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Abstract Single component gels (SCG) were formed from gelatin, gellan, maize starch or egg

white, while binary component gels (BCG) and tertiary component gels (TCG) were formed by

mixing gelatin or gellan with maize starch or/and egg white. All gels were evaluated by stress relax-

ation and uniaxial compression tests. Each type of SCG exhibited distinct rheological characteris-

tics. The effects of gelatin or gellan proportions on the rheological properties of BCG and TCG

were investigated using mixture design experiments. Gelatin and gellan yielded composite gels that

were remarkably different in terms of rheological behaviors. All BCG and TCG blends showed

antagonistic effects; the composite gels were weaker and more brittle as compared to the SCG.

Gellan composite gels were comparatively weaker and possessed more viscous behavior compared

to those of gelatin-based due to different gelling mechanisms, in which the latter had yielded denser

network structures as compared to the former.
ª 2014 King Saud University. Production and hosting by Elsevier B.V. All rights reserved.
1. Introduction

Rheology is the science of deformation and flow of a matter
under controlled conditions and it helps to understand

how food structure responds to the applied force and deforma-
tion. Rheological measurements are useful in quantifying the
mechanical behavior of food structure. Hence, it has been used
to complement the information on gel network structure and
interactions among the components of the system. Further-

more, rheological information of a food gel can give an indica-
tion of some of the sensory and textural characteristics (Burey
et al., 2009). In general, the rheological properties of food
systems can be evaluated with two kinds of tests: small defor-

mation–stress relaxation and large deformation–fracture
properties’ tests.

Stress relaxation test is commonly used to quantify visco-

elastic properties of gels that are related to crosslinks within
the networks by monitoring stress changes with time for a
short or long period of time. In general, stress relaxation dem-

onstrates the transient mechanical behavior of gels through the
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relative ability of the gel network to withstand the targeted
strain. The gel structure could be revealed through the amount
of energy that the network absorbed or dissipated. For stress

relaxation tests, fracture does not occur and the energy intake
during compression is not completely stored in the material
but is partly dissipated. Upon relaxation, a covalently cross-

linked network that is also considered as an ideal gel would
show no stress relaxation (Shim and Mulvaney, 2001). On
the contrary, the energy stored in viscoelastic gels is substan-

tially dissipated through several ways such as release of com-
pression-induced hydraulic pressure, entanglement coupling
of chains in covalent networks, shifting of crosslinks in non-
covalent networks (Tang et al., 1998), or friction between dis-

persed particles and network frames during the viscous flow
through the network (Luyten and van Vliet, 1995).

The stress and strain at fracture point are known as fracture

stress and fracture strain. Fracture stress may be interpreted as
the strength of a gel, while fracture strain is a measure of the
deformability. The gel strength and deformability depend on

the number and the type of bonds within the gel network
(Mao and Tang, 1999; Renkema, 2004; Weijers et al., 2006).
Parts of the gel structural elements were damaged during

deformation; however, the gel would only rupture when the
deformation achieved sufficient strain where the structural
damage reached a certain microscopic scale (van Vliet, 1996;
Zhang, 2004). Generally, fracture strain for a gel system is

independent on biopolymer concentrations but is closely re-
lated to the type of molecule forming the gel network (Zhang,
2004). Gels compose of relatively thin network strands and

small homogeneous pores would fracture at low strain values,
while gels that fracture at high strain values are composed of
thicker strands and relatively larger homogeneous pores (Weij-

ers et al., 2006).
Gellan has been proposed as one of the gelatin alternatives

in food applications (Morrison et al., 1999). It was hypothe-

sized that gellan would reveal the same gelling effects as gelatin
in composite gel systems, as gelatin and gellan are both
helix-forming biopolymers that form gels on cooling. How-
ever, gelatin gels are soft, elastic, translucent and thermore-

versible (Glicksman, 1969; Ledward, 2000), while low-acyl
Gll gels are clear, firm to touch, brittle and usually non-
thermoreversible (Huang et al., 2007; Williams and Philips,

2003). The strength and texture of gellan gels are dependent
on ionic strength, while those of gelatin gels depend more on
the concentration of gelatin (Lee et al., 2003; Morris et al.,

2012; Panouillé and Larreta-Garde, 2009; Pérez-Campos
et al., 2012).

It was hypothesized that by manipulating the proportions
of gelatin or gellan with maize starch and egg white, we could

yield composite gels with similar rheological properties. To
our knowledge, very little studies have been performed on
comparative assessment of composite gels prepared from

gelatin and gellan. Therefore, composite gels composed of
maize starch and/or egg white were selected as model systems
in this study to investigate the feasibility of gellan as a gelatin

replacer by characterizing and comparing these two systems.
The objective of this study was to comparatively study the
influence of ingredient composition on the rheological proper-

ties (small deformation-stress relaxation and large deforma-
tion-fracture properties) of gelatin and gellan in composite
gel systems containing maize starch or/and egg white.
2. Materials and methods

2.1. Materials

Gelatin (source: bovine, bloom strength 160, pH 5.3) was
obtained from Halagel Sdn Bhd, Kedah, Malaysia. Low-acyl

gellan was supplied by Fluka Chemical Corp., Ronkonkoma,
USA. Maize starch was purchased from Roquette Freres S.
A., Lestrem, France. Egg albumen powder (instant high gel,

EAP-HG) was purchased from Belovo S. A., Bastogne,
Belgium. This high-gelling egg albumen powder contains pro-
tein and moisture contents of 82.5% and 5.9%, respectively.

2.2. Gel preparation

The four selected biopolymers employed in this section were of
common ingredients used for a gelling purpose in food prod-

ucts, namely maize starch (MS), egg white (EW), gelatin
(Glt) and gellan (Gll). Single component gels (SCG) were
formed from Glt, Gll, MS or EW, while binary component gels

(BCG) and tertiary component gels (TCG) were formed by
mixing Glt or Gll with MS or/and EW powders. SCG with
specific targeted modulus values (24,000 N m�2) were used as

a benchmark against composite gels to yield free-standing gels
(Foo et al., 2013). During preliminary work, MS and EW
required 13% (w/w) and 9% (w/w) of biopolymers, respec-
tively to yield SCG with modulus values of in close proximity

to 24,000 N m�2. However, the modulus values for Glt and Gll
deviated from the targeted modulus as the concentrations of
biopolymers were adjusted in order to prepare gels that suited

the whole experimental conditions, where free-standing gels
were necessary for the analyses. For Glt-SCG, the amount of
biopolymer selected was 11% (w/w) although the modulus

obtained (�19,000 N m�2) was lower than the targeted value.
However, it was not suitable to raise the amount of Glt for
composite gel formulations due to the effect of limited water
for a complete biopolymer hydration. As for Gll-SCG, the

selected amount of biopolymer (2.5%, w/w), yielded SCG with
modulus (�35,000 N m�2) that exceeded the target values.
However, it was not suitable to prepare Gll-SCG with the

targeted modulus value (24,000 N m�2) since below 2.5% (w/
w) of Gll concentration no free-standing composite gels
(Gll-BCG and Gll-TCG) could be formed. Thus, the concen-

trations of MS, EW, Glt and Gll were 13%, 9%, 11% and
2.5% (w/w), respectively.

The stock biopolymer (Glt, Gll, MS and EW) dispersions

were prepared separately. The individual biopolymers were
dispersed in distilled water and were then left overnight at
15 �C (Sanyo Electric Co. Ltd., MIR-254, Moriguchi, Japan)
to ensure complete swelling. Glt and Gll dispersions were dis-

solved by heating the dispersions at 80 �C in a water bath
(Memmert GmbH & Co. KG, WB22, Schwabach, Germany)
and stirred constantly until clear solutions were formed. MS

slurry and EW solution were vacuum-degassed using dia-
phragm vacuum pump (Vacuubrand GmbH & Co. KG, ME
2C, Wertheim, Germany) for 20 min under continuous stirring

on a magnetic stirrer (Heidolph Instruments GmbH&Co. KG,
MR Hei-Tec, Schwabach, Germany) to avoid bubble forma-
tion. All the biopolymer stock solutions were kept at 50 �C in
a water bath prior to blend preparation as depicted in Table 1.



Table 1 Combinations of composite gels formulated with

maize starch (MS), egg white (EW) and gelatin (Glt) or gellan

(Gll) in the augmented simplex centroid design.

Run Component proportionsa

A: MS B: EW C: Glt A: MS B: EW C: Gll

1 0.50 0.00 0.50 1.00 0.00 0.00

2 1.00 0.00 0.00 0.42 0.42 0.17

3 0.50 0.50 0.00 0.00 0.50 0.50

4 1.00 0.00 0.00 0.17 0.42 0.42

5 0.67 0.00 0.33 0.00 0.67 0.33

6 0.17 0.42 0.42 0.50 0.50 0.00

7 0.00 0.67 0.33 0.42 0.17 0.42

8 0.33 0.00 0.67 1.00 0.00 0.00

9 0.42 0.17 0.42 0.67 0.00 0.33

10 0.67 0.17 0.17 0.33 0.67 0.00

11 0.00 0.33 0.67 0.00 0.00 1.00

12 0.33 0.67 0.00 0.17 0.17 0.67

13 0.33 0.33 0.33 0.50 0.00 0.50

14 0.42 0.42 0.17 0.17 0.67 0.17

15 0.17 0.67 0.17 0.00 1.00 0.00

16 0.00 0.00 1.00 0.33 0.33 0.33

17 0.67 0.33 0.00 0.00 1.00 0.00

18 0.17 0.17 0.67 0.67 0.17 0.17

19 0.00 0.00 1.00 0.00 0.33 0.67

20 0.00 0.50 0.50 0.00 0.00 1.00

21 0.00 1.00 0.00 0.67 0.33 0.00

22 0.00 1.00 0.00 0.33 0.00 0.67

a A + B + C= 1 or 100%.
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Gels were prepared according to the method as described
by Foo et al. (2013) with slight modifications. The designated

blends were transferred into syringes (volume: 20 mL; inner
diameter: 19 mm) and heated at 95 �C for 20 min. A thin layer
of paraffin oil was dropped on the surface of the samples in

each syringe to prevent excessive water evaporation. All the
samples were cooled to room temperature (25 �C) and
subsequently refrigerated at 4 �C for at least 18 h. The gels

were unmolded and cut into 20 mm in length and were left
to equilibrate at 15 �C for at least 1 h prior to analysis.

2.3. Design of experiment

Design Expert (Stat-Ease Co., Minneapolis, USA) was used to
prepare an experimental design and samples were prepared
according to an augmented simplex-centroid mixture design

with 10 candidate points. In addition, 9 experimental candi-
date points were added to verify the absence for lack of fit
and 3 candidate points were introduced as replicates. Thus,

an experimental design with 22 candidate points was obtained
(Table 1).

The experimental domains consisted of different propor-

tions of components of A (MS), B (EW) and C (Glt or Gll).
The proportional levels of these gelling components were set
in between 0% and 100% (w/w); (A + B + C= 100). The
experimental domain was within a regular triangle. The verti-

ces of the simplex represented the pure components, while the
edges of the triangle represented the two-component blends.
The centroid of the triangle corresponds to the mixture with

equal proportions (1/3: 1/3: 1/3) from each of the components
and points within the triangle represented the three-component
blends.
2.4. Stress relaxation test

Small deformation properties of gels were determined in tran-
sient mode through stress relaxation measurements. Stress
relaxation tests were conducted using a TA-TX2 Texture

Analyzer (Stable Micro Systems Ltd., Surrey, UK), attached
with a 15 kg load cell. The method applied was according to
Kampf and Nussinovitch (1997) with modification on setting
to suit the experimental conditions. A gel sample was

compressed at pre-test speed of 1 mm s�1 and test speed of
0.5 mm s�1 to 20% of strain and the gel was subsequently
allowed to relax for 60 s (Hongsprabhas, 2011). Three

measurements were recorded for each type of gel.
The obtained relaxation curves were normalized (Eq. (1))

and linearized (Eq. (2)) according to the two-step method by

Peleg and Normand (1983) as shown in the following
equations:

Yt ¼ ðF0 � FtÞ=F0 ð1Þ

t=Yt ¼ k1 þ k2t ð2Þ

where, Yt is the decaying parameter; F0 and Ft are the initial

force and the momentary force at time t, respectively, while
k1 (s) and k2 (dimensionless) are constants. The reciprocal of
k1 is the initial rate of relaxation and can be interpreted as
the viscous component. For food materials, k2 is a better

representative of elastic nature and not of solid nature (Singh
et al., 2006).

2.5. Uniaxial compression test

The rheological behaviors of gels were determined through
uniaxial compression tests by using a TA-TX2 Texture

Analyzer, attached with a 30 kg load cell. A 75 mm diameter
compression platen was used to compress a cylindrical sample
at a constant speed of 1 mm s�1 until fracture. The bottom

plate and the top of the gel were covered with a thin layer of
paraffin oil to allow sample expansion in order to avoid the
barrel effect during compression. At least five measurements
were recorded for each type of gel. The obtained force–time

data were then converted into true (Hencky’s) stress–strain
curves using following equations:

True ðHencky’sÞ stress rtrue ¼ Ft=A0 �Ht=H0 ð3Þ

True ðHencky’sÞ strain etrue ¼ lnððH0 �HtÞ=H0Þ ð4Þ

where, Ft is the force after deformation time of t, A0 is the sam-

ple cross-sectional area before deformation (for cylindrical
gels, A0 ¼ pR2

0), R0 and H0 are the initial radius and height
of the samples, respectively; while Rt and Ht are the sample ra-

dius and height after deformation of t (Wium and Qvist, 1997).

2.6. Mixture regression and statistical analysis

Scheffe’s canonical equations for three components were fitted
to data collected at each experimental point using multiple
regression analysis. Mixture regression analysis was performed

by Design Expert software to compute predictive models for
each tested response. The data were initially fitted to all avail-
able mixture regression models of increasing complexity, from
linear to full quadratic. The adequacy of model fitness was
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judged based on model significance, significance of lack-of-fit
and determination coefficient (adjusted R2). The adjusted R2

describes the proportion of variation in the responses that is

explained by the model and the value has been adjusted for
the number of terms in the model. The best fitted model was
then determined based on the insignificant of lack-of-fit and

the highest adjusted R2 with Scheffe’s canonical models.
Variables in the regression model were referred to as estimated
coefficients. The effect of linear, binary and ternary terms was

then justified based on estimated coefficients of the model
equation for each parameter. The estimated coefficients were
computed in actual components, which were represented by
the weight percentage of different components (Ibrahim

et al., 2010).
The statistical evaluations were performed using SPSS 14.0

for Windows software. For each parameter studied, the signif-

icant difference was determined through One-way analysis of
variance (ANOVA) at the level of P < 0.05. Duncan’s multi-
ple range test was applied to compare significant differences

among mean values.

3. Results and discussion

Three main categories of gels were defined, i.e., single compo-
nent gel (SCG), binary composite gel (BCG) and ternary
composite gel (TCG). SCG composed of a single type of

biopolymer. BCG and TCG consisted of two and three types
of biopolymers, respectively. The BCG and TCG were
prepared according to the blend ratios that were generated
by the Design Expert software for the mixture design experi-

ment. The rheological properties of the gels were characterized
through small and large deformations.

3.1. Small deformation-stress relaxation

In this study, all the gels were not physically stable thus it is
not suitable to conduct long term determinations of stress

relaxation. Therefore, the relaxation parameters were deter-
mined for a short duration and Peleg’s mathematical model
was applied to characterize the relaxation behaviors of the

gels. Two parameters were derived from the equation of
Peleg’s model, i.e., k1 and k2. The value of k1 is the intercept
of a linearized relaxation curve, and the reciprocal of k1 repre-
sents the initial decay rate. For a pure liquid material, k1 is

equal to zero, while an ideal elastic material shows k1
approaching infinity. The rate of relaxation would depend on
pore size, capillary forces, viscous flow and particle interac-

tions (Houzè et al., 2005). On the other hand, k2 could be more
indicative of the general rheological characteristics of gels since
it could represent the degree of solidity, i.e., it is indirectly

related to the volume of pores present per unit area. The higher
the k2 value, the higher the solid per unit area (Jaya and
Durance, 2008). Peleg and Normand (1983) reported that solid

foods (e.g., corn kernels) exhibited high k2 values, while soft or
semi-solid foods (e.g., cheese) showed values closed to unity,
which also represented viscous properties.

3.1.1. Stress relaxation behavior of SCG

Four groups of SCG were prepared namely [Glt-SCG], [Gll-
SCG], [MS-SCG] and [EW-SCG]. For all SCG, the force
increased steeply and linearly during compression until the
targeted 20% strain level (Fig. 1a). Glt-SCG and MS-SCG
showed only slight relaxation responses and the decay in force
was not obvious. Contrarily, the relaxation curves for Gll-SCG

and EW-SCG illustrated a sharp decay during the initial phase
of relaxation (�10 s). Subsequently, the force decayed
gradually to approach the residual force values. The relaxation

curves of SCG were fitted by Peleg’s equation and the relaxa-
tion parameters are presented in Table 2.

The value of Fmax represents the initial firmness of the gel at

20% of compression strain. The k1 value reflects the strength
and flexibility of the gel network, while k2 value indicates the
degree of solidity or the density of the gel structure (Jaya
and Durance, 2008). Generally, gels with higher k1 value

(slower relaxation) are composed of stronger and more flexible
strands.

Glt-SCG exhibited the lowest level of Fmax and this could

be attributed to the flexible network strands that were able
to distribute force during compression (Table 2). The k1 value
of Glt-SCG was outrageously higher (�220 s) compared to the

other SCG (k1 ranged between 14 and 60 s). This could be
explained by the strong and elastic network strands of
Glt-SCG absorbed most of the energy during compression

and were subsequently stored in the strands. In addition,
Glt-SCG showed a relatively high level of k2 (�16) implying
that the gel structure was compact and there was no percepti-
ble viscous component.

Gll-SCG showed the highest level of Fmax among all the
SCG (Table 2). The high level of firmness in Gll-SCG might
owe to the brittle and rigid network strand. Despite, the water

content in Gll-SCG was very high and thus the built-up
hydraulic pressure during compression could also contribute
to the initial firmness. However, Gll-SCG had little capability

of storing energy as the stress was dissipated rapidly and sub-
stantially as indicated by the lowest k1 value and the highest
amount of force decayed (Fig. 1a). Gll-SCG consisted of

�97% water in supporting the gel matrix and water was held
within the void space via capillary forces. The major factor
responsible for stress relaxation in Gll-SCG was due to the re-
lease of hydraulic pressure (Tang et al., 1998). Moreover, the

lowest value of k2 implied that the gel structure of Gll-SCG
was loose and consisted of a large part of viscous components.

MS-SCG and EW-SCG displayed similar Fmax, however,

the k1 value of MS-SCG was relatively higher than EW-SCG
(Table 2). This suggests that the network of MS-SCG was rel-
atively stronger, more flexible and thus able to store higher le-

vel of energy (lower amount of dissipated energy) than EW-
SCG. The value of k2 of MS-SCG was the highest among all
other SCG implying that the network structure of MS-SCG
was the most solid and compact. This might due to the highest

amount of biopolymer used to form the gel. On the contrary,
EW-SCG exhibited relaxation response owed to the dissipated
stress via internal rearrangement of protein aggregates (Shim

and Mulvaney, 2001). The k1 value of EW-SCG was of
approximately onefold lower than MS-SCG, which could be
attributed to the rigid and less deformable network of EW

(Table 2). Besides, EW-SCG displayed significant viscous
characteristic as indicated by the low level of k2.
3.1.2. Stress relaxation behavior of BCG

Five groups of BCG were prepared namely [MS:EW],
[MS:Glt], [MS:Gll], [EW:Glt] and [EW:Gll]. The stress



Figure 1 Stress relaxation curves of (a) SCG and BCG: (b) [MS:EW], (c) [MS:Glt], (d) [MS:Gll], (e) [EW:Glt] and (f) [EW:Gll].
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relaxation curves of BCG are displayed in Fig. 1b–f.
Generally, the combinations as well as the proportions of gel

components resulted in different relaxation behaviors of
BCG where the force decayed slowly with time. This trend is
similar to that reported by Joshi et al. (2014) where stress

values of lentil starch-lentil protein composite gels decreased
with time and tended to attain a finite equilibrium stress value.
According to Hibberd and Wallace (1966), this behavior of gel
is attributed to the destruction of weak bonds while the strong

bonds remain unaffected by a mechanical deformation.
All [MS:EW]-BCG exhibited relaxation, however, the

relaxation behavior of BCG formed at the higher ratio of

MS became less noticeable (Fig. 1b). The relaxation responses
of [MS:Glt]-BCG were negligible and similar to both of the



Table 2 Stress relaxation parametersa of single component gel.

SCGb Fmax (N) k1 (s) k2 (�)
Glt (11%, w/w) 1.19 ± 0.03C 218.47 ± 14.06A 16.06 ± 1.40A

Gll (2.5%, w/w) 2.43 ± 0.40A 13.82 ± 0.23D 2.93 ± 0.03C

MS (13%, w/w) 1.59 ± 0.05B 58.46 ± 7.71B 18.90 ± 1.66A

EW (9%, w/w) 1.50 ± 0.04B 27.55 ± 0.85C 3.16 ± 0.05B

a Data are mean ± standard deviation of 5 replicates. Values with different upper superscript letters (A–D) within a column are significantly

(P < 0.05) different between samples.
b SCG= single component gel, MS = maize starch, EW= egg white, Glt = gelatin, Gll = gellan.
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MS-SCG and Glt-SCG, which were highly elastic and dissi-
pated minimal amount of stress during relaxation (Fig. 1c).
As for [MS:Gll]-BCG, the extent of relaxation increased with

the increasing proportions of Gll (Fig. 1d). The relaxation
behaviors of both [67EW:33Glt]-BCG and [67EW:33Gll]-
BCG were similar (Fig. 1e and f). However, the relaxation re-

sponses deviated with the increasing ratio of Glt or Gll in the
EW-BCG. For [EW:Glt]-BCG, the relaxation responses were
less pronounced with the increasing proportions of Glt. As

for [EW:Gll]-BCG, the magnitudes of the initial firmness
decreased remarkably with the increase of Gll proportions.

The effects of component proportions on stress relaxation
parameters for all the BCG are illustrated in Fig. 2. The Fmax

values of all [MS:EW]-BCG were reduced to approximately
half as compared to the respective SCG (Fig. 2a and Table 2).
The Fmax value of [33MS:67EW]-BCG was significantly

(P < 0.05) higher than other [MS:EW]-BCG, although the
solidity of the gel was the lowest (lowest k2) (Fig. 2a (i) and
c (i)). The high level of firmness might be attributed to the

strong network strands within the gel structure as shown by
the low k1 value (Fig. 2b (i)). As the proportions of EW in-
creased, the initial firmness of [MS:EW]-BCG increased while

the network structure became less compact as illustrated by the
significant (P < 0.05) decline in k2 values. This reveals that
EW might be the predominant component contributed to the
network structure, whereas MS contributed to the solidity of

the gels.
The Fmax of [33MS:67Glt]-BCG was significantly

(P < 0.05) higher than other [MS:Glt]-BCG and was almost

similar to the Glt-SCG (Fig. 2a (ii) and Table 2). From the val-
ues of k1, it could be observed that the networks of [MS:Glt]-
BCG became more flexible and stronger as the proportions of

Glt increased (Fig. 2b (ii)). However, the value of k2 of
[MS:Glt]-BCG with equal proportions of MS and Glt was sig-
nificantly (P < 0.05) lower indicating that the gel structure
was less compact (Fig. 2c (ii)).

The Fmax values of all [MS:Gll]-BCG were relatively lower
as compared to their respective SCG (Fig. 2a (iii)). For
[MS:Gll]-BCG, both the k1 and k2 values decreased signifi-

cantly (P < 0.05) with increasing proportions of Gll (Fig. 2b
(iii) and c (iii)). This demonstrates that the network strands
of [MS:Gll]-BCG were less elastic and the gel structures

became less compact, therefore more energy was dissipated
during relaxation.

The Fmax values of [EW:Glt]-BCG were in a narrow range

revealing the proportions of EW and Glt did not affect the
initial firmness of the gels (Fig. 2a (iv)). However, the values
of k1 and k2 increased significantly (P < 0.05) with the
increasing proportions of Glt (Fig. 2b (iv) and c (iv)). As Glt
proportions increased, the network strands of [EW:Glt]-BCG
became stronger and more elastic, furthermore the gel struc-
ture became more compact. This implies that Glt strands con-

tributed predominantly to the structural properties of the gels.
The magnitudes for all the stress relaxation parameters (i.e.,

Fmax, k1 and k2) decreased significantly (P < 0.05) with the

increasing proportions of Gll in [EW:Gll]-BCG (Fig. 2a (v) c
(v)). Although the initial firmness for Gll-SCG was the highest
among all the SCG, the [EW:Gll]-BCG became less firm with

the increasing proportions of Gll. The increased content of
Gll yielded BCG with less compact gel structure with more
rigid and brittle network strands. Furthermore, the [EW:Gll]-
BCG with higher Gll proportion consisted more viscous

components and therefore the gel networks were not able to
store the built-up energy during compression.

3.1.3. Stress relaxation behavior of TCG

The purpose of using mixture design experiment in this section
was to reveal the influence of component proportions on the
linear deformation of composite gels. Thus, the statistical

analysis was only discussed briefly. The behavior tendencies
of stress relaxation responses for both Glt-TCG and
Gll-TCG were described based on the corresponding contour

and surface plots (Fig. 3a–c). All the Fmax, k1 and k2 responses
for both the Glt-TCG and Gll-TCG systems were fitted ade-
quately by cubic model except for kl response for Glt-TCG,

which was fitted by quadratic model. For both Glt-TCG and
Gll-TCG, the regression coefficients indicated that all the bin-
ary combinations had antagonistic effects on Fmax, k1 and k2.
These effects could be also observed in the pattern of the

respective contour and surface plots.
Generally, the Fmax values of Glt-TCG increased with the

increasing proportions of MS; however, the increasing Glt pro-

portions resulted in higher level of Fmax for Glt-TCG with
equal proportions of MS and EW (Fig. 3a (i)). Besides, the
k1 value of Glt-TCG increased with the increasing Glt propor-

tions indicating that most energy was stored and only a small
amount of energy was dissipated attributed to their strong and
elastic network strands (Fig. 3b (i)). This finding was in line

with the results in Section 3.1.1 where the k1 value of
Glt-SCG was the highest among the examined SCG. This
suggests that Glt was the main component contributed to the
elastic characteristic in these TCG systems. The gel structure

of Glt-TCG became less compact with the increasing propor-
tions of EW as represented by the decrease in k2 values
(Fig. 3c (i)), suggesting that EW was the main component that

reduced the degree of solidity of the Glt-TCG. Low level of k2
in the presence of high level of EW was predictable since EW-
SCG scored the lowest k2 value, as reported in Section 3.1.1.



Figure 2 Stress relaxation parameters; (a) Fmax, (b) k1 and (c) k2, and uniaxial compression parameter; (d) fracture stress and (e) fracture

strain of BCG: (i) [MS:EW], (ii) [MS:Glt], (iii) [MS:Gll], (iv) [EW:Glt] and (v) [EW:Gll]. Data points are mean ± standard deviation

(n= 5). Different letters on each symbol indicate significant difference (P < 0.05) among samples of different proportions for each type of

BCG.
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The Gll-TCG with [MS:EW:Gll] ratios of [17:17:67],
[17:42:42], [33:33:33] and [42:17:42] showed the lowest levels

of Fmax (Fig. 3a (ii)). This demonstrates that these TCG were
very weak and not self-supporting. The behavior tendencies
of k1 and k2 for Gll-TCG were similar as depicted in Fig. 3b
(ii) and c (ii). The network of Gll-TCG became weaker and

more brittle with a lower level of solidity as the proportions
of Gll increased. The values of k1 and k2 increased with the
increasing proportions of MS that resulted in the formation

of more elastic network strands with a more compact gel struc-
ture. However, both the EW and Gll led to the formation of
more rigid and brittle network strands. Consequently, the
Gll-TCG formed with high proportions of EW or Gll consisted
of higher content of viscous components.

3.2. Large deformation – fracture properties

3.2.1. Fracture properties of SCG and BCG

The fracture stress and fracture strain values of SCG and BCG
were plotted against each other (Fig. 4a). Glt-SCG fractured at
the highest levels of stress and strain indicating the gel was

strong and highly elastic. One of the suggested reasons for
the high rupture strains for Glt-SCG is the longer, more
flexible chains linking adjacent crosslinks in Glt network
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(Bot et al., 1996). Gll-SCG was the most fragile and brittle rel-
ative to the other gels as indicated by the lowest level of stress
and strain. Thus, Gll-SCG ruptured easily into a large amount

of small pieces. This was in accordance with the texture profile
analysis reported by Foo et al. (2013) for gellan gels. On the
other hand, MS-SCG and EW-SCG showed similar fracture

stress of �24,500 N m�2, however, MS-SCG ruptured at a
lower strain level indicating that MS-SCG was less deformable
relative to EW-SCG. The strong gel network of EW-SCG

could be due to stabilization of egg protein by intermolecular
linkages (e.g. disulfide cross-link, hydrogen bonds and hydro-
phobic interaction) during EW gelation (Lee and Chen, 2002;
Weijers et al., 2006) as compared to hydrogen bonds and van

der Waals forces in MS-SCG (Yoon et al., 2009), in which the
former was known to be stronger as compared to the latter
(Renkema and van Vliet, 2002).

From the fracture profiles, all the combinations of BCG
were relatively weaker as compared to their respective SCG
(Fig. 4a). In general, all the BCG consisted of Glt were

stronger and relatively more deformable. While, all the
Gll-BCG could be categorized as weak and brittle. The
[MS:EW]-BCG fell in the intermediate range among

Glt-BCG and Gll-BCG. The effect of component proportions
on fracture stress and fracture strain of BCG is exhibited in
Fig. 2d and e, respectively.

The fracture stress of [MS:EW]-BCG at the ratio of [33:67]

was significantly (P < 0.05) higher than [MS:EW]-BCG
Figure 3 Surface and contour plots of stress relaxation parameter; (a

fracture stress and (e) fracture strain for (i) [MS:EW:Glt]-TCG and (i
formed at an equal or a lower level of EW, in which these latter
exhibited similar fracture stress values (Fig. 2d (i)). On the
other hand, the fracture strain values of [MS:EW]-BCG in-

creased significantly (P < 0.05) as the EW proportion in-
creased (Fig. 2e (i)). The increase in fracture strain values
could be due to the increase in the disulfide bonds in the gel

formation since the EW proportion increased (Weijers et al.,
2006). This suggests that the proportions of MS and EW
greatly affected the types of bonds within the gels.

For [MS:Glt]-BCG, fracture stress increased significantly
(P < 0.05) with increasing proportions of Glt while fracture
strain remained at the similar levels (Fig. 2d (ii) and e (ii)). This
implies that the increase of Glt proportions in [MS:Glt]-BCG

could improve the gel strength while the type of gel network
remained the same.

The increase in Gll proportions significantly (P < 0.05) re-

duced the gel strength of [MS:Gll]-BCG (Fig. 2d (iii)). How-
ever, the fracture strain of [MS:Gll]-BCG with equal or
lower proportions of Gll was low (Fig. 2e (iii)). This suggests

that with the increasing proportions of Gll, [MS:Gll]-BCG be-
came weaker, brittle and prone to rupture.

For [EW:Glt]-BCG, the increasing proportions of Glt re-

sulted in the increase in fracture stress and fracture strain
(Fig. 2d (iv) and e (iv)). However, with equal or higher propor-
tions of Glt the fracture strains were not different significantly
(P > 0.05), suggesting that the increase of Glt resulted in

stronger and more elastic [EW:Glt]-BCG.
) Fmax, (b) k1 and (c) k2, and uniaxial compression parameter; (d)

i) [MS:EW:Gll]-TCG.



Fig. 3 (continued)
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Figure 4 Fracture properties of (a) SCG and BCG, (b) Glt-TCG and (c) Gll-TCG.
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The gel strength of [EW:Gll]-BCG increased significantly
(P < 0.05) with the increase of Gll proportions (Fig. 2d (v)).
On the contrary, the reverse trend was observed for
fracture strain where [EW:Gll]-BCG became significantly
(P < 0.05) less deformable with higher proportions of Gll
(Fig. 2e (v)).
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3.2.2. Fracture properties of TCG

Fracture properties of Glt-TCG and Gll-TCG are described in

Fig. 4b and c, respectively. The effects of proportional changes
on fracture stress and fracture strain of Glt-TCG and Gll-TCG
could be observed from the patterns of the respective contour

and surface plots as shown in Fig. 3d and e.
Glt-TCG with the lowest proportions of Glt displayed frac-

ture stress less than 10,000 N m�2, while these TCG became

more deformable with increasing EW proportions (Fig. 4b).
For Glt-TCG, Glt was the dominant component contributed
to the strength and elasticity of the gel network as represented
by the fracture stress and fracture strain (Fig. 3d (i) and e (i)).

At the low proportions of Glt, the equal proportions of MS
and EW yielded TCG with the lowest fracture stress but did
not affect the fracture strains. This suggests that at low

proportions of Glt, similar types of networks were formed
within Glt-TCG.

Gll-TCG with low levels of fracture stress (<1000 N m�2)

and high levels of strains (>1.33) were not self-standing
(Fig. 4c). Only Gll-TCG gels formed with the least proportions
(17%) of Gll were stronger and more brittle as compared to

the rest of Gll-TCG blends. From the contour and surface
plots of fracture stress for Gll-TCG, the mixture of three com-
ponents induced antagonistic effect on the gel strength (Fig. 3d
(ii)). Gll-TCG yielded with equal proportions displayed the

highest level of fracture strains (Fig. 3e (ii)). However,
these Gll-TCG were not elastic but became ductile and the
Gll-TCG did not rupture but flowed at low levels of stress.

4. Conclusion

Glt and Gll composite gels with MS or/and EW were

evaluated by small (stress relaxation) and large deformation
(fracture properties) tests. Glt composite gels were relatively
stronger and more elastic as the network strands were more

flexible and the gel structure became more compact. On the
contrary, Gll resulted in more rigid and brittle network strands
in Gll composite gels with less compact structure. Thus, the Gll

composite gels were weaker, possessed more viscous behavior.
Although Gll composite gels showed high levels of strain, these
gels were not elastic but became ductile as the gels did not
fracture and flowed under at low stress levels. In conclusion,

Glt and Gll exerted different effects on rheological properties
in either binary or ternary composite gel systems. The data
obtained from the present study could provide valuable

information to proceed with further investigation on the fun-
damental as well as the application prospect. It would be inter-
esting to further explore the microstructure and breakdown

behavior of Glt and Gll composite gels from the sensory
aspect.
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