðAÞ:

Definition 3.6. Let ðX; s/i
Þ be topological spaces, where

/i 2 B; 1 6 i 6 jBj. The accuracy measure of any subset
A#X with respect to i features is defined as:

a0iðAÞ ¼
apriðAÞ
���

���
apriðAÞj j ; A – /:

Remark 3.4. 0 6 a0iðAÞ 6 1, a0iðAÞ means the degree of exact-
ness of any subset A#X. If a0iðAÞ ¼ 1, then A is exact set with
respect to i features.

Theorem 3.3. For any subset A#X, apriðAÞ and bapriðAÞ are
near to apriðAÞ.

Proof. Obvious. h

Remark 3.5. A set A with a boundary jbapriðAÞjP 0 is a near
set.

Theorem 3.4. Every rough set is a near set but not every near set
is a rough set.

Proof. There are two cases to consider

1. jbapri
ðAÞj > 0. Given a set A # X that has been approxi-

mated with a nonempty boundary, this means A is a rough
set as well as a near set.

2. jbapri
ðAÞj ¼ 0. Given a set A # X that has been approxi-

mated with an empty boundary, this means A is a near
set but not a rough set. h

Definition 3.7. Let ðX; s/i
Þ be topological spaces, where

/i 2 B; 1 6 i 6 jBj. The new generalized lower rough coverage
of any subset Y of the family of neighborhoods with respect to

the probe functions B is defined as



Table 1 Values features for the objects.

s a r

x1 0.51 1.2 0.53

x2 0.56 3.1 2.35

x3 0.72 2.8 0.72

x4 0.77 1.9 0.95

Table 2 Comparison between classical and our new near

approaches.

QðXÞ a1 a2 a3 a01 a02

fx1g 0 1
3 1 0 1

fx2g 1
4

1
3 1 1 1

fx3g 0 0 0 1 1

fx4g 0 0 0 1 1

fx1;x2g 1
2

1
2 1 1 1

fx1;x3g 0 1
4

1
3

1
2 1

fx1;x4g 1
2

1
2

1
3 1 1

fx2;x3g 1
2

1
2

1
3 1 1

fx2;x4g 1
4

1
4

1
3

2
3 1

fx3;x4g 1
2

1
2 1 1 1

fx1;x2; x3g 3
4

3
4

1
2 1 1

fx1;x2; x4g 3
4

3
4

1
2 1 1

fx1;x3; x4g 3
4

3
4 1 1 1

fx2;x3; x4g 3
4

3
4 1 3

4 1
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m0iðY; apriðDÞÞ ¼
Y \ apriðDÞ
���

���

apriðDÞ
���

���
;

where D is the decision class, means the acceptable objects (Pe-

ters, 2007), apriðDÞ– / and if apriðDÞ ¼ / then
m0iðY; apriðDÞÞ ¼ 1.

Remark 3.6. 0 6 m0i 6 1. It measures the degree that the subset

Y coverers the acceptable objects or sure region (apriðDÞ).

Now, we give an example to explain these definitions.

Example 3.1. Let s; a; r be three features defined on a non-

empty set X ¼ fx1; x2; x3; x4g as in Table 1.

If the length of the neighborhood of the feature s (resp a
and r) equals to 0.2 (resp 0.9 and 0.5), then

N1ðBÞ ¼ fnðs0:2Þ; nða0:9Þ; nðr0:5Þg; where
nðs0:2Þ ¼ ffx1; x2g; fx1; x2; x3g; fx2; x3; x4g; fx3; x4gg;
nða0:9Þ ¼ ffx1; x4g; fx2; x3g; fx2; x3; x4g; fx1; x3; x4gg;
nðr0:5Þ ¼ ffx1; x3; x4g; fx2gg: Hence;

ss0:2 ¼ ffx2g; fx3g; fx1; x2g; fx2; x3g; fx3; x4g;
fx1; x2; x3g; fx2; x3; x4g;X;/g;

sa0:9 ¼ ffx3g; fx4g; fx3; x4g; fx2; x3g; fx1; x4g;
fx2; x3; x4g; fx1; x3; x4g;X;/g;

sr0:5 ¼ ffx2g; fx1; x3; x4g;X;/g: Also; we get :

N2ðBÞ ¼ fnðs0:2; a0:9Þ; nðs0:2; r0:5Þ; nða0:9; r0:5Þg; where

nðs0:2; a0:9Þ ¼ ffx1g; fx2; x3g; fx2; x3; x4g; fx3; x4gg;
nðs0:2; r0:5Þ ¼ ffx1g; fx2g; fx3; x4gg;
nða0:9; r0:5Þ ¼ ffx1; x4g; fx2g; fx3; x4g; fx1; x3; x4gg: Hence;

ss0:2a0:9 ¼ ffx1g; fx3g; fx2; x3g; fx3; x4g; fx1; x3g;
fx2; x3; x4g; fx1; x2; x3g; fx1; x3; x4g;X;/g;
ss0:2r0:5 ¼ ffx1g; fx2g; fx3; x4g; fx1; x2g; fx1; x3; x4g;

fx2; x3; x4g;X;/g;
sa0:9r0:5 ¼ ffx2g; fx4g; fx1; x4g; fx3; x4g; fx2; x4g;
fx1; x3; x4g; fx1; x2; x4g; fx2; x3; x4g;X;/g:

Also, we find that

ss0:2r0:5 � ss0:2r0:5a0:9 :

Consequently the reduct of these features is the features fs; rg,
so the feature fag can be canceled.

Now the following example deduces a comparison between
the classical and new general near approaches by using the
accuracy measures.

Example 3.2. As in Example 3.1 we get Table 2, where QðXÞ is
a family of subsets of X.

Note that, a02 ¼ a03 for any subset of X, as ss0:2r0:5 � sa0:9s0:2r0:5 .
Remark 3.7. From Table 2, we note that the classical approx-
imations of near sets is more strong than the classical approx-

imations of rough sets, but when we use our generalized
approximations of near sets, we find that many sets will be
completely exact.

So our topological approach to near sets is the best of our
study. Hence we can consider that, our approximations is the

start point to apply of our life applications in many fields of
science.
4. Conclusion

This research is as a start point of many works, which aims to

improve the lower and upper approximations of near sets
introduced by J.F. Peters. This has led to a refinement of the
generalized approximation space model to include families of

neighborhoods. These works will be useful to a decision mak-
ing in many fields of our life.
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