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Abstract A formulation of the meshless local Petrov–Galerkin (MLPG) method based on the

moving kriging interpolation (MK) is presented in this paper. The method is used for solving

time-dependent convection–diffusion equations in two-dimensional spaces with the Dirichlet,

Neumann, and non-local boundary conditions on a square domain. The method is developed

based on the moving kriging interpolation method for constructing shape functions which have

the Kronecker delta property. In the method, the test function in each sub-domain is chosen as

the indicator function. The Crank–Nicolson method is chosen for temporal discretization. Two

test problems are presented which demonstrate the easiness and accuracy of this method as

shown by the relative error.
ª 2015 TheAuthors. Production and hosting by Elsevier B.V. on behalf ofKing SaudUniversity. This is an

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

In recent decades, meshless method in mathematical modeling
has attracted much attention, due to their flexibility in solving
practical science and engineering problems. The meshless

method has been developed and achieved remarkable progress
in mathematical modeling and related fields. The main reason
for interest in meshless method is it can save computational

time because no mesh is needed. They can easily produce high
accuracy, since in areas where more refinement is required;
nodes can quite easily be added. In addition, they can easily

construct high-order shape functions. They can easily solve
large deformation and strong nonlinear problem. The
connectivity among the nodes is generated as a part of the
computation and can change with time.
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Based on the form of system equation, the meshfree meth-
ods are classified into three categories. The first category cov-
ers the meshfree methods based on strong forms of system

equations, in which discretization is performed directly from
the governing differential equations, such as the general finite
difference method (Liszka and Orkisz, 1980), the smooth

particle hydrodynamic (SPH) method (Liu and Liu, 2003;
Lucy, 1977), and other meshfree collocation methods. The sec-
ond category includes meshfree methods based on weak forms

of system equations, such as the element-free Galerkin (EFG)
method (Belytschko et al., 1994), the meshless local Petrov–
Galerkin (MLPG) method (Atluri and Zhu, 1998; Atluri and
Lin, 2000; Abbasbandy and Shirzadi, 2011; Mirzaei, 2010;

Mahmoodabadi et al., 2011), the point interpolation method
(PIM) (Liu, 2002; Liu and Gu, 2001), etc. The third category
concerns meshfree methods based on the combination of weak

and strong forms, such as the meshfree weak–strong-form
(MWS) method. The major difference in these meshless
methods is in the choice of interpolation techniques.

The MLPG method was first discovered by Atluri and Zhu
(1998). Meshless local Petrov–Galerkin (MLPG) method is a
truly meshless method. This method is based on a weak form

computed over a local sub-domain and the moving least
squares (MLS) approximation. The MLPG method is one of
the most viable methods in which the MLS approach is used
to construct the shape functions. Although the MLPG

method has been applied to many problems, there exists an
inconvenience or disadvantage when using the MLPG because
of the difficulty in implementing essential boundary conditions.

This is because the MLS shape functions lack the Kronecker
delta property. Therefore the MK interpolation method
(Yimnak and Luadsong, 2014; Kaewumpai and Luadsong,

2014) has been proposed to overcome this problem. It uses
the nodal values in the local support domain to construct
shape functions with the Kronecker delta property. The MK

interpolation method works well for practical problems.
Finding numerical solutions with non-local boundary con-

ditions is important in applications such as chemical
diffusion, heat conduction processes, population dynamics

thermoelasticity, medical science, electrochemistry and con-
trol theory. Because of the complex problems, some analytic
solutions are difficult to find in the sense of boundary condi-

tions and geometrical shapes. So, recently much attention has
been paid in the literature to the analysis and implementation
of accurate methods for the numerical solution of time-de-

pendent partial differential equations with non-local bound-
ary conditions. Abbasbandy and Shirzadi (2010) researched
on the MPLG method for the two-dimensional diffusion
equation with the Neumann boundary condition and non-

classical boundary condition, and a meshless method for
the two-dimensional diffusion equation with an integral con-
dition. Mohyud-Din and Yildirim (2010) employed the

homotopy analysis method (HAM) for the solutions of
two-dimensional diffusion equations subject to non-standard
boundary specifications. The HAM method does not need

transformation techniques, linearization and discretization.
The approximate solutions by the HAM method were com-
pared with exact solutions. It was shown that the method is

reliable, efficient and requires less computation. Sajavicius
(2013) researched optimization, conditioning and accuracy
of radial basis function method for partial differential
equations with nonlocal boundary conditions in case of
two-dimensional Poisson equation. Techapirom and
Luadsong (2013) have used an MLPG method to study the
two-dimensional heat equation with Dirichlet, Neumann

and non-local boundary conditions in a square domain.
Their study demonstrated the good accuracy of the proposed
method and indicates that it can be easily extrapolated to

other problems. Sataprahm and Luadsong (2014) have used
the Meshless Local Petrov–Galerkin (MLPG) method for
the incompressible Navier–Stokes equations. The numerical

examples presented the local symmetric weak form (LSWF)
and the local unsymmetric weak form (LUSWF) with a clas-
sical Gaussian weight and an improved Gaussian weight on
both regular and irregular nodes is demonstrated. It is found

that LSWF1 with a classical Gaussian weight order 2 gives
the most accurate result. Goodrich (2015) considers the cou-
pled systems of boundary value problems with nonlocal

boundary conditions. The result shows that this system can
possess at least one positive solution even if no growth con-
ditions. Islam et al. (2015) present two numerical methods

that are analyzed for the solution of two-dimensional
Poisson equation with two different types of nonlocal bound-
ary conditions. The first numerical method is a collocation

method based on Haar wavelet whereas the second numerical
method is a meshless method based on different types of
radial basis functions (RBFs). A two-point boundary condi-
tion and an integral boundary condition are the two types

of nonlocal boundary conditions considered in the present
work. Two numerical results have shown that the accuracy
and efficiency wise performance is confirmed through applica-

tion of the algorithms on the benchmark tests.
The purpose of this article is to present a very efficient

MLPG based on MK interpolation for solving the two-dimen-

sional time-dependent convection–diffusion equation with
integral conditions. To deal with time derivatives, using the
Crank–Nicolson implicit method. The solution is approxi-

mated by the MK interpolation method which holds the
Kronecker delta property, thereby enhancing the nodal shape
construction accuracy. It was shown that the method is reliable
and efficient. Two test problems are presented illustrating the

easiness and accuracy of this method as shown by the relative
error.
2. Moving kriging interpolation method

The kriging interpolation is well-known geostatic technique for
spatial interpolation in geology and mining (Lucy, 1977). The

formulation of the construction of meshless shape function by
MK interpolation is introduced briefly in the following.
Similar to the MLS approximation, consider the function

TðxÞ defined in the domain X discretized by a set of properly
scattered nodes xi; i ¼ 1; 2; . . . ;N, where N is the total number
of nodes in the whole domain. It is assumed that only N nodes
surrounding point x have the effect on TðxÞ. The sub-domain

Xx that encompasses these surrounding nodes is called the
interpolation domain of point x. The MK interpolation

ThðxÞ at point x is defined as presented in Liu and Gu
(2001). Therefore, the formulation of the meshless shape

function using MK interpolation is given by:

ThðxÞ ¼
XN
i¼1

/iðxÞTi ¼ UðxÞT; x 2 Xx ð1Þ
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where T ¼ ½Tðx1ÞTðx2Þ . . .TðxNÞ�T is a vector value of the
function in the domain X.UðxÞ is a 1�N vector of shape

functions, expressed as:

UðxÞ ¼ pTðxÞAþ rTðxÞB; ð2Þ

where matrices A and B are defined as:

A ¼ ðPTR�1PÞ�1PTR�1 ð3Þ

B ¼ R�1ðI� PAÞ ð4Þ

In which I is a unit matrix of size N · N, and vector pðxÞ is:

pTðxÞ ¼ ½p1ðxÞp2ðxÞ . . . pNðxÞ�: ð5Þ

For matrix P with the size N · M, values of the polynomial

basis functions at the given set of nodes are collected:

P ¼

p1ðx1Þ � � � pMðx1Þ
..
. . .

. ..
.

p1ðxNÞ � � � pMðxNÞ

2
664

3
775: ð6Þ

Matrices R and vector rðxÞ are defined by the following
equations:

R ¼

rðx1; x1Þ � � � rðx1; xNÞ
..
. . .

. ..
.

rðxN; x1Þ � � � rðxN; xNÞ

2
664

3
775 ð7Þ

rTðxÞ ¼ ½rðx; x1Þrðx; x2Þ . . . rðx; xNÞ�; ð8Þ

where rðxi; xjÞ is the correlation function between any pair of

nodes located at Xi and Xj representing the covariance of the
field value TðxÞ, i.e.
rðxi; xjÞ ¼ E½TðxiÞTðxjÞ�: ð9Þ

Similarly, the covariance E½TðxiÞTðxjÞ� can be replaced by

rðxi; xjÞ. It can be seen from the foregoing formulations that

the values of matrices R and rðxÞ play important roles in the

computation. A simple and frequently- used correlation
function is a Gaussian function:

rðxi; xjÞ ¼ e�ac
rij
dcð Þ

2

ð10Þ

where rij ¼ kxi � xjk; dc and ac > 0 are the correlation parame-

ters used to fit the model and are assumed to be given.
The first-order partial derivatives of the shape function

UðxÞ against the coordinates xi; i ¼ 1; 2 can be easily obtained

from Eq. (2)

U;iðxÞ ¼ pT;i ðxÞAþ rT;i ðxÞB; ð11Þ

where ð�Þi denotes @ð�Þ=@xi.
3. Formulation of the moving kriging interpolation for

convection–diffusion equation

3.1. Governing equation and boundary conditions

The two-dimensional time-dependent convection–diffusion

equation subject to non-local boundary conditions can be
written as:

@T

@t
þ u � rT�r � ðKrTÞ ¼ f; x 2 X; t > 0 ð12Þ
where T is the unknown function, K is the diffusivity coeffi-
cient, u is the flow velocity, f is a source term. The boundary
conditions are assumed to be:

– The non-local boundary condition:

T ¼ h0ðxÞlðtÞ; x 2 Cn: ð13Þ

– The essential boundary condition:

T ¼ h1ðx; tÞ; x 2 Cd: ð14Þ

– The natural boundary condition:

n � rT ¼ gðx; tÞ; x 2 Cq: ð15Þ

– The initial condition assumed to be

Tðx; 0Þ ¼ T0ðxÞ; x 2 X; ð16Þ

and the integral conditionZ
X
Tðx; tÞ dX ¼ mðtÞ; ð17Þ

where lðtÞ is the unknown function, g; h0; h1 and m are given
functions. The non-local boundary condition is variable-sep-

arable, with spatial dependence given by h0ðxÞ and time depen-
dence given by lðtÞ. n is the outward unit normal vector to @X,
where @X is the boundary of the domain. Cn;Cd and Cq are the

part of the boundary @X, satisfying Cn \ Cd \ Cq ¼ / and

Cn [ Cd [ Cq ¼ @X.

3.2. Local weak-forms

In implementation of the present MK interpolation method, a

weak form is first constructed over a local sub-domain Xs

bounded by @Xs, where Xs is located entirely inside the global
domain X. Using the local weighted residual technique, the

local weak form of Eq. (12) over a local sub-domain Xs can
be written as:Z

Xi
s

@T

@t
þ u � rT�r � ðKrTÞ

� �
vidX ¼

Z
Xi
s

fvidX ð18Þ

where T is the trial function and v is the test function.

Using r � ðKrTÞvi ¼ r � ðKrðTÞviÞ � KrT � rvi and the
divergence theorem, we obtain the following local weak
formulation (LWF):Z

Xi
s

@T

@t
vidXþ

Z
Xi
s

u � rTvidX�
Z
@Xi

s

Kvi
@T

@n
dC

þ
Z

Xi
s

KrT � rvidX ¼
Z

Xi
s

fvidX: ð19Þ

In general, the boundary @Xi
s of the local sub-domain Xi

s

may intersect with the boundary of the global domain X.

Therefore, @Xi
s ¼ Ci

sn [ Ci
sd [ Ci

sq [ Li
s where, Li

s is a part of

@Xi
s. By imposing the natural boundary condition, we obtain:Z

Xi
s

@T

@t
vidXþ

Z
Xi
s

u � rTvidX�
Z

Ci
sn

Kvi
@T

@n
dC

�
Z

Ci
sd

Kvi
@T

@n
dC�

Z
Li
s

Kvi
@T

@n
dCþ

Z
Xi
s

KrT � rvidX

¼
Z

Xi
s

fvidXþ
Z

Ci
sq

gvidC: ð20Þ
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The test function in each sub-domain is chosen as the indi-
cator function.

viðxÞ ¼
1; x 2 Xi

s

0; x R Xi
s

(
ð21Þ

so, rvðxÞ ¼ 0; 8x 2 Xi
s and the local weak form Eq. (22) is

transformed into the following simple local integral equation:Z
Xi
s

@T

@t
dXþ

Z
Xi
s

u � rTdX�
Z

Ci
sn

K
@T

@n
dC�

Z
Ci
sd

K
@T

@n
dC

�
Z
Li
s

K
@T

@n
dC

¼
Z

Xi
s

fdX:þ
Z

Ci
sq

g dC: ð22Þ
3.3. Discretization of the weak form

As a known test function is used in the LWF, the use of the
LWF for one point (and hence for one local domain) will yield

only one linear equation involving T̂ðtÞ. Note that the trial
function T within the sub-domain Xs, in the MK approx-

imation, is determined by the fictitious nodal values T̂iðtÞ;
within the domain of definition for all points x falling within
Xs. The LWF in Eq. (22) gives one algebraic equation relating

all these T̂iðtÞ. Thus, we obtain as many equations as the

number of nodes. Therefore, we need as many local domains
Xs as the number of nodes in the global domain to obtain as
many equations as the number of unknowns. In the present
implementation, the local domain is chosen as a circle,

centered at a node xi.
To obtain the discrete equations from the LWF in Eq. (22),

the MK approximation in Eq. (1), is alternatively used to

approximate the trial function T. Substituting of Eq. (1) into
the LWF Eq. (22) for the entire node, leads to the following
discretized system of linear equations:

XN
j¼1

Z
Xi
s

/jðxÞdXÞ
 !

T̂0jðtÞ �
XN
j¼1

Z
Xi
s

u � r/jðxÞdX
 "

�
Z
Li
s

K/j;nðxÞdC

�
Z

Ci
sn

K/j;nðxÞdC�
Z

Ci
sd

K/j;nðxÞdC
!
T̂jðtÞ

�

¼
Z

Xi
s

fdXþ
Z

Ci
sq

g dC: ð23Þ

where i ¼ 1; 2; 3; . . . ;N.
Eq. (23) can be written in the matrix form as follows:

C
@T

@t
þDT ¼ FðtÞ; ð24Þ
Table 1 The relative error for Tðx; tÞ at M= 3, 6 and 10,

N= 25, 36 and 81.

N/m 3 6 10

25 2.0163e�2 3.1541e-3 2.5064e-3

36 1.7916e-2 2.6715e-3 1.9803e-3

81 6.2939e-3 2.5497e-3 1.5738e-3
where C; D and F are matrices described as follows:

C ¼ ½Cij�; Cij ¼
Z

Xi
s

/jðxÞdX ð25Þ

D ¼ ½Dij�; Dij ¼
Z

Xi
s

u � r/jðxÞdX�
Z
Li
s

K/j;nðxÞdC

�
Z

Ci
sn

K/j;nðxÞdC�
Z

Ci
sd

K/j;nðxÞdC ð26Þ

F ¼ ½Fi�; Fi ¼
Z

Xi
s

f dXþ
Z

Ci
sq

g dC: ð27Þ

Setting a time-stepping scheme to overcome the time

derivative and applying the Crank–Nicolson technique of
approximation to Eq. (24) yields:

ð2Cþ Dt DÞTkþ1 ¼ ð2Cþ Dt DÞTk þ 2Dt F
1
2 ð28Þ

where T is a matrix described as follows:

T ¼ T̂

l̂

 !
ð29Þ

Assuming that T̂k
i , for i ¼ 1; 2; :::;N and l̂k; are known, our

aim is to compute T̂kþ1
i ; for i ¼ 1; 2; . . . ;N and l̂kþ1. Now, we

have Nþ 1 unknowns, so to compute these unknowns we need
one equation, which can be obtained from the non-local
boundary condition from Eq. (17). Substituting trial function

Eq. (1), we obtain:Z
X
ðThÞkþ1ðxÞdX ¼

Z
X

XN
j¼1

/jðxÞT̂kþ1
j dX

¼
XN
j¼1

Z
X

/jðxÞdX
� �

T̂kþ1
j ¼ mkþ1 ð30Þ

which can be written in a matrix form as:

ST̂kþ1 ¼ mkþ1; ð31Þ

where S is a matrix described as follows:

S ¼ ½Sj�; Sj ¼
Z

X
/jðxÞdX: ð32Þ

For nodes on the natural, essential and non-local bound-

aries, we present an algorithm to impose boundary conditions
as follows:

– For node xi is on the natural boundary condition, xi 2 Cq

XN
j¼1

Z
Ci
sq

/j;nðxÞdC
" #

T̂kþ1
j ¼

Z
Ci
sq

gðxl; ðkþ 1ÞDtÞdC ð33Þ

– For node xi is on the essential boundary condition, xi 2 CdXN
j¼1

Z
Ci
sd

/jðxÞdC
" #

T̂kþ1
j ¼

Z
Ci
sd

h1ðxl; ðkþ 1ÞDtÞdC ð34Þ
Table 2 The relative error for lðtÞ at M= 3, 6 and 10,

N= 25, 36 and 81.

N/m 3 6 10

25 8.8847e-3 1.0669e-3 1.0410e-3

36 7.5965e-3 7.2043e-4 6.6892e-4

81 2.5943e-3 6.5504e-4 5.9344e-4
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Figure 1 The relative error for Tðx; tÞ at M= 3, 6 and 10 with

N= 25.
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Figure 2 The relative error for Tðx; tÞ at N= 25, 36 and 81 with

M= 3.
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Figure 3 The relative error for Tðx; tÞ at M= 3, 6 and 10 with

N= 36.
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Figure 4 The relative error for Tðx; tÞ at N= 25, 36 and 81 with

M= 6.
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Figure 5 The relative error for Tðx; tÞ at M= 3, 6 and 10 with

N= 81.

0 10 20 30 40 50 60 70 80 90 100
1

2

3

4

5

6

7

8

9

10

11
x 10−3

loop time

R
el

at
iv

e 
er

ro
r

Crank,node=25
Crank,node=36
Crank,node=81

Figure 6 The relative error for Tðx; tÞ at N= 25, 36 and 81 with

M= 10.
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– For node xi is on the non-local boundary condition, xi 2 Cn

XN
j¼1

Z
Ci
sn

/jðxÞdC
" #

T̂kþ1
j �

Z
Ci
sn

h0ðxlÞdCl̂kþ1 ¼ 0: ð35Þ
4. Numerical examples

In the computation, problems are considered in a unit square
domain given by 0 6 x 6 1:. The flow is unidirectional and con-

stant with velocity components u1 ¼ 1 and u2 ¼ 1; u ¼ ðu1; u2ÞT.
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Figure 7 The relative error for lðtÞ at M = 3, 6 and 10 with

N = 25.

0 10 20 30 40 50 60 70 80 90 100
2

4

6

8

10

12

14
x 10−3

loop time

R
el

at
iv

e 
er

ro
r

Crank,node=25
Crank,node=36
Crank,node=81

Figure 8 The relative error for lðtÞ at N = 25, 36 and 81 with

M= 3.
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The diffusivity coefficient is 1. The radius of the local sub-
domain for each node is chosen as r0 ¼ 0:9 h, with h is the dis-

tance between two consecutive nodes in each direction. The
results are obtained for T and l for several time levels with
Dt ¼ 0:001. The numbers of complete monomial basis (M) are

3, 6 and 10 and the numbers of nodal points (N) are 25, 36
and 81. The exact solutions are known for these problems and
are used to test the accuracy of these numerical schemes. The
numerical results in these tables show that the method con-
verges by increasing the number of nodal points, and increasing

the number of monomial basis for a fixed number of nodal
points enhance accuracy.

4.1. Problem 1

We consider the two-dimensional time-dependent convection–
diffusion equation with Dirichlet and non-local boundary

condition:

@T

@t
þ u � rT�r � ðKrTÞ ¼ f;

ðx; tÞ 2 ½0; 1� � ½0; 1� � ½0;Tmax�; x ¼ðx; yÞ

subject to initial, Dirichlet boundary conditions and non-local
boundary conditions:

Tðx; 0Þ ¼ ð1þ yÞ expðxÞ; mðtÞ ¼ 3

2
expðtÞðexpð1Þ � 1Þ;

0 � x � 1;

h0ðxÞ ¼ expðxÞ; h2ðx; tÞ ¼ 2 expðxþ tÞ; t � 0:

h3ðx; tÞ ¼ ð1þ yÞ expðtÞ; h4ðx; tÞ ¼ ð1þ yÞ expð1þ tÞ;
t � 0; h1ðx; tÞ ¼ h2ðx; tÞ [ h3ðx; tÞ [ h4ðx; tÞ

The exact solution of this problem is:

Tðx; tÞ ¼ ð1þ yÞ expðxþ tÞ; 0 � x � 1; t � 0;

lðtÞ ¼ expðtÞ:

The source term of this problem is:

fðxÞ ¼ ð1þ yÞ expðxþ tÞ þ u1ð1þ yÞ expðxþ tÞ
þ u2 expðxþ tÞ � ð1þ yÞ expðxþ tÞ; 0 � x � 1:

The numerical results are shown in Tables 1 and 2, Figs. 1–12.

4.2. Problem 2

We consider the two-dimensional time-dependent convection–

diffusion equation with Dirichlet, Neumann and non-local
boundary condition:

@T

@t
þ u � rT�r � ðKrTÞ ¼ f;

ðx; tÞ 2 ½0; 1� � ½0; 1� � ½0;Tmax�; x ¼ ðx; yÞ

subject to initial, Dirichlet boundary condition, Neumann

boundary condition and non-local boundary condition:

Tðx; 0Þ ¼ expðxþ yþ 2tÞ;
mðtÞ ¼ expð2tÞðexpð2Þ � 2 expð1Þ þ 1Þ; 0 � x � 1;

h0ðxÞ ¼ expðxÞ; h1ðx; tÞ ¼ expð1þ xþ 2tÞ; t � 0:

g0ðx; tÞ ¼ expðyþ 2tÞ; g1ðx; tÞ ¼ expð1þ yþ 2tÞ;
t � 0; gðx; tÞ ¼ g0ðx; tÞ [ g1ðx; tÞ

The exact solution of this problem is:

Tðx; tÞ ¼ expðxþ yþ 2tÞ; 0 � x � 1; t � 0;

lðtÞ ¼ expð2tÞ:
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Figure 10 The relative error for lðtÞ at N= 25, 36 and 81 with

M= 6.
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Figure 11 The relative error for lðtÞ at M= 3, 6 and 10 with

N= 81.
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Figure 12 The relative error for lðtÞ at N= 25, 36 and 81 with

M= 10.

Table 3 The relative error for Tðx; tÞ at M= 3, 6 and 10,

N= 25, 36 and 81.

N/m 3 6 10

25 1.9372e-2 5.3279e-3 4.4636e-3

36 1.6748e-2 4.8862e-3 2.7373e-3

81 5.8101e-3 2.8265e-3 1.5231e-3

Table 4 The relative error for lðtÞ at M= 3, 6 and 10,

N = 25, 36 and 81.

N/m 3 6 10

25 6.1612e-3 1.0348e-3 1.0079e-3

36 2.5005e-3 5.6160e-4 5.4160e-4

81 1.7075e-3 3.1049e-4 3.0039e-4
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Figure 13 The relative error for Tðx; tÞ at M= 3, 6 and 10 with

N= 25.
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Figure 14 The relative error for Tðx; tÞ at N= 25, 36 and 81

with M = 3.
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Figure 15 The relative error for Tðx; tÞ at M= 3, 6 and 10 with

N= 36.
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Figure 16 The relative error for Tðx; tÞ at N = 25, 36 and 81

with M= 6.
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Figure 17 The relative error for Tðx; tÞ at M= 3, 6 and 10 with

N = 81.
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Figure 18 The relative error for Tðx; tÞ at N=25, 36 and 81 with

M= 10.
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Figure 19 The relative error for lðtÞ at M = 3, 6 and 10 with

N= 25.
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Figure 20 The relative error for lðtÞ at N = 25, 36 and 81 with

M= 3.
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Figure 21 The relative error for lðtÞ at M = 3, 6 and 10 with

N= 36.
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Figure 22 The relative error for lðtÞ at N= 25, 36 and 81 with

M= 6.
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Figure 23 The relative error for lðtÞ at M= 3, 6 and 10 with

N= 81.
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Figure 24 The relative error for lðtÞ at N= 25, 36 and 81 with

M= 10.
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The source term of this problem is:

fðxÞ ¼ u1 expðxþ yþ 2tÞ þ u2 expðxþ yþ 2tÞ; 0 � x 6 1:

The numerical results are shown in Tables 3 and 4, Figs. 13–24.

5. Conclusions

A formulation of meshless local Petrov–Galerkin (MLPG) has

been presented in the present work. We have proposed an idea
of MK interpolation demonstrating how it can be used to con-
struct the meshless shape functions for solving the two-dimen-
sional time-dependent convection–diffusion equation with

integral conditions. To deal with time derivatives, the Crank–
Nicolson implicit method was used. The key feature of the
MK interpolation is that the shape function possesses the

Kronecker delta propertywhichmakes it easy to directly impose
Dirichlet boundary conditions. The numerical results show a
decrease in relative error with increasing number of nodal

points. Similarly, the relative error decreases when the size of
the monomial basis increases. Moreover, it can be concluded
that the numerical results of two test problems have been used
to verify the efficiency, easiness and accuracy of the method.
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