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The knowledge of soil hydraulic conductivity is essential for the study of waste water infiltration rate into
the soil subsurface. This study assesses selected soil hydraulic properties of soil around septic tank sys-
tems. Twelve soil samples were collected from four different locations within Ido Local Government Area,
Oyo State, Nigeria. The analyzed parameters were done based on standard procedures. The measured val-
ues of soil physico-chemical properties were used to predict Ksat using multiple linear regression analysis.
The soil water content, porosity, Organic Carbon, Soil pH, bulk density, soil resistivity and saturated
hydraulic conductivity (Ksat) ranged from 20.6 to 26.2%, 34.3 to 47.2%, 0.11 to 0.37%, 5.8 to 6.2, 1.40 to
1.74 g/cm3, 4.55 to 5.80 O cm and 1.34 to 10.52 mm/hr respectively. The relationship obtained from
regression analysis on data (R2 = 86.8) is a new model with empirical linear equation
Ksat ¼ 82:08� 5:93BD � 10:98RES � 2:69wc � 16:12O:C þ 9:38pH which allows a new relation to estimate
Ksat from the selected parameters. Principal component analysis (PCA) identified 3 major factors account-
ing for 92.7% of the total variation in the soil hydraulic variables. The result of Cluster Analysis (CA) shows
groups based on correlation between hydraulic parameters and topographic settings.
� 2018 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Soils are the major sink for both household and industrial
wastes released into the environment. Therefore soils may become
enriched in various wastes and atmospheric deposition (Ma et al.,
2016). An important soil property to study the behaviour of soil
water flow is the soil permeability to water. Hydraulic conductivity
determination is one of the most important parameters for flow
and transport related mechanism in soil (Brouwer and Bugeja,
1979; Jadczyszyn and Niedzwiecki, 2005; Olorunfemi and
Fasinmirin, 2011). The knowledge of soil hydraulic conductivity
have many valuable applications in ecological monitoring, waste-
water infiltration, irrigation, rate of evaporation, water uptake by
root, drainage and construction of water storage facilities
(Kutilek and Nielsen, 1994; Sarki et al., 2014; Niec and Spychala,
2014; Welsh and Allen, 2014).

The hydraulic conductivity indicates the rate at which water
can flow through a material. It determines the potential for the
transport of leachate bearing contaminants/wastewater effluents
to move through the soil into underlying strata and eventually into
nearby groundwater (Kogbara et al., 2014). Hydraulic conductivity
depends on soil physical characteristics such as porosity, soil type,
bulk density, water content, intrinsic permeability, organic carbon,
clay mineralogy, particle size distribution, soil structures and soil
texture (Sarki et al., 2014; Olorunfemi and Fasinmirin, 2011;
Vereechen et al., 1990; Bouma, 1981; Delgado-Rodriguez et al.,
2011). The variability of saturated hydraulic conductivity may be
due to occurrence of macropores and soil texture (Hillel, 1982;
Vepraskas et al., 1991). The study of soil hydraulic conductivity is
important when designing and installing a septic tank system. Sep-
tic tank is a means of disposal of household domestic wastes in
form of black waste (toilet wastes) and human excrements from
the comfort of living area. In waste water infiltration, the amount
of water passing through depends greatly on the soil hydraulic
conductivity. Central to performance of septic system is the ease
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of soil permeability. In order to treat waste water effluent properly,
soil in the absorption field must be able to move water away from
the trenches fast enough to prevent water from rising to the sur-
face. The soil type, percolation rate, depth to impermeable layer
and average water table depth are factors needed for consideration
when determining the suitability of a particular site for a septic
system (Collick et al., 2006). Several published work on determina-
tion of soil permeability and its associated physical properties have
been well documented (Sarki et al., 2014; Niec and Spychala, 2014;
Olorunfemi and Fasinmirin, 2011; Mbagwu, 1983; Salako and
Adepelumi, 2016; Shevnin et al., 2006; Dec et al., 2008; Tatiana
et al., 2015) while scientists have also analyzed soil properties
and associated geochemical components based on Principal Com-
ponent Analysis (PCA) (Ma et al., 2016; Adhikari et al., 2011;
Gergen and Harmanescu, 2012; Satyanarayanan et al., 2016).

Several Scientists have also worked on prediction of soil
hydraulic conductivity using both physico-chemical and morpho-
logical properties (Wösten et al., 2001; Lilly et al., 2008;
Pachepsky et al., 2008; Karahan and Ersahin, 2016). The knowledge
of saturated hydraulic conductivity (Ksat) can be used to assess the
infiltration of wastewater from the trenches into the soil and also
to determine the direction of transfer of water from the drainfield
area. Thus, there is need to take hydraulic conductivity of soil
around septic tank system into consideration among other factors
such as hydraulic loading rate, clogging of the infiltrative surface,
relationship between soil morphological properties to soil water
movement, etc (EPA, 2000). In this research work, an estimation
of hydraulic conductivity of soil samples within the vicinity of sep-
tic tank systems was studied. The objectives were to determine the
saturated hydraulic conductivity in relation to waste water infiltra-
tion rate to the soil subsurface, develop a new model equation to
estimate Ksat from analyzed soil parameters in the laboratory and
to apply multivariate statistical techniques to study interrelation-
ship among soil hydraulic parameters.
2. Material and methods

2.1. Description of the study area

The study area lies within the latitudes 7.20oN–7.23� N of the
equator and longitude 3.49oE–3.52oE of the Greenwich meridian.
Ido Local Government Area is within Ibadan metropolis, Nigeria.
Ibadan has tropical wet and dry seasons. The wet season starts
from April-October with an average temperature of 26.5 �C and rel-
ative humidity of 81% (Olorunfemi and Fasinmirin, 2011) while dry
season runs from November-March. Ibadan is within the humid
tropics with a mean rainfall of 1237 mm (Akintola, 1986). Ibadan
falls under Guinea zone with bimodal rainfall patterns
(Omotosho and Abiodun, 2007; Ogolo and Adeyemi, 2009;
Oguntunde et al., 2012; and Ogungbenro and Morakinyo, 2014).
The climate in Ibadan is classified as Aw based on Kȯȯpen-Geiger
system (Essenwanger, 2003). This implies a tropical region with
dry winter season and a wet summer season. The prevalent wind
in Ibadan during wet season is the moist maritime southwest mon-
soon that blows inland from Atlantic Ocean. The dry season in Iba-
dan city is controlled by tropical continental air mass from Sahara
desert (Oyenuga et al., 2016; and Egbinola and Amobichukwu,
2013). This period is characterized with low relative humidity
and high rate of evaporation (Ogolo and Adeyemi, 2009). In Ibadan,
the months of January and September are the months of lowest
and highest relative humidity (Adeyemi and Aro, 2004; and Audu
et al., 2015). The sampling locations are Ajanla-Oluyole, Elebu-
Oluyole, Aba-Alamu, Apata/Dogo and Institute of Agricultural
Research & Training (IAR&T) premises (Fig. 1) within the metropo-
lis. The geographical data of the sampling locations were presented
in Table 1. The study area falls within the Basement Complex Ter-
rain of southwestern Nigeria. The basement complex rock consists
of crystalline igneous and metamorphic rocks which form a part of
the African crystalline shield with rocks belonging to the youngest
of the three major provinces of the west African craton
(Adetoyinbo et al., 2010). The dominant rock types are quartzites
of the meta-sedimentary series and banded gneisses, augen
gneisses and migmatites, which constitute the gneiss-miginatite
complex. Other minor rock types include pegmatites, quartz,
aplites, dolerite dykes, amphibolites and xenoliths (Okunlola
et al., 2009). Banded gneiss constitutes over 75% of the rocks in
and around Ibadan while the augen gneiss and quartzites share
the remaining in equal percentages (Okunlola et al., 2009). The
dominant rock type in the study area is migmatite gneiss (as
shown in Fig. 1).
2.2. Soil sampling and laboratory analysis

Twelve composite soil samples were randomly collected around
septic systems at a depth of 0–30 cm with the aid of soil auger and
core samplers at four different locations within Ido Local Govern-
ment area. The locations are Ajanla (S1, S2, S3), Elebu ((S4, S5, S6);
Aba-Alamu (S7, S8); Dogo (S9, S10, S11) and IAR&T ((S12). Soil sam-
ples were collected at a distance of about 0.5 m–1.0 m from the
septic tanks. Soil samples were packed in a well labeled polythene
bags and conveyed to soil physics laboratory of the IAR & T for
samples preparation and parameters of interest were: soil pH,
organic matter, organic carbon, bulk density, porosity, particle size
analysis, resistivity, water content and saturated hydraulic conduc-
tivity (Ksat)

Particle size distribution was determined by modified Boyoucos
hydrometer method as described by Gee and Or, (2002) while tex-
tural classification was done using the United State Department of
Agriculture (USDA) classification system. The determination of
bulk density was carried out by gravimetric soil core method as
described by Grossman and Reinsch (2002) and the particle density
was assumed to be 2.65 g/cm3. The porosity in % was calculated
from the bulk density using the equation as described by Hillel,
(2004) where

where qbulk = bulk density in g/cm3 and qparticle ¼ 2:65g=cm3.
Soil moisture content was determined using the method of

weight loss in accordance with the ASTM D4959-07 standards
(ASTM D4959–07, 2007). The soil pH in water of each soil sample
was measured via a digital pH meter in accordance with ASTM
G51–95 (2012) standards. The soil resistivity was measured using
the M.C. miller soil boxes according to the ASTM G57-05 standards
(ASTM G57–05, 2005). The dimension of each box and pin spacing
was chosen so that soil resistivity is expressed in Ohm cm accord-
ing to

The organic carbon (OC) was determined using the loss on igni-
tion method (Cambardella et al., 2001).

The soil saturated hydraulic conductivity (Ksat) was measured
using the constant head permeameter method based on Reynolds
and Elrick (2002).
2.2.1. Statistical analysis
The relationship between the dependent variable (Ksat) and the

associated parameters (predictors) was evaluated using the multi-
ple Regression Analysis. The significance of the observed correla-
tion coefficient results was analyzed using the factor analysis and
Pearson’s correlation method to explain relationship between sam-
ple parameters and/or variables. Principal Component Analysis
(PCA) is one of the multivariate statistical techniques based on data
reduction of an original data set while retaining the inherent inter-
dependencies present in the original data set (Satyanarayanan



Table 1
Geographical data of soil sampling locations.

Location Sample code Coordinates Elevation (m) Position Local classification USDA classification

Ajanla S1 7� 2048.7N
3� 5026.6E

253 Middle slope Egbeda Aquic kanha pludalf

S2 7� 2046.6N
3� 5029.4E

190 Lower slope Apomu Dystric Eutru dept

S3 7� 2049.6N
3� 5024.4E

175 Upper slope Iwo Typic Kandiu staff

Elebu S4 7� 2112.3N
3� 4927.4E

173 Upper slope Ibadan Typic Kanhaplustalf

S5 7� 2114.5N
3� 4927.4E

190 Upper slope Ibadan Typic Kanhaplustalf

S6 7� 2111.5N
3� 4924.4E

189 Upper slope Iwo Typic Kandiu stalf

Aba-Alamu S7 7� 2257.1N
3� 4931.8E

175 Upper slope Iwo Typic Kandiu Stalf

S8 7� 2257.5N
3� 4931.2E

197 Middle slope Egbeda Aquic Kanhaplu dalf

Dogo S9 7� 2256.2N
3� 4939.8E

177 Middle slope Egbeda Aquic Kanhaplu dalf

S10 7� 2256.6N
3� 4939.2E

193 Upper slope Ibadan Typic Kanhaplus stalf

S11 7� 2258.5N
3� 4938.1E

188 Middle slope Egbeda Aquic Kanhaplu staff

IAR&T S12 7� 2258.3N
3� 5035.2E

152 Middle slope Iwo Typic Kandiu stalf

*USDA = United State Department of Agriculture

Fig. 1. Geological map showing the rock type that underlies the sampled area and field layout of the sampling points.
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et al., 2016; Liu et al., 2003; and Jianqin et al., 2010). The rotation of
the PC was executed by the varimax method with Kaiser normal-
ization. Cluster analysis (CA) is a method of sectioning a group of
physical/Sample parameters into classes so that similar properties
are in the same class. Samples/variables within a particular cluster
are similar to each other but dissimilar from other clusters (Zhang



Table 3
Regression table for the analyzed parameters.

Variables Coefficients t-Value
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et al., 2014). CA was performed with the aid of Ward’s linkage
method and squared Euclidean distance as a measure of similarity
between samples and/or parameters (Zhang et al., 2014).
(Constant) 82.087 0.435 ns

Bulk density �5.932 �1.428 ns

Resistivity �10.979 �0.649 ns

water content �2.692 �0.718 ns

Organic carbon �16.120 �2.382*

pH 9.378 1.969*

R2 86.8%
F-value 7.878**

ns = Not significant at 10% (p < 0.1) level.
* = Significant at 10% (p < 0.1) levels.
** = Significant at 5% (p < 0.05) levels.
3. Results and discussion

3.1. Physio-chemical analyses

The result of analyzed parameters on collected soil samples
within the distance of 0.5–1.0 m to the septic tank systems is pre-
sented in Table 2. Four soil samples have sandy loam (SL) texture
while the remains eight soil samples belong to sandy clay loam
(SCL). This is in agreement with the earlier work by (Olorunfemi
and Fasinmirin, 2011) where the predominant soil texture within
Ibadan metropolis is SCL. However, the predominant soil type of
analyzed soil samples according to USDA soil classification system
is Typic Kandiustalf which account for 33.3% of analyzed samples.
The bulk density values ranged from 1.40 to 1.74 g/cm3. Samples 5
and 10 with sandy loam textural class has the highest BD value
(1.74 g/cm3) This may be due to the same value of least porosity
(34.34%).

Sample1 = 1.42 g/cm3, Ksat = 10.11 mm/hr, Porosity = 46.4% and
WC = 21.02%) and sample 6 (BD = 1.41 g/cm3, Ksat = 10.52 mm/hr,
Porosity = 46.8% and WC = 23.41%) have favourable physical condi-
tion. e porosity values ranged from 34.3% (with BD = 1.74 g/cm3)
and to 47.2% (with BD = 1.40 g/cm3). This result agrees with the
range of porosity obtained for tropical sandy soils by Lamotte
et al. (1979), Osunbitan et al. (2005) and Lesturgez (2005). The soil
water content ranged from 20.6% to 26.2% with a mean water con-
tent of 23.2% for all soil samples. The soil resistivity (Ohm-cm) val-
ues range from 4.55 to 5.80 Ohm-cm with a mean value of
5.19 Ohm-cm. The lowest soil resistivity was observed in sample
9 while sample 7 has the highest value of soil resistivity. The soil
organic carbon (OC) ranged from 0.11 to 0.37%. The soil pH ranged
from 5.8 to 6.2 with a mean pH value of 5.9. The saturated hydrau-
lic conductivity values ranged from 1.34 to 10.52 mm/hr. It should
be noted that samples 1 and 6 with highest Ksat values have the
least values of BD out of analyzed SL soil samples. The variability
of Ksat may be due to different amount of macropores and existence
of pore continuity in the soil samples (Iversen et al., 2001; Cameira
et al., 2003; and Buczko et al., 2006).

3.2. Interpretation of the regression analysis result

Table 3 shows the result of the Regression analysis to formulate
a model (linear equation) for the relationship between the depen-
dent variable (Ksat) and the predictors: bulk density, resistivity,
water content (WC), OC and pH. The result reveals that relationship
Table 2
Physico-chemical properties, textural class and saturated hydraulic conductivity of analyz

Location Sampling code Textural class BD (g/cm3) Ksatmm/h

Ajanla S1 SL 1.42 10.11
S2 SCL 1.40 6.15
S3 SCL 1.58 4.12

Elebu S4 SCL 1.68 6.56
S5 SL 1.74 7.32
S6 SL 1.41 10.52

Aba-Alamu S7 SCL 1.56 3.23
S8 SCL 1.63 2.92

Dogo S9 SCL 1.72 1.34
S10 SL 1.74 7.34
S11 SCL 1.52 4.52

IAR&T S12 SCL 1.62 3.31

Note: SL = Sandy Loam, WC =Water Content, OC = Organic Carbon, BD = Bulk Density.
SCL = Sandy Clay Loam.
exists at 10% level between Ksat and predictors OC and pH. This is
an indication that OC and pH contribute at 10% level to the varia-
tion in the Ksat of the soil. The R-square value of 86.8% indicates
that the predictors in the model account for 86.8% of the total vari-
ation in the Ksat of the soil while F-value 7.878 which is significant
at 5% level (P < 0.05) implies the feasibility of the model. The equa-
tion modeling the existing relationship between Ksat and the pre-
dictors as extracted from the regression table is

Ksat ¼ 82:087� 5:932BD � 10:979RES � 2:692WC � 16:120OC þ 9:378pH

where BD = Bulk density, RES = resistivity, WC = water content and
OC = organic carbon.

The result of regression analysis showed that the lower BD, RES,
WC, OC and higher values of pH increases soil hydraulic conductiv-
ity. The result in equation showed that only soil pH has positive
relationship with the dependent variable (KsatÞ: However, hydrau-
lic conductivity also depends on other properties such as pore size
distribution, pore structure and tortuosity (Messing and Jarvis,
1995).

3.3. Result of correlation coefficient, PCA and CA

The degree of a linear association between any two of the ana-
lyzed parameters measured by Pearson’s correlation coefficients is
presented in Table 4. Factor Analysis and PCA were performed on
the normalized data set of 8 physical parameters of soil samples
collected within the study area. The rotation of the principal com-
ponents was converged in five (5) iterations. Table 5 shows the fac-
tor loading and eigen values of extracted components while
Figs. 2a and 2b show the dendrogram of analyzed soil parameters
and soil sampling points respectively. From Table 4, there are very
strong positive associations between Ksat and pH (0.767**). Correla-
tion analysis showed a negative relationship between Ksat and OC
ed soil samples.

r Porosity (%) Resistivity (Ohm cm) WC OC pH

46.42 5.69 21.02 0.15 6.10
47.17 4.82 24.81 0.37 6.15
40.38 5.10 23.43 0.23 6.05
36.60 5.33 22.42 0.21 5.95
34.34 5.63 21.24 0.15 6.10
46.79 5.10 23.41 0.11 6.10
41.13 5.80 20.62 0.23 5.80
38.49 4.58 26.11 0.22 5.90
35.09 4.55 26.24 0.28 5.80
34.34 5.66 21.12 0.13 5.95
42.64 5.34 22.40 0.31 5.90
38.87 4.76 25.12 0.33 5.85



Table 4
Correlation coefficients of soil samples parameters in the study Area.

Correlations Bulk density Saturated hydraulic conductivity Porosity Resistivity) water content Organic carbon Organic Matter pH

Bulk density 1
Saturated hydraulic conductivity �0.429 1
Porosity �1.000** 0.429 1
Resistivity 0.004 0.507 �0.004 1
water content 0.017 �0.533 �0.017 �0.998** 1
Organic carbon �0.146 �0.647* 0.146 �0.544 0.544 1
pH �0.485 0.767** 0.485 0.184 �0.216 �0.298 �0.298 1

** Correlation is significant at the 0.01 level (2-tailed).
* Correlation is significant at the 0.05 level (2-tailed).

Table 5
Factor loading and Eigenvalues of Extracted components.

Parameters Component

1 2

Bulk density �0.499 �0.818
Saturated hydraulic conductivity 0.922 0.054
Porosity 0.499 0.818
Resistivity 0.721 �0.551
Water content �0.741 0.530
Organic carbon �0.628 0.521
pH 0.718 0.350
Initial eigenvalue 3.327 2.320
% of variance 47.531 33.149
Cumulative % 47.531 80.680
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(�0.647*). Hu et al. (2008) established similar relationship
between Ksat and OC content. There is expected negative correla-
tion between porosity and BD at 0.01 level. Soil BD showed
Fig. 2a. Dendrogram of Analyzed
negative but not significant relationship with OC (�0.146) and
pH (�0.485). The correlation between soil BD and pH is supported
by a similar observation by Chaudhari et al. (2013). A very strong
negative correlation also exist between water content (WC) and
resistivity (�0.998**). The negative correlation between WC and
Resistivity is expected because a decrease in soil water content
leads to increase in resistivity.

Two principal components were extracted and accounted for
80.7% of the total variation in the original data set. PCI (factor1)
accounts for 47.5% of the total variance and characterized by strong
positive loading on Ksat, moderate positive loadings on resistivity
and pH, with moderate negative loadings on OC and WC. The pos-
itive loadings on Ksat, resistivity and pH agrees with correlation
coefficient analysis result. Negative loading of resistivity with WC
means a decrease in resistivity as WC rises. Similarly, negative
loading of BD with porosity means a decrease in BD leads to rise
in porosity value. PC 2 accounted for 33.1% of the total variance,
parameters of Soil samples.



Fig. 2b. Dendrogram of soil sampling locations.

Fig. 3. Component loadings for soil parameters data.
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showing strong positive loading on porosity and strong negative
loading on BD. This agrees with the result of correlation coefficient
analysis.

Two clusters were identified on the dendrogram of analyzed
soil’s properties (Fig. 2a). Cluster 1 formed by Ksat, pH, porosity
and resistivity are completely in accordance with positive loadings
on PC1 and correlation coefficient. Cluster 2 comprises WC, OC and
BD and correlates very well with negative loadings on PC1. The
dendrogram schedule based on soil sampling sites depicts three
(3) clusters (Fig. 2b). Cluster 1 comprises S3, S4, S5, S7, S10 and S11,
cluster 2 consist of S8, S9 and S12 while cluster 3 comprises S1, S2
and S6. Cluster 1 comprises of samples belonging to the resistivity
range of 5.10–5.66 Ohm cm. Cluster 2 contains samples with sim-
ilar soil texture (SCL) and resistivity range (4.55–4.76 Ohm cm).
Cluster 3 comprises of soil samples with similar BD range (1.40–
1.42 g/cm3) and porosity range (46.4–47.1%).

These clusters of sampling points were grouped based on soil
textural class, bulk density, resistivity and porosity values.

The component loadings of PC 1 and PC 2 are plotted in Fig. 3.
There is correlation between the two components defined by FA
and the generated plot. The figure showed the variation from pos-
itive to negative loading of each principal component. Resistivity is
grouped in the positive side of PC1. Porosity, pH, saturated hydrau-
lic conductivity, OC and WC are grouped in the positive side of PC2
while BD is grouped in the negative side of the two PCs.

4. Conclusions

This study investigated the variability of hydraulic conductivity
and the associated physical properties of soil samples within the
vicinity of septic tank systems in four different locations in south-
western Nigeria. There is negative correlation between porosity
and BD, soil water content and resistivity at 0.01 levels. The mod-
eled linear equation showed that Ksat has inverse relationship with
BD, RES, WC, OC and direct correlation with soil pH. PCA on ana-
lyzed soil samples identified two principal factors accounting for
80.7% of the total variation in the original data set while cluster
analysis sectioning a group of samples/physical parameters based
on similar soil physical characteristics and soil textural class.
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