
Journal of King Saud University – Science 35 (2023) 102730
Contents lists available at ScienceDirect

Journal of King Saud University – Science

journal homepage: www.sciencedirect .com
Original article
Nonlinear third-order differential equations with distributed delay:
Some new oscillatory solutions
https://doi.org/10.1016/j.jksus.2023.102730
1018-3647/� 2023 The Author(s). Published by Elsevier B.V. on behalf of King Saud University.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

E-mail address: sathubiti@tu.edu.sa
Peer review under responsibility of King Saud University.

Production and hosting by Elsevier
Saeed Althubiti
Department of Mathematics and Statistics, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
a r t i c l e i n f o a b s t r a c t
Article history:
Received 20 August 2022
Revised 14 May 2023
Accepted 25 May 2023
Available online 2 June 2023

Keywords:
Third-order nonlinear differential equations
Delay
Oscillation
We consider a certain class of third order nonlinear delay differential equations in this work. The results
that we obtained are an improvement and extension of some results mentioned in previous literature, as
the criteria we obtained are less restrictive compared to the previous results reported in literature. An
example is provided to illustrate new results.
� 2023 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

In this paper, we consider the third-order neutral nonlinear dif-
ferential equation of the form

i nð Þ w00 nð Þð Þa� �0 þ Z b

a
# n;xð Þva s n;xð Þð Þdx ¼ 0; for n P n0; ð1Þ

where a is a ratio of positive odd integers and

w nð Þ ¼ v nð Þ þ p0v n� d0ð Þ:
Throughout this work, we will assume the following:

(I1) d0; p0 are constants such that p0; d0 P 0;
(I2) i 2 C1 n0;1½ Þ; ð0;1Þð Þ; #; s 2 C n0;1½ Þ � a; b½ �;Rð Þ; s n; sð Þ < n;
lim
n!1

s n;xð Þ ¼ 1; # n;xð Þ don’t not vanish identically, and
Z 1

n0

i�1=a nð Þdn ¼ 1:
When studying the behavior of positive solutions of (1), we note
that there are only two cases for n > n1 is sufficiently large:
Case ið Þ : w nð Þ > 0;w0 nð Þ > 0;w00 nð Þ > 0;
Case iið Þ : w nð Þ > 0;w0 nð Þ < 0;w00 nð Þ > 0.

Definition 1. A solution of (1) means v 2 C na;1½ Þ;Rð Þ where
na :¼ min n0 � d0;minn2Is nð Þ� �

which satisfies (1) and the property

i w00ð Þa 2 C1 I;Rð Þ on I. We consider the nontrivial solutions of (1)
that satisfy the condition sup v nð Þj j : n P n1f g > 0 for all n1 P na.
Definition 2. A solution v of (1) is said to be nonoscillatory if it
isneither positive nor negative eventually. Otherwise, it is
oscillatory.
Definition 3. If (1) has property D, then we say that solution v of
(1) is either oscillatory or satisfies limn!1v nð Þ ¼ 0.

A long time ago, third order differential equations have been
involved in many mathematical models in various field of applied
sciences where the famous isoperimetric problem was formulated.
Later, a solution was found based on a third-order differential
equation. Thus, third-order differential equations have become
the target of researchers and those interested in their effectiveness
in modeling many phenomena of economic and scientific life, espe-
cially physical, engineering and biological ones, we refer to
Agarwal et al. (2000), Agarwal et al. (2001), Baculikova and
Dzurina (2010), Baculikova and Dzurina (2011), Baculikova and
Dzurina (2012), Baculikova and Dzurina (2014), Stability and
Gorain (1998), Candan (2015), Dzurina et al. (2012), Erbe et al.
(1995), Grace (1984), Gy}oi et al. (1991), Hale (1977), Karpuz
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et al. (2010), Kitamura and Kusano (1980), Ladde et al. (1987), Li
(1996), Li and Rogovchenko (2014), Li and Rogovchenko (2020),
Li and Thandapani (2011), Li et al. (2010), Li et al. (2012), Liu and
Triggiani (2013), Marchand et al. (2012), Philos (1981), Rath et al.
(2004), Shang (2012), Tang (2002), Tekin (2021), Wu et al.
(2016), Wu et al. (2018), Xing et al. (2011), Xu and Xia (2004),
Yang and Xu (2014), Zhang and Wang (2010).

When considering partial differential equations and their appli-
cations, Adeye- mo and Khalique studied an extended Kadomtsev–
Petviashvili-like equation (Adeyemo and Khalique, 2022a), and a
higher-dimensional soliton equation (Adeyemo and Khalique,
2022b) achieving analytic solutions. They emphasized the impor-
tance of these solutions in scientific fields. The authors of
Adeyemo et al. (2022) obtained travelling wave solutions for a
(3 + 1)-dimensional generalized Zakharov-Kuznetsov equation. In
Adeyemo (2022), a generalized extended (2 + 1)-D quantum
Zakharov-Kuznetsov equation was analytically studied, where the
author outlined the applications of cnoidal and snoidal waves of
the model in ocean engineering and oceanography. A (2 + 1)-D gen-
eralized Bogoyavlensky-Konopelchenko equation was investigated
in Adeyemo et al. (2022).

In a bounded domain in Rn with a smooth boundary, the bound-
ary stabilization of the problem satisfying the differential equation

h00 þ kh000 ¼ k2 Dhþ lDh0ð Þ is investigated in Stability and Gorain
(1998). As modeled by the Standard linear model of viscoelasticity,
these equations appear in the vibrations of flexible structures with
internal material damping. Under mixed boundary conditions, the
authors examined an exponential energy decay for their stated
problem. An inverse problem for the linearized Jordan-Moore-
Gibson-Thompson equation, a third-order in time partial differen-
tial equation that appears in nonlinear acoustic waves modeling
high-intensity ultrasound, is introduced in Liu and Triggiani
(2013). By using only one boundary measurement, the two canon-
ical recovery issues of uniqueness and stability are examined. The
Jordan-Moore-Gibson-Thompson equation’s dynamical decompo-
sition is the foundation of the suggested method. The authors of
Marchand et al. (2012) investigated the Moore-Gibson-Thompson
equation, which arises in high-intensity ultrasound. They pre-
sented an abstract third-order equation in a Hilbert space. The
authors provided that this third-order abstract equation with
unbounded free dynamical operator is not well-posed in its sim-
plest form, with a particular set of parameter values. In Tekin
(2021), the authors examined the inverse problem of recovering
a time-dependent coefficient of a nonlinear third order in time par-
tial differential equation, also known as the Moore-Gibson-
Thompson equation, from a single boundary measurement.

Despite the importance of third-order differential equations, the
literature that has appeared so far is few compared to second-order
differential equations, we recommend recent monographs to the
reader (Baculikova and Dzurina, 2011; Wu et al., 2018; Wu et al.,
2016 and Zhang and Wang, 2010).

It is worth noting that we find that third-order delay differential
equations may have only oscillatory solutions, while they may
have oscillatory and non-oscillatory solutions; for instant, the solu-
tions for the eqaution

w000 nð Þ þ w n� rð Þ ¼ 0;

are oscillatory if and only if, r > 3=e. On the other hand, the equa-
tion of the form

w000 nð Þ þ 2z0 nð Þ � w n� 1
2
3p

� �
¼ 0

has an oscillatory and a nonoscillatory solution (sinn; ekn) such that
k3 þ 2k ¼ e�ð3pl2Þk; k > 0.
2

Recently, Baculikova and Dzurina (2010) and Yang and Xu
(2014) established some different sufficient criteria which ensure
that all nonoscillatory solutions to the equation

i nð Þ v nð Þ þ p0v r nð Þð Þð Þ00� �a� 	0
þ # nð Þva s nð Þð Þds ¼ 0 ð2Þ

tend to zero. Also, Li et al. (2012) and Baculikova and Dzurina
(2010) investigated Eq. (2) for a ¼ 1 under the condition

0 6 p0 < 1: ð3Þ
Assuming s nð Þ ¼ n� d0, Li and Rogovchenko (2014) studied asymp-
totics of Eq. (2) with the condition

0 6 p0 < 1:

In the present paper, by using different techniques (comparison
with first order delay equations and the technique of Riccati trans-
formation), we obtain the conditions that ensure the oscillation of
the solutions of this equation. Moreover, we extend and improve
previous results.

Furthermore, we present new criteria that ensure the oscillation
of all the solutions of Eq. (1), these criteria are an improvement of
previous results, as the conditions mentioned are less restrictive
and easier to apply. By taking advantage of the results obtained
recently and the current results, the conditions achieved ensure
the oscillation of all solutions of Eq. (1).

We state the following lemma, which we will need to prove our
results later.

Lemma 1. Let h1;h2 2 0;1½ Þ and m > 0. Then

h1 þ h2ð Þm 6 l hm
1 þ hm

2

� �
: ð4Þ

where

l ¼ 1 when m 6 1;

l ¼ 2m�1 when m > 1:
Lemma 2. Let H; F 2 C I;Rð Þ; F� 2 R and
H nð Þ ¼ F nð Þ þ aF n� kð Þ; n P n0 þmax 0; kf g, where a and k are con-
stants and a – 1. Assume that 9l 2 R such that limn!1H nð Þ ¼ l,
moreover,

l ¼ 1þ að ÞF� if lim infn!1F nð Þ ¼ F�
1þ að ÞF� if lim supn!1F nð Þ ¼ F�:

(
where F�; F� 2 R.
2. Main results

Lemma 3. Let v nð Þ > 0 be a solution of Eq. (1). Assume that w nð Þ
satisfies case iið Þ. IfZ 1

n2

Z 1

t

1
i uð Þ

Z 1

u

Z b

a
# j;xð Þdxdj

 !1=a

dudt ¼ 1; ð5Þ

then,

lim
n!1

v nð Þ ¼ 0: ð6Þ
Proof. w nð Þ is a nonincreasing positive function, then there exists a
w0 P 0 such that

lim
n!1

w nð Þ ¼ w0 P 0:
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We claim that w0 ¼ 0. Otherwise, by the above Lemma, we get

lim
n!1

v nð Þ ¼ w0= 1þ p0ð Þ > 0:

Therefore, there exists a n2 P n0 such that, for all n P n2

v s n; sð Þð Þ > w0

2 1þ p0ð Þ > 0: ð7Þ

From (1) and (7), it follows that

i nð Þ w00 nð Þð Þa� �0 6 �
Z b

a
# n;xð Þ w0

2 1þ p0ð Þ
� �a

dx:

Integrating the above inequality from n to 1, we get

i nð Þ w00 nð Þð Þa P
w0

2 1þ P0ð Þ
� �a Z 1

n

Z b

a
# j;xð Þdxdj:

It follows that

w00 nð Þ P w0

2 1þ P0ð Þ
1
i nð Þ

Z 1

n

Z b

a
# j;xð Þdxdj

 !1
a

: ð8Þ

Integrating (8) from n to 1, yields

� w0 nð Þ P w0

2 1þ P0ð Þ
Z 1

n

1
i uð Þ

Z 1

u

Z b

a
# j;xð Þdxdj

 !1=a

du:

Integrating again from n2 to 1, gives

w n2ð Þ P w0

2 1þ P0ð Þ
Z 1

n2

Z 1

t

1
i uð Þ

Z 1

u

Z b

a
# j;xð Þdxdj

 !1=a

dudt;

this contradicts (5). Therefore, limn!1w nð Þ ¼ 0, and from
0 < v nð Þ 6 w nð Þ, we have (6).
Theorem 1. Let (5) be satisfied and assume that there exists a func-
tion . 2 C I;Rð Þ where . nð Þ 6 s n;xð Þ;. nð Þ < n and limn!1. nð Þ ¼ 1.
If the first-order delay differential equation

y0 nð Þ þ 1
1þ p0ð Þa

Z b

a
R .ð Þ# n;xð Þdxy . nð Þð Þ ¼ 0; ð9Þ

where

R nð Þ :¼
Z . nð Þ

n2

Z q

n1

i�1=a xð Þdxdq
� �a

;

is oscillatory; eventually, then (1) has property D.
Proof. Suppose that v nð Þ is a positive solution of (1); there exists a
n1 P n0 such that either ið Þ or iið Þ holds for all n P n1. Let w satis-
fies case iið Þ, by Lemma 3, we see that (6) holds. Assume that w sat-
isfies case ið Þ, Since i nð Þ w00 nð Þð Þa is nonincreasing, we have

w0 nð Þ P R n
n1

1
i1=a xð Þ i

1=a xð Þ w00 xð Þð Þdx
P i1=a nð Þ w00 nð Þð Þ R n

n1
1

i1=a xð Þdx;
ð10Þ

Integrating (10) from n2 to n, where n2 > n1, we get

w nð Þ P i nð Þ1=a w00 nð Þð Þ
Z n

n2

Z q

n1

1
i1=a xð Þdx

� �
dq: ð11Þ

Now, Since w0 nð Þ is a nondecreasing positive function. There exists a
constant c0 such that limn!1w

0 nð Þ ¼ c0 > 0 (or c0 ¼ 1). By Lemma 2,
we have
3

lim
n!1

v0 nð Þ ¼ c0= 1þ p0ð Þ > 0;

this implies that v nð Þ is a nondecreasing function,we get

w nð Þ ¼ v nð Þ þ p0v n� d0ð Þ 6 1þ p0ð Þv nð Þ:

Therefore,

v nð Þ P 1
1þ p0

w nð Þ:

Since s n; sð Þ P . nð Þ, we obtain

v s n; sð Þð Þ P 1
1þ p0

w . nð Þð Þ:

From (1), we have

i nð Þ w00 nð Þð Þa� �0 þ wa . nð Þð Þ
1þ p0ð Þa

Z b

a
# n;xð Þdx 6 0: ð12Þ

Using (12) and (11), we arrive at

i nð Þ w00 nð Þð Þa� �0
þ
R b
a # n;xð Þdx
1þ p0ð Þa

Z . nð Þ

n2

Z q

n1

i�1=a xð Þdxdq
� �a

i . nð Þð Þ w00 . nð Þð Þð Þa� �
6 0:

Therefore, we have y nð Þ ¼ i nð Þ w00 nð Þð Þa is a positive solution of (9).
Corollary 1. Let (5) holds, and suppose that there exists a function
. 2 C I;Rð Þ such that . nð Þ 6 s n;xð Þ;. nð Þ < n and limn!1. nð Þ ¼ 1. If

lim inf
n!1

Z n

. nð Þ
R uð Þ

Z b

a
# n;xð Þdx

 !
du >

1þ p0ð Þa
e

; ð13Þ

then Eq. (1) has property D.
Proof. In view of Gy}oi et al. (1991); Erbe et al. (1995) condition
(13) implies the oscillation of the delay differential Eq. (1).
Theorem 2. If a function h 2 C n0;1½ Þ; 0;1ð Þð Þ exists, where
h nð Þ 6 n; s n;xð Þ � d0 ¼ s n� d0;xð Þ; s n;xð Þ 6 h nð Þ � d0ð Þ and

lim sup
n!1

Z n

n2

Z q

n1

1
i1=a xð Þdx

� �
dq

� �Z n

h nð Þ

Z b

a

e# u;xð Þdxdu:

> l 1þ pa0
� �

; ð14Þ
where,e# n;xð Þ :¼ min # n;xð Þ; # n� d0;xð Þf g ð15Þ
then case iið Þ is impossible to satisfy.
Proof. Let v > 0 be a solution of (1). Then, v nð Þ;v s nð Þð Þ and
v n� d0ð Þ are positive functions for n P n1 is sufficiently large. By
using Lemma 1, we obtain

wa nð Þ 6 l va nð Þ þ pa0v
a n� d0ð Þ� �

;

and

wa s n;xð Þð Þ 6 l va s n;xð Þð Þ þ pa0v
a s n;xð Þ � d0ð Þ� �

: ð16Þ
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Now, from (1) we have

i n� d0ð Þ w00 n� d0ð Þð Þa� �0
þ
Z b

a
# n� d0;xð Þva s n� d0;xð Þð Þdx ¼ 0: ð17Þ

Using (1), (16) and (17), we have

0 P i nð Þ w00 nð Þð Þa� �0 þ R b
a # n; sð Þva s n; sð Þð Þds

þpa0 i n� d0ð Þ w00 n� d0ð Þð Þa� �0
þpa0

R b
a # n� d0;xð Þva s n;xð Þ � d0ð Þdx

P i nð Þ w00 nð Þð Þa� �0 þ pa0 i n� d0ð Þ w00 n� d0ð Þð Þa� �0
þ R b

a
e# n;xð Þ va s n;xð Þð Þ þ pa0va s nð Þ � d0;xð Þ� �

dx:

ð18Þ

Thus

i nð Þ w00 nð Þð Þa þ pa0 i n� d0ð Þ w00 n� d0ð Þð Þa� �� �0
þ 1
l

Z b

a

e# n;xð Þwa s n;xð Þð Þdx 6 0: ð19Þ

Integrating (19) from h nð Þ to n, we see that

i h nð Þð Þ w00 h nð Þð Þð Þa þ pa0i h nð Þ � d0ð Þ w00 h nð Þ � d0ð Þð Þa
6 i nð Þ w00 nð Þð Þa þ pa0i n� d0ð Þ w00 n� d0ð Þð Þa

� 1
l

R n
h nð Þ
R b
a
e# u;xð Þwa s u;xð Þð Þdxdu;

Since i nð Þ w00 nð Þð Þa is nonincreasing, we have

1þ pa0
� �

i h nð Þ � d0ð Þ w00 h nð Þ � d0ð Þð Þa

P
1
l
wa s n; sð Þð Þ

Z n

h nð Þ

Z b

a

e# u;xð Þdxdu:

From (11), we obtain

1þ pa0
� �

i h nð Þ � d0ð Þ w00 h nð Þ � d0ð Þð Þa

P 1
l i s n;xð Þð Þ w00 s n;xð Þð Þð Þa � R n

n2

R q
n1

1
i1=a xð Þdx

� 	
dq

� 	 R n
h nð Þ
R b
a
e# u;xð Þdxdu:

�
This gives

1þ pa0
� �

P
1
l

Z n

n2

Z q

n1

1
i1=a xð Þdx

� �
dq

� �Z n

h nð Þ

Z b

a

e# u;xð Þdxdu:

Applying the limsup on both sides of the previous inequality, we
gain a contradiction to (14).

Combining Corollary 1 with Theorem 2, we get the Theorem of
oscillation for (1) as follows.

Theorem 3. Assume that there exists a functions . 2 C I;Rð Þ and
h 2 C n0;1½ Þ; 0;1ð Þð Þ such that
. nð Þ 6 s n;xð Þ;. nð Þ < n; limn!1. nð Þ ¼
1; h nð Þ 6 n; s n;xð Þ � d0 ¼ s n� d0;xð Þ; s n;xð Þ 6 h nð Þ � d0ð Þ. If (13)
and (14) hold, then Eq. (1) is oscillatory.
Example 1. Consider the following third-order neutral differential
equation

v nð Þ þ p0v n� d0ð Þð Þ000 þ 1þ p0e
d0

� �
v nð Þ ¼ 0: ð20Þ

Choose . nð Þ ¼ n� 1, by Corollary 1, we see that Eq. (20) has prop-
erty D. Note that the solution v nð Þ ¼ e�n is satisfying (6).
3. Conclusions

In this paper, we consider the oscillatory behavior of third-order
neutral differential equation with distributed deviating arguments
4

which is commonly used in the engineering and natural sciences
for modeling various problems. Through this investigation, we
were able to improve and extend upon previous results in the lit-
erature. In contrast to previous results, we obtained less restrictive
conditions as where we do not need the conditions

0 6 p0 < 1

and

eitheri0 nð Þ P 0ori0 nð Þ 6 0;

which is an improvement compared to Baculikova and Dzurina
(2010); Baculikova and Dzurina (2012); Candan (2015); Dzurina
et al. (2012), and can be applied more widely in this field of study.
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