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The discrete analysed fractional operator technique was employed to demonstrate positive findings con-
cerning the Atangana-Baleanu and discrete Caputo-Fabrizo fractional operators. Our tests utilized dis-
crete fractional operators with orders between 1 < u < 2, as well as between 1 < u < 3

2. We employed
the initial values of Mittag–Leffler functions and applied the principle of mathematical induction to
ensure the positivity of the discrete fractional operators at each time step. As a result, we observed a sig-
nificant impact of the positivity of these operators on rQð Þ sð Þ within Np0þ1 according to the Riemann–
Liouville interpretation. Furthermore, we established a correlation between the discrete fractional oper-
ators based on the Liouville-Caputo and Riemann–Liouville definitions. In addition, we emphasized the
positivity of rQð Þ sð Þ in the Liouville-Caputo sense by utilizing this relationship. Two examples are pre-
sented to validate the results.
� 2023 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

In the past decade, discrete fractional calculus has found appli-
cations in various fields including applied mathematics, physics,
medicine, and chemistry (refer to, for instance, Goodrich and
Peterson (2015); Atici et al. (2020); Atici et al. (2017); Iqbal et al.
(2023a); Shah et al. (2022)). However, there has been a significant
resurgence of interest in discrete fractional calculus operators
towards the end of the 20th century and the beginning of the
21st century. This renewed interest stems from the development
of novel fractional calculus operators (see Kilbas et al., 2006;
Srivastava, 2021a; Srivastava, 2021b; Iqbal et al., 2023b; Shah
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et al., 2023), such as the Riemann–Liouville and Liouville-Caputo
fractional operators (see Abdeljawad, 2011), Caputo-Fabrizo frac-
tional operators with an exponential kernel (see Abdeljawad and
Baleanu, 2017a; Abdeljawad et al., 2017), Atangana-Baleanu frac-
tional operators with the Mittag–Leffler kernel (see Abdeljawad
and Madjidi, 2017; Abdeljawad, 2018), and other generalized frac-
tional operators (see Srivastava, 2021a; Srivastava, 2021b;
Mohammed and Abdeljawad, 2020).

Discrete fractional operators serve as mathematical tools that
generalize and expand upon the principles of differentiation and
integration by accommodating non-integer orders. In contrast to
conventional calculus, which solely deals with integer orders, dis-
crete fractional operators operate on discrete data points, facilitat-
ing the examination of non-smooth or irregularly sampled signals.
These operators provide a mechanism to describe and comprehend
intricate systems that exhibit fractal or self-similar characteristics.
By capturing signal behavior across various scales, discrete frac-
tional operators enable the analysis of phenomena that cannot be
sufficiently elucidated through traditional integer-order calculus.
Their utility extends to diverse domains, including signal process-
ing, image analysis, time series analysis, and fractional differential
equations, among others. Ongoing research in the field of discrete
fractional operators focuses on refining their properties, devising
efficient computational algorithms, and exploring novel applica-
tions in emerging fields.

In the last few years, the search for analyses of the discrete frac-
tional operators that are close to the monotonicity of the function,
that is to say, satisfying the delta or nabla positivity of the function,
has received a lot of attention, see for example (Goodrich, 2014; Du
et al., 2016; Goodrich, 2016; Dahal and Goodrich, 2021). The theory
of positivity and monotonicity analyses of the discrete fractional
operators on Riemann–Liouville differences was started by by
Dahal and Goodrich in Dahal and Goodrich (2014). After that, many
authors followed their idea to investigate further results for Rie-
mann–Liouville difference operators, for example in Atici and
Uyanik (2015), Dahal and Goodrich (2014), Goodrich and Lizama
(2020), Goodrich and Lyons (2020). These results have been devel-
oped and applied on other types of discrete fractional operators
(see, for example, Abdeljawad and Abdalla, 2017; Mohammed
et al., 2021 on the Liouville-Caputo, Mohammed and Baleanu,
2022; Abdeljawad, 2017 on the Caputo-Fabrizo, and Mohammed
et al., 2022a; Abdeljawad and Baleanu, 2017b; Suwan et al., 2018
on the Atangana-Baleanu fractional difference operators). Further-
more, many researchers have considered the relationship between
sequential fractional difference operators and the positivity and
monotonicity of their corresponding functions in both the Rie-
mann–Liouville sense and the Liouville-Caputo sense (see, for
example, Dahal and Goodrich, 2019; Dahal et al., 2021; Goodrich
et al., 2021a; Mohammed et al., 2022b; Goodrich et al., 2021b;
Goodrich, 2017).

In a very recent work, Jia et al. Jia et al. (2015) demonstrated a
connection between the positivity of the Riemann–Liouville frac-
tional difference and the monotonicity of the function involved.
Based on these results, we will find a relationship between the pos-
itivity of the fractional differences and their corresponding func-
tions in the Riemann–Liouville sense. In addition, we will
establish these results in the Liouville-Caputo sense by using the
relationship between the Riemann–Liouville sense and the
Liouville-Caputo sense of the Caputo-Fabrizo and Atangana-
Baleanu fractional differences, which we will prove in this article
as well.

The organization of the study is as follows: Section 2 provides
an introduction to the preliminaries and notations that will be uti-
lized. The theory of discrete fractional calculus has been briefly dis-
cussed. However, even though some generalizations of
relationships exist for lower order 0 < u < 1, a study in the dis-
2

crete Caputo-Fabrizo and Atangana-Baleanu fractional settings
are missing for the higher orders. For that reason, in this section,
we make these relationships between the discrete fractional oper-
ators with respect to their corresponding Riemann–Liouville and
Liouville-Caputo operators. In Section 3, we present our main
results on the discrete Caputo-Fabrizo and Atangana-Baleanu frac-
tional operators for functions defined onNp0 . Lastly, the conclusion
of the study presented in this article is provided in Section 4.

2. Definitions, preliminaries and other necessary tools

In this section, we delve into multiple definitions of the
Atangana-Baleanu and discrete Caputo-Fabrizo fractional opera-
tors. Additionally, we provide a set of remarks that are crucial for
establishing the main results (for more comprehensive informa-
tion, refer to Abdeljawad (2018); Abdeljawad and Baleanu
(2017a); Abdeljawad et al. (2017); Abdeljawad and Madjidi
(2017)).

Fp0 ;j :¼ Q; Q : Np0�j ! R with j 2 N0; p0 2 R
� �

;

where Np0 :¼ p0;p0 þ 1; � � �f g.

Definition 2.1 (see Abdeljawad, 2018; Abdeljawad and Baleanu,
2017a). Let Q 2 Fp0 ;0 and C uð Þ > 0 is a multiplier. Then the
following operators:

ABC
p0

ruQ
� �

sð Þ :¼ C uð Þ
�uþ 1

Xs
r¼p0þ1

rrQð Þ rð ÞEu n;1þ s� rð Þ s 2 Np0þ1
� �

; ð2:1Þ

and

CFC
p0

ruQ
� �

sð Þ :¼ C uð Þ
Xs

r¼p0þ1

rrQð Þ rð Þ �uþ 1ð Þs�r s 2 Np0þ1
� �

ð2:2Þ
are called the discrete Atangana-Baleanu and Caputo-Fabrizo frac-
tional operators in the Liouville-Caputo sense, respectively. Also,
the following operators:

ABR
p0

ruQ
� �

sð Þ :¼ C uð Þ
�uþ 1

rs
Xs

r¼p0þ1

Q rð ÞEu n; s� r þ 1ð Þ s 2 Np0þ1
� �

;

ð2:3Þ
and

CFR
p0

ruQ
� �

sð Þ :¼ C uð Þrs
Xs

r¼p0þ1

Q rð Þ �uþ 1ð Þs�r s 2 Np0þ1
� � ð2:4Þ

are called the discrete Atangana-Baleanu and Caputo-Fabrizo frac-
tional operators in the Riemann–Liouville sense, respectively.

The above definitions have been generalized by Abdeljawad
et al. (2017), and by Abdeljawad and Madjidi (2017), as follows.

Definition 2.2 (see Abdeljawad et al., 2017; Abdeljawad and Madjidi,
2017). For Q 2 Fp0 ;j with j < u5jþ 1, the discrete Atangana-
Baleanu and Caputo-Fabrizo fractional difference operators can be
expressed as follows:

CFC
p0

ruQ
� �

sð Þ ¼ CFC
p0

ru�jrjQ
� �

sð Þ and

ABC
p0

ruQ
� �

sð Þ ¼ ABC
p0

ru�jrjQ
� �

sð Þ; ð5Þ

in the Liouville-Caputo sense, and

CFR
p0

ruQ
� �

sð Þ ¼ CFR
p0

ru�jrjQ
� �

sð Þ; and

ABR
p0

ruQ
� �

sð Þ ¼ ABR
p0

ru�jrjQ
� �

sð Þ; ð6Þ
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in the Riemann–Liouville sense, for each s 2 Np0þ1.
Remark 2.1. The above definitions contain the one-parameter
Mittag–Leffler function Ea zð Þ, which is defined here as follows
(see Mohammed and Abdeljawad, 2020; see also Srivastava,
2021a; Srivastava, 2021b for much more general families of Mit-
tag–Leffler type functions):

Eu n; sð Þ :¼
X1
k¼0

nk
sku

C kuþ 1ð Þ ¼: Eu nsu
� �

ð7Þ

for any n 2 R such that jnj < 1, u; s 2 C with Re uð Þ > 0. and su is
the rising function defined by

su ¼ C sþuð Þ
C sð Þ ; ð8Þ

for u in R and s in R n � � � ;�2;�1;0f g.
On the other hand, in view of Mohammed et al. (2022b, Remark

2.2), we have some initial values for n ¼ �uþ1
�uþ2 and 1 < u < 3

2:

� Eu�1 n;0ð Þ ¼ 1,

� Eu�1 n;1ð Þ ¼ 2�u,

� Eu�1 n;2ð Þ ¼ u 2�uð Þ2,
� Eu�1 n;3ð Þ ¼ 2�u

2 u� 1ð Þ3 2u� 3ð Þ � 3 u� 1ð Þ2 þ 2
h i

.

According to this, together with Fig. 1, one can observe that

0 < Eu�1 n; sð Þ < 1

for each 1 < u < 3
2 and s ¼ 1;2;3; � � �, and it is monotonically

decreasing for each 1 < u < 3
2 and s ¼ 0;1;2; � � �.

By establishing a correlation between the interpretations of the
Riemann–Liouville and Liouville-Caputo concepts, a connection
can be derived between the discrete Caputo-Fabrizio and
Atangana-Baleanu fractional operators.

Proposition 2.1. Assume that Q 2 Fp0 ;0. Then, for j < u5jþ 1, it is
asserted that
Fig. 1. Graph of Eu�1 n; sð Þ for u 2

3

CFR
p0

ruQ
� �

sð Þ ¼ CFC
p0

ruQ
� �

sð Þ þ C u� jð Þ
jþ�uþ 1

jþ�uþ 1ð Þs�p0 rjQ
� �

p0ð Þ:

Furthermore, for j < u5jþ 1
2, it is asserted that

ABR
p0

ruQ
� �

sð Þ ¼ ABC
p0

ruQ
� �

sð Þ þ C u� jð Þ
jþ�uþ 1

Eu�j nj; s� p0ð Þ rjQ
� �

p0ð Þ;

for each s 2 Np0þ1, where

nj ¼ � u� j
jþ�uþ 1

:

Proof. The first part of the proof can be deduced by referencing
Definition 2.2 and Abdeljawad (2018, Proposition 8). Similarly,
the second part of the proof can be established by relying on Def-
inition 2.2 and Abdeljawad (2018, Theorem 10). h
Remark 2.2. We note that, for n ¼ � u
�uþ1 with 0 < u < 1

2, it is

known that jnj < 1. Moreover, since

0 < u� j51
2
;

we see that jnjj < 1 for

nj ¼ � u� j
jþ�uþ 1

with

j < u5jþ 1
2
:

3. Main results

Within this section, we shall provide the proofs for the positiv-
ity theorems. which are stated as Theorem 3.1 and Theorem 3.2
below. To do this, we first need to two lemmas, one for the discrete
Caputo-Fabrizo operators and the other one for the Atangana-
Baleanu operators.
1;1:5ð Þ and s ¼ 1;2; � � � ;20.
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Lemma 3.1. Assume that Q 2 Fp0 ;0;1 < u < 2 and
CFR
p0

ruQ
� �

sð Þ P q0 8 s 2 Np0þ1. Then
rQð Þ sð Þ P q u� 1ð Þ �uþ 2ð Þs�p0�2 rQð Þ p0 þ 1ð Þ þ
Xs�1

r¼p0þ2

rrQð Þ rð Þ �uþ 2ð Þs�r�1

( )
;

for each s 2 Np0þ2.
Proof. From Definition 2.1 with 1 < u < 2, one can see, for each
s 2 Np0þ2, that

CFR
p0

ruQ
� �

sð Þ ¼ C u� 1ð Þ
Xs

r¼p0þ1

rrQð Þ rð Þ �uþ 2ð Þs�r �
Xs�1

r¼p0þ1

rrQð Þ rð Þ �uþ 2ð Þs�r�1

( )

¼ C u� 1ð Þ rQð Þ sð Þ þ
Xs�1

r¼p0þ1

rrQð Þ rð Þ �uþ 2ð Þs�r � �uþ 2ð Þs�r�1
h i( )

¼ C u� 1ð Þ rQð Þ sð Þ þ �uþ 2ð Þ �uþ 1ð Þs�p0�2 rQð Þ p0 þ 1ð Þ
n

þ �uþ 1ð Þ
Xs�1

r¼p0þ2

rrQð Þ rð Þ �uþ 2ð Þs�r�1

)
;

ð3:1Þ
which, together with the fact that C u� 1ð Þ > 0 and the assumption

that CFR
p0

ruQ
� �

sð Þ P q0, can be rearranged to the derive the desired

results. h
Corollary 3.1. Assume that Q 2 Fp0 ;0;1 < u < 2 and

CFC
p0

ruQ
� �

sð Þ P q� C u� 1ð Þ
�uþ 2

�uþ 2ð Þs�p0 rQð Þ p0ð Þ

for each s 2 Np0þ1. Then

rQð Þ sð Þ P q �1þuð Þ 2�uð Þs�p0�2 rQð Þ 1þ p0ð Þ þ
Xs�1

r¼p0þ2

rrQð Þ rð Þ �uþ 2ð Þs�r�1

( )
;

for each s 2 Np0þ2.
Proof. The deduction of the outcome can be made directly by
referring to Proposition 2.1 and Lemma 3.1. h
Lemma 3.2. Suppose that Q 2 Fp0 ;0;1 < u < 3
2 ; n1 ¼ � u�1

�uþ2 and

ABR
p0

ruQ
� �

sð Þ P q0 for each s 2 Np0þ1. Then

rQð Þ sð Þ P q
1

�uþ 2
Eu�1 n1; s� p0 � 1ð Þ � Eu�1 n1; s� p0ð Þ
h i

rQð Þ 1þ p0ð Þ
n

þ
Xs�1

r¼p0þ2

Eu�1 n1; s� rð Þ � Eu�1 n1; s� r þ 1ð Þ
h i

rrQð Þ rð Þ
)
;

for each s 2 Np0þ2.
Proof. According to Definition 2.1 when 1 < u < 3
2, we find for

each s 2 Np0þ2 that

ABR
p0

ruQ
� �

sð Þ ¼ C u�1ð Þ
�uþ2

Xs
r¼p0þ1

Eu�1 n1 ; s� r þ 1ð Þ rrQð Þ rð Þ �
Xs�1

r¼p0þ1

Eu�1 n1 ; s� rð Þ rrQð Þ rð Þ
( )

¼ C u�1ð Þ
2�u �uþ 2ð Þ rQð Þ sð Þ þ

Xs�1

r¼p0þ1

Eu�1 n1 ; s� r þ 1ð Þ � Eu�1 n1 ; s� rð Þ
h i

rrQð Þ rð Þ
( )

¼ C u�1ð Þ
2�u �uþ 2ð Þ rQð Þ sð Þ þ Eu�1 n1 ; s� p0ð Þ � Eu�1 n1 ; s� p0 � 1ð Þ

h i
rQð Þ p0 þ 1ð Þ

n
þ

Xs�1

r¼p0þ2

Eu�1 n1 ; s� r þ 1ð Þ � Eu�1 n1 ; s� rð Þ
h i

rrQð Þ rð Þ
)
:

ð2Þ
Considering this together with the fact that C u� 1ð Þ > 0 and the

assumption ABR
p0

ruQ
� �

sð Þ P q0, we arrive at the intended result. h
4

Corollary 3.2. Assume that Q 2 Fp0 ;0;1 < u < 3
2 ; n1 ¼ � u�1

�uþ2 and

ABC
p0

ruQ
� �

sð Þ P q� C u�1ð Þ
�uþ2 Eu�1 n1; s� p0ð Þ rQð Þ p0ð Þ for each

s 2 Np0þ1. Then, we have

rQð Þ sð Þ P q
1

2�u
Eu�1 n1; s� p0ð Þ � Eu�1 n1; s� p0 � 1ð Þ
h i

rQð Þ p0 þ 1ð Þ
n

þ
Xs�1

r¼p0þ2

Eu�1 n1; s� r þ 1ð Þ � Eu�1 n1; s� rð Þ
h i

rrQð Þ rð Þ
)
;

for each s 2 Np0þ2.
Proof. The proof can be straightforwardly derived from the appli-
cation of Proposition 2.1 and Lemma 3.2. h
Theorem 3.1. Suppose that Q 2 Fp0 ;0, 1 < u < 2 and
CFR
p0

ruQ
� �

sð Þ P q0 8 s 2 Np0þ1. Then rQð Þ sð Þ P q0 8 s 2 Np0þ1.
Proof. We proceed with the proof by mathematical induction. By
using Definition (6) for 1 < u < 2 at s ¼ p0 þ 1, one can have

CFR
p0

ruQ
� �

p0 þ 1ð Þ ¼ CFR
p0

ru�1rQ
� �

p0 þ 1ð Þ

¼ C u� 1ð Þ
X1þp0

r¼1þp0

rQð Þ rð Þ �uþ 2ð Þp0þ1�r �
Xp0

r¼1þp0

rQð Þ rð Þ 2�uð Þp0�r

( )

¼ C u� 1ð Þ rQð Þ p0 þ 1ð Þ;

which implies that rQð Þ p0 þ 1ð Þ P q0 by the hypothesis and the
fact that C u� 1ð Þ > 0. At s ¼ p0 þ 2, we have

CFR
p0

ruQ
� �

p0 þ 2ð Þ ¼ C u� 1ð Þ
X2þp0

r¼1þp0

rQð Þ rð Þ �uþ 2ð Þp0þ2�r �
X1þp0

r¼1þp0

rQð Þ rð Þ �uþ 2ð Þp0þ1�r

( )

¼ C u� 1ð Þ �uþ 1ð Þ rQð Þ 1þ p0ð Þ þ rQð Þ 2þ p0ð Þf g P q0;

which leads to

rQð Þ p0 þ 2ð Þ P q u� 1ð Þ|fflfflfflffl{zfflfflfflffl}
>0

rQð Þ p0 þ 1ð Þ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
Pq0

P q0:

Suppose now that j P q2 and that rQð Þ p0 þ ıð Þ P q0 for
ı ¼ 2;3; � � � ;j. Then, by using Lemma 3.1 at s ¼ p0 þ jþ 1, we have

rQð Þ p0 þ jþ 1ð Þ P q u� 1ð Þ|fflfflfflffl{zfflfflfflffl}
>0

2�uð Þj�1|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
>0

rQð Þ 1þ p0ð Þ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
Pq0

þ
Xp0þj

r¼p0þ2

rrQð Þ rð Þ|fflfflfflfflffl{zfflfflfflfflffl}
Pq0 by inductive assumption

�u þ 2ð Þjþp0�r|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
>0

8><
>:

9>=
>;

P q0;

which completes the proof of the induction process. Hence, the
proof is done. h
Corollary 3.3. Suppose Q 2 Fp0 ;0;1 < u < 2 and
CFC
p0

ruQ
� �

sð Þ P q� C u�1ð Þ
�uþ2 �uþ 2ð Þs�p0 rQð Þ p0ð Þ 8 s 2 Np0þ1. Then,

rQð Þ sð Þ P q0 8 s 2 Np0þ1.
Theorem 3.2. Suppose that Q 2 Fp0 ;0, 1 < u < 3
2 ; n1 ¼ � u�1

�uþ2 and

ABR
p0

ruQ
� �

sð Þ P q0 8 s 2 Np0þ1. Then rQð Þ sð Þ P q0 8 s 2 Np0þ1.
Proof. Again, we use mathematical induction to proceed with the
proof of Theorem 3.2. Indeed, by using Definition (6) for 1 < u < 3

2

at s ¼ p0 þ 1, and Remark 2.1, we see that

ABR
p0

ruQ
� �

p0 þ 1ð Þ ¼ CFR
p0

ru�1 rQ
� �

p0 þ 1ð Þ

¼ C u�1ð Þ
�uþ2

X1þp0

r¼1þp0

rQð Þ rð ÞEu�1 n1 ;p0 þ 2� rð Þ �
Xp0

r¼1þp0

rQð Þ rð ÞEu�1 n1 ;p0 � r þ 1ð Þ
( )

¼ C u�1ð Þ
�uþ2 rQð Þ p0 þ 1ð ÞEu�1 n1 ;1ð Þ ¼ C u� 1ð Þ rQð Þ p0 þ 1ð Þ P q0;
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which implies that rQð Þ p0 þ 1ð Þ P q0, where we have used the fact
that C u� 1ð Þ > 0. Moreover, at s ¼ p0 þ 2, we have

ABR
p0

ruQ
� �

p0 þ 2ð Þ ¼ C u�1ð Þ
�uþ2

X2þp0

r¼1þp0

rQð Þ rð ÞEu�1 n1 ;p0 � r þ 3ð Þ �
Xp0þ1

r¼1þp0

rQð Þ rð ÞEu�1 n1 ;p0 � r þ 2ð Þ
( )

¼ C u�1ð Þ
�uþ2 rQð Þ 1þ p0ð ÞEu�1 n1 ;2ð Þ þ rQð Þ 2þ p0ð ÞEu�1 n1 ;1ð Þ � rQð Þ 1 þ p0ð ÞEu�1 n1 ;1ð Þ

n o
¼ C u� 1ð Þ � u� 1ð Þ2 rQð Þ 1þ p0ð Þ þ rQð Þ 2þ p0ð Þ

n o
P q0;

which implies that

rQð Þ 2þ p0ð Þ P q u� 1ð Þ2|fflfflfflfflffl{zfflfflfflfflffl}
>0

rQð Þ 1þ p0ð Þ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
Pq0

P q0:

Assume that j P q2 and that rQð Þ p0 þ ıð Þ P q0 for ı ¼ 2;3; � � � ;j.
Then, by making use of Lemma 3.2 at s ¼ p0 þ jþ 1, we get

rQð Þ p0 þ jþ 1ð Þ P q
1

�u þ 2|fflfflfflffl{zfflfflfflffl}
>0

Eu�1 n1 ;jð Þ � Eu�1 n1 ;jþ 1ð Þ
h i
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

>0

rQð Þ p0 þ 1ð Þ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
Pq0

8>><
>>:

þ
Xp0þj

r¼p0þ2

Eu�1 n1 ;p0 þ j� r þ 1ð Þ � Eu�1 n1 ;p0 þ j� r þ 2ð Þ
h
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

>0

3
775 rrQð Þ rð Þ|fflfflfflfflffl{zfflfflfflfflffl}

Pq0 by inductive assumption

9>>=
>>;

P q0;

which completes the induction process, where we used that
Eu�1 n1;jð Þ is monotonically decreasing according to Remark 2.1.

Hence, the proof is complete. h
Corollary 3.4. Suppose Q 2 Fp0 ;0;1 < u < 3
2 ; n1 ¼ � u�1

2�u and

ABC
p0

ruQ
� �

sð Þ P q� C u�1ð Þ
2�u Eu�1 n1; s� p0ð Þ rQð Þ p0ð Þ 8 s 2 Np0þ1.

Then, rQð Þ sð Þ P q0 8 s 2 Np0þ1.

Once theoretical results are successfully derived, it is important
to check their accuracy. For this reason, we briefly consider two
examples as a verification for the main theorems. It is noteworthy
that these examples are computed using the MATLAB software.

Example 3.1. By considering Eq. (3.1) for s :¼ p0 þ 3, we get

CFR
p0

ruQ
� �

p0 þ 3ð Þ ¼ C u� 1ð Þ rQð Þ p0 þ 3ð Þ þ 2�uð Þ 1�uð Þ rQð Þ p0 þ 1ð Þf

þ 1�uð Þ
Xp0þ2

r¼p0þ2

rrQð Þ rð Þ 2�uð Þp0þ2�r

)
:

For a ¼ 0, it follows that

CFR
0 ruQ
� �

3ð Þ ¼ C u� 1ð Þ rQð Þ 3ð Þ þ 2�uð Þ �uþ 1ð Þ rQð Þ 1ð Þ þ 1�uð Þ
X2

r¼2

rrQð Þ rð Þ 2�uð Þ2�r

( )
¼ C u� 1ð Þ rQð Þ 3ð Þ þ 2�uð Þ 1�uð Þ rQð Þ 1ð Þ þ 1�uð Þ rQð Þ 2ð Þf g
¼ C u� 1ð Þ Q 3ð Þ � Q 2ð Þ þ 2�uð Þ 1�uð Þ Q 1ð Þ � Q 0ð Þ½ � þ 1�uð Þ Q 2ð Þ � Q 1ð Þ½ �f g:

Let’s consider Q 0ð Þ ¼ 1
2 ;Q 1ð Þ ¼ 1;Q 2ð Þ ¼ 3

2 ;Q 3ð Þ ¼ 2 and u ¼ 3
2, we

see that

CFR
0 r1:5Q

� �
3ð Þ ¼ C 0:5ð Þ 0:5þ �0:5ð Þ 0:5ð Þ 0:5ð Þ þ �0:5ð Þ 0:5ð Þf g

¼ 0:1250C 0:5ð Þ > 0:

Thus, clearly, Theorem 3.1 confirms that rQð Þ 3ð Þ > 0.
Example 3.2. By using Eq. (2) for t :¼ p0 þ 3, we see that

ABR
p0

ruQ
� �

p0 þ 3ð Þ ¼ C u� 1ð Þ rQð Þ p0 þ 3ð Þ þ 1
2�u Eu�1 n;3ð Þ � Eu�1 n;2ð Þ

h i
rQð Þ 1þ p0ð Þ

n
þ 1

2�u
X2þp0

r¼2þp0

Eu�1 n;p0 þ 4� rð Þ � Eu�1 n;p0 þ 3� rð Þ
h i

rrQð Þ rð Þ
)
:

For p0 ¼ 0, it follows that

ABR
0 ruQ
� �

3ð Þ ¼ C u� 1ð Þ rQð Þ 3ð Þ þ 1
2 u � 1ð Þ2 2u2 � 5uþ 2

� � rQð Þ 1ð Þ
n

þ 1
�uþ2

X2

r¼2

Eu�1 n;4� rð Þ � Eu�1 n;3 � rð Þ
h i

rrQð Þ rð Þ
)

¼ C u� 1ð Þ rQð Þ 3ð Þ þ 1
2 u � 1ð Þ2 2u2 � 5uþ 2

� � rQð Þ 1ð Þ � u� 1ð Þ2 rQð Þ 2ð Þ
n o

¼ C u� 1ð Þ Q 3ð Þ � Q 2ð Þ þ 1
2 u� 1ð Þ2 2u2 � 5uþ 2

� �
Q 1ð Þ � Q 0ð Þ½ � � u � 1ð Þ2 Q 2ð Þ � Q 1ð Þ½ �

n o
:

5

By considering Q 0ð Þ ¼ 1
2 ;Q 1ð Þ ¼ 1;Q 2ð Þ ¼ 3

2 ;Q 3ð Þ ¼ 2 and u ¼ 1:4,
we find that

ABR
0 r1:4Q

� �
3ð Þ ¼ 0:3768C 0:4ð Þ > 0:

Thus, obviously, Theorem 3.2 confirms that rQð Þ 3ð Þ > 0.
4. Conclusion

In this paper, the discrete analysed fractional operator tech-
nique has been successfully applied to find positivity results to
the discrete Caputo-Fabrizo and Atangana-Baleanu fractional oper-
ators with exponential and Mittag–Leffler kernels, respectively. As
a result, general forms of rQð Þ sð Þ on s 2 Np0þ1 in terms of the dis-
crete Caputo-Fabrizo fractional operators with the exponential ker-
nel and the Atangana-Baleanu fractional operators with the
Mittag–Leffler kernel have been obtained in summation represen-
tations in Lemma 3.1 and Lemma 3.2, respectively. These new gen-
eral forms might be potentially useful in the study of rQð Þ sð Þ to be
positive for each time step s inNp0þ1 by the induction procedure as
we have done in Theorem 3.1 and Theorem 3.2 in the Riemann–
Liouville sense. Particularly, due to a strong relationship between
the discrete fractional operators in the sense of Liouville-Caputo
and Riemann–Liouville (as in Proposition 2.1), the positivity of
rQð Þ sð Þ has been highlighted for those operators in the Liouville-
Caputo sense as in Corollaries 3.1,3.2,3.3,3.4. Finally, two examples
(Examples 3.1 and Example 3.2) have been solved to demonstrate
the validity of our main results.
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