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A B S T R A C T   

To develop a body weight (BW) prediction model using milk production traits and present a useful indicator for 
energy balance (EB) evaluation in dairy cows. Data were collected from 30 Holstein cows using an automatic 
milking system. BW prediction models were developed using multiple linear regression (MLR), local regression 
(LOESS), and deep neural networks (DNN). Milk production traits readily available on commercial dairy farms, 
such as energy-corrected milk (ECM), fat-to-protein ratio, days in milk (DIM), and parity, were used as input 
variables for BW prediction. The EB was evaluated as the difference between energy intake and energy demand. 
The DNN model showed the greatest predictive accuracy for BW compared with the LOESS and MLR models. The 
BW predicted using the DNN model was used to calculate the energy demand. Our results revealed that the day 
on which the EB status transitioned from negative to positive differed among cows. The cows were assigned to 
one of the three EB index groups. EB index 1 indicated that the day of EB transition was within DIM ≤ 70. The EB 
indexes 2 and 3 were 70 < DIM ≤ 140 and 140 < DIM ≤ 305, respectively. EB index 3 had the lowest EB, which 
is the slowest to transition from a negative to a positive energy balance compared with EB indexes 1 and 2. The 
highest ECM and feed efficiency were observed for EB index 3. The calving interval was the shortest for EB index 
1. EB of individual cows during lactation can be estimated and monitored with moderately high accuracy using 
EB indexes.   

1. Introduction 

The monitoring of the energy balance (EB) of high-yielding dairy 
cows during the lactation period is important (Nigussie, 2018) because it 
is directly related to milk production and reproductive performance 
(Heuer et al., 2001) and, ultimately, the profitability of dairy enter-
prises. Several methods have been proposed to estimate EB using body 
weight (BW) changes, body condition scores (Friggens et al., 2007), and 
analysis of metabolites in blood and milk (Moore et al., 2005). However, 
these methods are difficult to apply to large herds (Alvarez et al., 2018), 
making monitoring of the individual EB of cows in the field challenging. 
EB can also be evaluated as the difference between the measured energy 

intake (feed intake) and demand (milk production and maintenance); 
however, this requires measurements of milk yield and composition, 
BW, dry matter intake (DMI), and energy density of feedstuff 
(Mäntysaari and Mäntysaari, 2015), which are not broadly available on 
commercial farms (Yan et al., 2009). 

Recording the daily BW, milk yield, and milk composition is possible 
through modern automatic milking systems (Mäntysaari and 
Mäntysaari, 2015). Although data from these automatic milking systems 
is used in modeling studies to predict and evaluate BW, DMI, EB, and 
milk yield (Caixeta et al., 2015), to date, these models require very 
detailed information, which has limited their adoption in commercial 
dairy farms (Vanrobays et al., 2015). Additionally, a range of other 
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factors, such as the stage of lactation, parity, and a cow’s individual 
characteristics, which also need to be considered by the prediction 
model, affect BW and EB. 

Multiple linear regression (MLR) is one of the most widely used 
modeling approaches for agricultural applications (Basak et al., 2020a). 
Although it is a powerful modeling technique, it assumes that the rela-
tionship between independent and dependent variables is linear. This 
assumption of linearity may not always be correct, and can lead to 
biased results that fail to provide satisfactory prediction accuracy (Chen 
et al., 2022). Alternatively, local regression (LOESS), which is a 
nonparametric local regression model for performing nonlinear pre-
dictions, is used to address this limitation (Shamim et al., 2016). 

Recently, machine learning algorithms, such as artificial neural 
networks or deep neural networks (DNN), have become popular as 
powerful learning methods that are particularly beneficial for modeling 
nonlinear and complex relationships between variables (Chen et al., 
2022). A DNN, which is an extension of an artificial neural network, 
tends to outperform the latter in direct comparisons using the same 
dataset (e.g., Guo et al., 2021). Further, DNN models also have better 
predictive performance than traditional methods (Ruchay et al., 2021). 
DNN models have been used in studies of dairy cows, including the 
estimation of body condition scores and BW through image processing, 
animal identification, breeding classification, and heat detection 
(Chowdhury et al., 2016; Shen et al., 2020). 

In this study, we compared the prediction accuracy of BW using three 
different models based on MLR, LOESS, and DNN and presented a 
decision-making support system to evaluate daily EB for individual 
cows. Automatic milking systems were used to record the daily BW and 
milk yield during the lactation period. Additional information readily 
available on commercial dairy farms, such as milk traits, days in milk 
(DIM), and parity was also included in the models. 

2. Material and methods 

2.1. Data collection and preprocessing 

Data from 30 Holstein cows (61 ± 16.4 months old; 726 ± 53.6 kg 
BW) were collected from a commercial dairy farm located in Gimcheon, 
Korea, between February and November 2022. All the cows were housed 
in free-stall facilities and milked using an automatic milking system 
(Lely, Astronaut). The cows were fed a total mixed ration (TMR) of 
flaked corn, corn silage, cottonseed meal, timothy, tall fescue, and al-
falfa, which comprised 61.8 % dry matter (% as-fed), 16.7 % crude 
protein, 59.8 % total digestible nutrients, 50.4 % neutral detergent fiber, 
and 5.61 MJ of net energy/kg of dry matter. The TMR was fed ad libitum 
daily at 09:00 and 16:00 h. Individual TMR intake was recorded using an 
automatic feeding system equipped with a radiofrequency identification 
system (Dawoon Co., Incheon, Korea). Each feed bunk had a real-time 
electronic system that recognized cows using their tags. The feed con-
sumption per visit was measured before and after weighing. The TMR 
intake was the sum of the per-visit consumed feed amounts in 24 h. The 
following data were obtained from the automatic milking system: in-
dividual identification number, parity, test date (representing daily 
data), daily BW, milk yield, milk components (protein, fat, lactose, and 
somatic cell count), and milking frequency. DIM records were collected 
between days 10 and 305. After excluding outliers, 1,745 records were 
used for the analysis. The descriptive statistics of the entire dataset are 
provided in Table 1. The numerical variables in the training and test 
data were scaled, that is, normalized (Walls et al., 2020). For normali-
zation, the min–max normalization technique (Chen et al., 2022) was 
used for a period of DIM 10–305 for every cow using the following 
equation: 

Xnorm =
X − Xmin

Xmax − Xmin
(1)  

where Xnorm or X represents the normalized or original value, and Xmin 
and Xmax stand for the minimum and maximum values of the input 
dataset, respectively. This normalization improves the efficiency of DNN 
training and is necessary because the variables, including a cow’s BW, 
can have very different values depending on the individual and their 
DIM records, which may lead to poor model performance. After the 
analysis, all normalized BW-predicted values obtained from the three 
models were denormalized back to their original scale using the 
following equation by Chen et al. (2022): 

Y = Ynorm × (Ymax − Ymin) + Ymin (2)  

where Ynorm or Y is the normalized or demoralized value, and Ymin or 
Ymax is the minimum or maximum value of the output data. The results 
were presented on the original scale. 

2.2. Input variable selection 

In each modeling method, the selection of input variables plays a 
crucial role in determining a suitable model structure (Basak et al., 
2020b). In the present study, principal component analysis was con-
ducted to identify the main variables in the automatic milking system 
data (Fig. 1). 

From these, energy-corrected milk (ECM), DIM, fat-to-protein ratio, 
and parity, which are readily available on commercial dairy farms, were 
selected as input variables for all models. ECM provides a more precise 
representation of cows’ energy output compared to milk yield alone, as 
it accounts for milk yield adjusted to the ratio of milk solids (Knob et al., 
2021). The lactation phase, parity, milk production, and fat-to-protein 
ratio exhibit significant predictability for EB (Heuer et al., 2000). The 
ECM (Shirley, 2006) and fat-to-protein ratios (Lee et al., 2017) were 
calculated as follows: 

ECM(kg/d) = 0.327 × milk yield(kg) + 7.2 × milk protein(kg) + 12.95

× milk fat(kg)
(3)  

Milk fat-to-protein ratio =
milk fat(%)

milk protein(%)
(4)  

2.3. Model evaluation 

We used three models (MLR, LOESS, and DNN) to predict the BW of 
cows. MLR is a widely utilized modeling technique in diverse animal 
science applications (Chen et al., 2022). The MLR equation is as follows: 

Y = β0 + β1χ1 +⋯+βnχn + ε (5) 

Table 1 
Descriptive statistics of the dataset.  

Variables Mean SD Median Min Max 

Days in milk (d)  170.79  81.38  180.00  10.00  305.00 
Parity  2.81  1.13  3.00  1.00  6.00 
Energy corrected milk (kg/d)  37.36  6.05  37.07  21.75  59.67 
Fat protein corrected milk 

(kg/d)  
34.56  5.58  34.30  20.01  55.02 

Milk fat-to-protein ratio  1.23  0.27  1.23  0.50  1.97 
Milk yield (kg/d)  36.26  6.26  35.80  18.30  54.70 
Milk fat (%)  3.75  0.66  3.81  1.85  5.23 
Milk protein (%)  3.10  0.29  3.08  2.41  4.10 
Body weight (kg/d)  730.30  58.63  731.00  587.00  861.00 
Energy balance (MJ of NEL)  25.64  38.75  25.30  − 104.76  136.83 
Energy intake (MJ of NEL)  177.00  43.04  175.03  64.80  301.26 
Energy demand (MJ of NEL)  151.36  19.70  150.32  97.44  228.01 
Dry matter intake (kg/d)  31.55  7.67  31.20  11.55  53.70 
Feed efficiency  1.24  0.34  1.17  0.66  3.66 

Milk fat-to-protein ratio = milk fat (%)/milk protein (%). 
Feed efficiency = energy corrected milk (kg/d)/dry matter intake (kg/d). 
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where the dependent variable Y and independent variables x and β 
represent the linear regression coefficients, and ε represents the error. 
The “lm” function in R (R Core Team, 2020) was used for the analysis. 

LOESS is a nonparametric local regression model that fits curves and 
surfaces to data by smoothing (Bruhns et al., 2005) and is often used as 
an alternative technique for performing nonlinear prediction (Shamim 
et al., 2016). Moreover, LOESS exhibits flexibility by effectively 
capturing intricate local data trends that might pose challenges for linear 
methods because it does not assume a specific parametric model (Eguasa 
et al., 2022). For LOESS, we used the “loess” function in R and the 
default span parameter (James et al., 2013). 

A DNN stands as an artificial neural network featuring numerous 
layers positioned between the input and output layers. In this study, we 
constructed a DNN using a sequential Keras model within R (Chollet and 
Allaire, 2017). We applied two hidden layers to the model and con-
structed the output layer with a single unit (BW), given that our model 
involves a regression problem with a solitary response variable. Addi-
tionally, we employed the rectified linear activation function (relu) as 
the default activation function for regression issues in Keras. The option 
of dropping out between the layers was used because a dropout in the 
hidden layer helps prevent the DNN from memorizing the input data 
(overfitting). The model was compiled using the RMSprop optimizer. We 
carried out hyperparameter tuning employing a grid search strategy 
across the provided parameter range, and subsequently, we chose the 
optimal parameter combination (with the lowest mean absolute error 
[MAE]). For model training, the epoch number was 100, batch size was 
5, learning rate was 0.00001, and validation split was 0.2. 

The dataset was split into two parts: 80 % for training and 20 % for 
test data, achieved through random sampling. The training data were 
utilized to build BW prediction models, while the test data were 
employed to assess and compare the predictive performance of the 
different modeling approaches (Chen et al., 2022). 

The model performance was appraised utilizing a ten-fold cross 
validation approach in order to gauge the test error associated with each 
model. We used MAE and root mean square error (RMSE) to assess 
precision and accuracy, as described by Walls et al. (2020): 

MAE =
1
n
∑n

i=1
|yi − ŷ| (6)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n

∑n

i=1
(yi − ŷ)2

√

(7)  

where, yi refers to the observed value, ̂y denotes the predicted value, and 
n stands for the number of observations. 

2.4. Calculation of energy balance and development of energy balance 
index 

Daily EB was determined by subtracting the energy intake from the 
demand (GfE, 2001). Daily energy intake was computed based on the 
DMI and net energy of the TMR (Eq. (9)). 

Daily energy demand was derived as the sum of energy demands for 
lactation and maintenance (Smit et al., 2005) (Eq. (10)). The predicted 
BW values were utilized to calculate the energy demand for 
maintenance. 

EB(MJ of NEL/d) = energy intake − energy demand (8)  

Energy intake(MJ of NEL/d) = DMI(kg/d) × feed energy
concentration(MJ of NEL/kg of DM)

(9)  

Energy demand
(
MJ of NEL

/
d
)
= 6.9 ×

[(
42.4 × BW0.75

+442 × FPCM
)
× (1 + (FPCM − 15) × 0.00165 )

]
× 0.001

(10)  

FPCM(kg/d) = (0.337 + 0.06 × milk protein(%)

+0.116 × milk fat(%)) × milk yield(kg)
(11)  

Feed efficiency =
ECM(kg/d)
DMI(kg/d)

(12) 

To develop an EB index, cows were classified into three groups based 
on the time point at which a negative energy balance (NEB) was con-
verted to a positive energy balance (PEB): EB index 1 (DIM ≤ 70), EB 
index 2 (70 < DIM ≤ 140), and EB index 3 (140 < DIM ≤ 305). Each 
group comprised 9 cows (55 ± 16.1 months old; 721 ± 45.7 kg BW), 10 
cows (60 ± 14.0 months old; 735 ± 56.3 kg BW), and 11 cows (71 ±
22.0 months old; 717 ± 63.7 kg BW), respectively. The EB was scaled 
with an average value of zero and a standard deviation (SD) of 1. 

Fig. 1. Milk production variables in the first and second principal components. DIM, days in milk; DMI, dry matter intake; EB, energy balance; ECM, energy corrected 
milk; FE, feed efficiency; FPR, milk fat-to-protein ratio; SCC, somatic cell counts. 
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3. Results 

3.1. Prediction of BW 

To obtain an optimal prediction model for BW, predictive perfor-
mance was tested and compared using three different methods. As 
shown in Table 2, the DNN model had the lowest RMSE (32.92) and 
MAE (25.65) when compared to the MLR and LOESS models in the 
tenfold cross-validation. As the DNN model had a higher accuracy in this 
study than the other models, we used the BW predicted by this model to 
calculate the energy demand. The ECM and DMI patterns during lacta-
tion are shown in Fig. 2. The ECM increased sharply during the first 8–9 
weeks (DIM 61) of lactation, after which it decreased. In contrast, the 
DMI increased slowly until approximately 14 weeks (DIM 100). 

3.2. Calculation of energy balance 

The estimated energy demand, energy intake, and EB during lacta-
tion are shown in Fig. 3. The mean daily energy demand was high after 
parturition up to DIM 61, after which it began to decline (Fig. 3A). The 
mean daily energy intake was low after parturition and peaked at a DIM 
of 100. These patterns of changes in energy intake and demand during 
lactation were similar to those of the DMI and ECM results (Fig. 2). This 
was expected, as daily energy intake was computed from DMI, and the 
net energy of the total mixed ration and daily energy demand were 
determined as the sum of energy demand for milk production and 
maintenance. As shown in Fig. 3C, the daily mean EB was negative after 
parturition and then increased to a positive value. 

3.3. Development of energy balance index 

We found that the day on which the EB status transitioned from 
negative (N) to positive (P) differed among the cows (Fig. 3C). There-
fore, the cows were assigned to three EB index groups. EB index 1 in-
dicates the day of EB transition was within DIM ≤ 70. The EB indexes 2 
and 3 were 70 < DIM ≤ 140 and 140 < DIM ≤ 305, respectively. The EB 
index 1 group rapidly converted from NEB to PEB in the early lactation 
period, and EB index 2 remained NEB during early lactation and then 
transitioned to PEB in the mid-lactation period. In addition, EB index 3 
maintained NEB in the early and mid-lactation periods and was only 
converted to PEB during late lactation. 

The average EB, ECM, feed efficiency, and calving interval are shown 
in Table 3. The EB values differed significantly based on the EB index. 
The means of EB (±SD) were 45.22 ± 48.31, 37.68 ± 32.14, and 4.93 ±
50.47 MJ/d in the EB indexes 1, 2, and 3 during the period of DIM 
10–305, respectively. EB index 3 had the lowest EB, which is the latest 
transition from NEB to PEB, compared with EB indexes 1 and 2. Esti-
mates of EB became zero at approximately DIM 66, 105, and 200 for EB 
indexes 1, 2, and 3, respectively. The highest ECM (38.89 ± 4.33) and 
feed efficiency (1.49 ± 0.48) were found in EB index 3, which is the 
latest to transition from NEB to PEB. The ECM yields were 33.08 ± 7.96 
and 37.74 ± 5.66 kg/d for EB indexes 1 and 2, respectively. The feed 
efficiencies were 1.09 ± 0.42 and 1.14 ± 0.24 in EB indexes 1 and 2, 

respectively. The calving interval was the shortest at 379.32 ± 45.25 in 
EB index 1, which was the earliest to transition from NEB to PEB. 
Calving interval means were 488.00 ± 74.65 d and 561.07 ± 99.92 d for 
EB indexes 2 and 3, respectively. 

4. Discussion 

Monitoring the EB of individual cows is essential for their proper 
management and breeding (Mäntysaari et al., 2019). It assists farmers in 
recognizing cows that might be prone to metabolic stress and production 
diseases, while also verifying the adequacy of existing management and 
nutritional approaches. Changes in the EB throughout a cow’s lifespan 
might serve as a valuable prospective selection objective due to the 
genetic differences in EB profiles observed among bull daughter groups 
in their initial lactation (Coffey et al., 2001). Although several methods 
have been proposed to estimate EB using BW changes, body condition 
scores (Friggens et al., 2007), and analysis of metabolites in blood and 
milk (Moore et al., 2005), these are difficult to apply to large herds 
(Coffey et al., 2001; Alvarez et al., 2018), making it challenging to 
monitor the individual EB of cows in the field. Therefore, an easy and 
effective method for monitoring EB in cows is required. The daily EB can 
be determined by subtracting the measured energy intake from the de-
mand (GfE, 2001). However, this calculation requires BW and milk yield 
and composition measurements, which can be challenging to acquire at 
the farm level (Mäntysaari et al., 2019). 

This study predicted BW in lactating cows based on milk trait (ECM, 
DIM, and fat-to-protein ratio) data using automatic milking systems and 
parity information, which are more broadly available on commercial 
farms. In our study, we utilized daily measurements of milk yield and 
composition instead of relying on monthly evaluations. Frequent 

Table 2 
Predictive performance of different modeling approaches for prediction of body 
weight (BW) using ten-fold cross validation.  

Models RMSE MAE 

Multiple Linear Regression (MLR)  50.94  38.15 
Local Regression (LOESS)  40.93  32.73 
Deep Neural Network (DNN)  32.92  25.65 

The features were days in milk (DIM), energy corrected milk (ECM), fat-to- 
protein ratio, and parity. MAE, mean absolute error (obtained using ten-fold 
cross validation); RMSE, root mean square error (obtained using ten-fold cross 
validation). 

Fig. 2. Relationship between days in milk (DIM) and (A) the mean of energy 
corrected milk (ECM) and (B) dry matter intake (DMI) in Holstein cows (mean 
± SD). 
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measurements enabled us to smooth the milk production data prior to 
the modelling analysis. The predicted BW was used to calculate the 
energy required for maintenance (GfE, 2001). Using predicted BW has 

the advantage of being simple to integrate with automatic milking sys-
tems and sensor-based monitoring systems, allowing for almost contin-
uous BW monitoring. The BW of cows decreases sharply during the first 
3–5 weeks of lactation and then increases at the end of lactation (Van-
robays et al., 2015; Mäntysaari et al., 2019). During early lactation, 
insufficient feed intake triggers the mobilization of energy from body 
reserves, ultimately causing a decline in BW (Mäntysaari et al., 2012). In 
contrast, lost body reserves are restored later in lactation with elevated 
feed intake and reduced milk yield, leading to an increase in BW. 

During the initial stages of lactation, the energy demands of high- 
producing cows are rarely met by their feed intake (Mäntysaari et al., 
2012), which results in energy mobilization from their body reserves to 
make up for the energy deficit, causing NEB during the early lactation 
period. Notably, at least 80 % of dairy cows undergo NEB during early 
lactation (Nigussie, 2018). In general, when NEB occurs in the early 
lactation of dairy cows, EB reaches zero during mid-lactation and be-
comes positive in late lactation. Cows experiencing body tissue and 
energy loss in the early lactation typically reach PEB around DIM 40–80 
(Coffey et al., 2001). However, several cases of negative EB during the 
mid- and late lactation periods in high-yielding dairy cows with rela-
tively high milk yields were observed. In this study, cows on average 
achieved PEB at DIM 66, 105, and 200 for EB indexes 1 (early lactation 
period), 2 (mid-lactation period), and 3 (late lactation period), respec-
tively. Coffey et al. (2001) reported that the cumulative body energy loss 
in the first lactation period was fully regained at approximately DIM 
200. Further, the more delayed the transition from NEB to PEB, the 
higher the ECM and feed efficiency. This was due to the dairy cows 
mobilizing the necessary energy requirements from body fat to produce 
large amounts of milk, leading to the cows remaining in the NEB state 
until the mid-lactation period (Table 3). In addition, for EB index 3, the 
daily EB remained negative until mid-lactation, which suggests that milk 
productivity increases but reproductive efficiency may decrease. NEB 
leads to decreased fertility and metabolic disorders, such as ketosis and 
mastitis. (Puangdee et al., 2016), and severe NEB postpones early 
ovulation and recuperation of postpartum reproductive function and 
exerts carryover effects that diminish fertility during the breeding 
period (Nigussie, 2018). Moreover, postpartum reproductive activity 
may resume only once the nadir of NEB is reached (Coffey et al., 2002), 
indicating that the transformation from NEB to PEB could serve as a 
valuable sign of the restoration of reproductive activity. 

These results suggest that the present model is an appropriate 
method for evaluating EB on a commercial farm without measuring BW 
daily. Monitoring the EB of individual cows has clear benefits from the 
perspective of using EB as a diagnostic tool for nutrition and repro-
duction. In addition, EB indexes can be used as indicators for farm 
management decision-making. These advanced modeling techniques 
offer concrete benefits to dairy farmers in real practice. The precise 
anticipation of BW and EB has a pivotal role in guiding decisions related 
to feed management, allowing for meticulous adjustments in the dietary 
plans of individual cows. By integrating readily accessible information, 
such as milk traits, parity, and DIM, the devised models can provide 
tailor-made recommendations for the specific nutritional requirements 
of each EB index group. This customized approach enhances feed utili-
zation efficiency and enables economically efficient milk production, 
considering the reproductive efficiency of the next parity. Further, it 
facilitates the early identification and prompt intervention of metabolic 
disorders. The outcomes highlighted in this study underscore the po-
tential significance of advancing dairy farming practices, thereby 
contributing to progress in sustainable livestock management. 

Our research had some limitations that should be taken into account 
when interpreting the findings. The data used for model training and 
testing were derived from only one farm, which could have contributed 
to an unbalanced distribution of BW values for model training, and farm- 
specific BW and EB patterns may exist. Therefore, models must be 
trained on data from a larger number of farms to ensure the robustness of 
the predictions. 

Fig. 3. Relationship between days in milk (DIM) and (A) the mean of energy 
demand (ED), (B) energy intake (EI), and (C) energy balance (EB) in Holstein 
cows (mean ± SD). 

Table 3 
Results of energy balance (EB), energy corrected milk, feed efficiency, and 
calving interval according to the EB index.  

Items Groups p-value 

EB index1 EB index2 EB index3 

Energy balance (MJ/ 
d) 

45.22a ±

48.31 
37.68b ±

32.14 
4.93c ±

50.47  
<0.0001 

Energy corrected 
milk (kg/d) 

33.08c ±

7.96 
37.74b ±

5.66 
38.89a ±

4.33  
<0.0001 

Feed efficiency 1.09b ± 0.42 1.14b ± 0.24 1.49a ± 0.48  <0.0001 
Calving interval (d) 379.32c ±

45.25 
488.00b ±

74.65 
561.07a ±

99.92  
<0.0001 

Feed efficiency = energy corrected milk (kg/d)/dry matter intake (kg/d). 
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5. Conclusion 

We developed a BW prediction model for individual cows using milk 
production traits and parity information and estimated their daily EB 
based on the predicted BW. In this study, milk production traits readily 
available on commercial dairy farms were used as input variables for BW 
prediction. The DNN model demonstrated the highest predictive accu-
racy during the lactation period, outperforming the LOESS and MLR 
models in the ten-fold cross-validation. This investigation highlighted 
variations in the transition of EB status from negative to positive among 
cows, leading to the classification of cows into three EB index groups 
based on DIM, which captured different EB transition patterns. Notably, 
EB index 3 exhibited the slowest transition from negative to positive EB, 
accompanied by the highest FE and ECM values. The EB of individual 
cows during lactation can be estimated and monitored with moderately 
high accuracy using EB indexes. In conclusion, EB indexes could be used 
as indicators for individual and herd management. Future work will aim 
to validate these models on multiple dairy farms. 
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